An Efficient Algorithm for Finding Double-Vertex Dominators in Circuit Graphs

Maxim Teslenko Elena Dubrova
Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden

Abstract circuit is the probability of its net values to change from 0 to 1 or
vice versa. It correlates directly with the average power dissipa-
Graph dominators provide a general mechanism for identify- tion of the circuit [3], thus its analysis is useful for guiding logic
ing re-converging paths in circuits. This is useful in a number optimization methods targeting low power.
of CAD applications including computation of signal probabili- Computation of signal probabilities and switching activities
ties for test generation, switching activities for power and noise based on topologically processing the circuit from inputs to out-
analysis, statistical timing analysis, cut point selection in equiv- puts and evaluating the gate functions generally produces incor-
alence checking, etc. Single-vertex dominators are too rare in rectresults due to higher-order exponents introduced by correlated
circuit graphs to handle re-converging paths in a practical way. signals. For example, if the functiorfsandg have variables in
This paper addresses the problem of finding double-vertex domi-common, therP[f A g] # P[f] - P[g], whereP is the signal prob-
nators, which occur more frequently. First, we introduce a data ability. Dominators provide the earliest points during topological
structure, called dominator chain, which allows representing all processing at which the re-converging paths meet and thus the sig-
possible @n?) double-vertex dominators of a given vertex itnd nals cease to be correlated. Therefore, the computation of signal
space, where n is the number of vertices of the circuit graph. Dom- probabilities and switching activities can be efficiently partitioned
inator chains can be efficiently manipulated, e.g. it takes constant along the dominator points [4, 5, 6]. At the origin of a reconverg-
time to look-up whether a given pair of vertices is a double-vertex ing path,v, an auxiliary variable is introduced. At the end of the
dominator. Second, we present an efficient algorithm for finding path, the immediate dominator efthis variable is eliminated. As
double-vertex dominators. The experimental results show that thea result, the computation is carried out using a minimum set of
presented algorithm is an order of magnitude faster than existing variables.
algorithms for finding double-vertex dominators. Thus, it is suit- Single-vertex dominators can be found in time linear in the
able for running in an incremental manner during logic synthesis. number of vertices of the graph [7, 8, 9]. However, they are quite
rare in circuits. It is more common that a vertex is dominated by a
set of vertices. For example, in Figure 1, primary inpig domi-
nated by the sefte,h}. To be able to deal with re-converging paths
in a practical way, an efficient algorithm for computing multiple-
dominators of a small size is needed. Small size is important be-
cause usually2combinations of values of kvertex dominator
This paper considers the problem of finding dominators in cir- have to be manipulated [4].

1 Introduction

cuit graphs. A vertex is said todominateanother vertexiif every General algorithms for finding multiple-vertex dominators

path fromu to the output of the circuit containg1]. For example, have exponential worst case complexity [10]. Multiple-vertex

in the circuit graph in Figure 1, vertexdominates verteg; vertex dominators of a fixed siZkecan be computed i@(nk) time, where

p dominates vertek. n is the number of vertices of the circuit graph [11]. This pa-
Dominators provide a general mechanism for identifying re- per presents an algorithm for finding double-vertex dominators

converging paths in circuits. If a vertexis the origin of a re- (k= 2), which is significantly faster than the algorithm [11]. The

converging path, then the immediate dominatov &f the earliest efficiency of our algorithm is due to a number of interesting prop-
point at which such a path converges. For example, in Figure 1, erties of double-vertex dominators. The most important one is that
the re-converging path originatedextnds an; the re-converging the set of all possible double-vertex dominators of a given ver-
path originated ag ends atf. tex can be represented by a unigi@minator chairof linear size
Knowing the precise starting and ending points of a re- which can be looked-up in constant time.
converging path is useful in a number of applications including Being able to efficiently represent and manipulalledouble-
computation of signal probabilities for test generation, switching vertex dominators for a given vertex is important, because it makes
activities for power and noise analysis, statistical timing analysis, the computation of common dominators easy. As we show in the
cut point selection in equivalence checking, etc. paper, double-vertex dominators for a set of vertices can be derived
Thesignal probabilityof a net in a combinational circuitisthe from the dominator chains of individual vertices.
probability that a randomly generated input vector will produce The paper is organized as follows. Section 2 presents the no-
the value one on this net [2]. Efficient signal probability analysis tation. Section 3 summarizes the previous work. Sections 4 and
allows to improve the coverage of test generation for biased ran-5 introduce the new data structure and the dominator algorithm,
dom simulation. The averagavitching activityin a combinational respectively. The experimental results are shown in Section 6.

1530-1591/05 $20.00 © 2005 IEEE

(b

Figure 1: (a) Example circuit; (b) Its dominator tree.

Properties of Dominators

LetC = (V, E,root) denote a single-output directed acyclic cir-
cuit graph, wher& represents the set of gates and primary inputs
andE CV xV describes the nets connecting the gates. A particu-
lar vertexroot € V is marked as the circuit output.

A vertexv dominatesanother vertex if every path fromu to
the root containsv [1]. Vertexv is theimmediate dominatoof
u, if v.dominatesu and every other dominator ef dominatesv.

For example, in Figure 1, vertex is the immediate dominator
of j,e andk; vertex f is the immediate dominator af and p.
Every vertexy € V exceptroot has a unique immediate dominator,
idom(v) [12]. The edgeq (idom(v),v) | veV — {root}} form a
directed treeT (C) rooted atroot, called thedominator treeof C.
Figure 1(b) shows the dominator tree for the circuit in Figure 1(a).

Dominators provide a general mechanism for identifying re-
converging paths in circuit graphs. Every edge of the domina-
tor tree(idom(v),v) € T(C) represents the starting and the ending
points of a path. If the fanout degreewpfFanoutv) = {u|(v,u) €
E}, is one, then the re-converging path is trivial (i.e. an edge).
Otherwise, vertex is the origin of a re-converging path and ver-
tex idom(v) is the earliest point at which such a path converges.
For example, in Figure 1(a), the re-converging path originated at
ends atdom(e) = n; the re-converging path originatedta¢nds at
idomb) = f.

Many graphs do not have any single-vertex dominators except

root. Itis more common that a vertex is dominated by a set of ver-
tices. Below we give a general definition for a set of vertices being

dominated by another set. When the sizes of both sets are one, thi

definition reduces to the above mentioned definition from [1].

Definition 1 A set of verticegvs,..., v} is a common multiple-
vertex dominator of size k for a set of vertides,...,u} CV —
{V]_, . ,Vk}, if

1. every path from any;upe {1,...,1}, to root contains some
vi,ie{l,....k}

2. for every y, there exists at least one path from somg pic
{1,...,1}, to root which containsj\and does not contain any
otherv, i, je{1,...,k},i#]j.

In the paper, we omit the word "common” whén= 1, i.e.
when a set dominates a single vertex.

The second condition of the Definition 1 is needed to remove
redundancies. For example, in Figure 1(a), all paths feora
f pass through the set of verticé$,n}. However, vertexj is
redundant, becauses a single-vertex dominator ef

Note, that the notion of dominator is more general than the
notion ofmin-cutin circuit partitioning [13]. A min-cut is required
to dominate all vertices in its transitive fanin.

A number of properties are specific for multiple-vertex dom-
inators. First, in single-vertex case, any vernexV — {root} is
dominated by at least one vertegot. Multiple-vertex dominators
may not exist for some vertices. For example, a tree-like circuit
does not have any multiple-vertex dominators. In a tree structure
the condition (2) of the Definition 1 is not satisfied for any subset
{v1,..., %}, k> 1, since the individual vertices, i € {1,...,k},
dominate all vertices in their transitive fanins.

Second, the immediatevertex dominators are not unique for
k > 2. We define immediatk-vertex dominators as follows.

Definition 2 The setW= {vy,...,V} in an immediate common k-
vertex dominator ofuy,...,u }, if W is a common k-vertex domi-
nator of{us,...,u } and there is no other common k-vertex dom-
inator of {uy,...,u}, W, such that each vertex of \Ws either
dominated by W or belongs to W.

Figure 1 gives an example. Vertéxhas two immediate 3-
vertex dominatorsy{e,|,m} and {h, j,k}. In Section 4 we show
that immediaté&-vertex dominators are unique fore= 2.

3 Previous Work

The problem of finding single-vertex dominators was first con-
sidered in global flow analysis and program optimization. Lorry
and Medlock [12] presented &)(n?) algorithm for finding all im-
mediate single-vertex dominators in a flowgraph witkertices.
Successive improvements of this algorithm were done by Aho and
Ullman [14], Purdom and Moore [15], and Tarjan [16], culminat-
ing in Lengauer and Tarjan’s [O(ea (e, n)) algorithm, wheree is
the number of edges andis the standard functional inverse of the
Ackermann function which grows slowly witandn.

The asymptotic time complexity of finding single-vertex dom-
inators was reduced to linear by Harel [7], Alstrup et al. [8] and
Buchsbaum et al. [9]. However, these improvements in asymp-
totic complexity did not contribute much to reducing the actual
Tuntime. For example, the algorithm [9] runs 10% to 20% slower
than Lengauer and Tarjan’s [1]. Lengauer and Tarjan algorithm ap-
pears to be the fastest of algorithms for single-vertex dominators
on graphs of large size.

While it is possible to compute all single-vertex dominators
in linear time, algorithms for finding all multiple-vertex domina-
tors for a directed graph have exponential worst case complex-
ity [10]. In [11], it was shown that it is possible to compute
multiple-vertex dominators of a fixed sizein polynomial time.
The algorithm presented in [11] finds the set of all possible
vertex dominators for a circuit gragh= (V, E, root) by iteratively
restrictingC with respect to one of its vertices,e V. The re-
striction is done by removing fror all vertices dominated by
v, S(v). Dominators of siz&k — 1 are computed for the result-
ing restricted grapiC’ = (V/,E’,root), with V/ =V — §v) and

E'=E—{(u,w)|ue S(v) vwe S(v)}, by applying the same tech-
nigue recursively. Onckis reduced to 1, a single-vertex domina-
tor algorithm is used. Since single-vertex dominators can be com-
puted in linear time, the overall complexity of the algorithm [11]
is bounded byO(|V|¥).

4 Dominator Chain

In this section, we introduce a data structure catlechina-
tor chainwhich allows representing all possib|V|?) double-
vertex dominators of a given vertex@(|V|) space.

Definition 3 For any ue V, the dominator chain [u) is a vector
of type

<{V117V21}7 {V127V22}7 sy {Vlm7V2m}>

whose elementsVie {1,2}, j€ {1,...,m},0<m< |V|/2, are
vectors of vertices of V. Every pajiyj,Voj} satisfies the fol-
lowing properties:

1. For every ve Vjj, there exists a matching vector W
(wg,...,Ws), which is a sub-vector (i.e. linear interval) of
Vi, ke {1,2},k #1i, such that

e forallr € {1,...,s}, {vw} is a double-vertex domi-
nator of u;

e no other pair of verticegv,v' }, V €V —W, is a double-
vertex dominator of u;

e the order of the elements of the matching vector W is
given by:

if {v,w; } is a double-vertex dominator ofythent<r,
forallr,t € {1,...,s}, r #t.

2. The immediate double-vertex dominator of u is the first el-
ements of ¥4 and \b1. For all j € {2,...,m}, the immedi-
ate common double-vertex dominator of the last elements of
Vij_1 and \bj_1 is the first elements ofiyand \j. There is
no common double-vertex dominator of the last elements of
Vim and Vo,

3. No pair{V1j,Voj}, Vj € {1,...,m}, can be partitioned into
two pairs {V1j,,Vzj, } and {Vyj,,V2j,}, where \{j, UVljz_:
Vij, Vij, NVij, = D, Vaj, UVaj, = Vi, Voj, NVoj, = @, which
satisfy properties 1 and 2.

As an example, consider the circuit shown in Figure 2. The
set of all double-vertex dominators foris: {a,b}, {a,c}, {a,d},

{e.c}, {ed}, {hc}, {h.d}, {h,g}, {kI}, {m1}, {kin}, {m.n}.

The dominator chain fon is

<{V117V21}7 {V12>V22}> = <{<a7) h>7 C>d>g>}> {<k7 m>7 <| ’ n>>}>

The matching vectoW of any vertexv in the dominator chain
contains all vertices such that{v,w} is a double-vertex domina-
tor of u. In Figure 2, the matching vector for vertexs (b, c,d);
the matching vector fod is (a,eh). The first elements o¥11
andVyi, {a,b}, are the immediate double-vertex dominatomof
The first elements o¥1> andVay, {k,1}, are the immediate com-
mon double-vertex dominator of the last element¥afandVa,

{h,g}. The pair{m,n} does not have any common double-vertex
dominator.

To prove that the dominator chain contains all possible double-
vertex dominators of a vertex, we first show several fundamental
properties of double-vertex dominators. LBom(u) denote the
set of all possible double-vertex dominatoraiofThe first Lemma
says that, if two dominators have a vertex in common, then one of
them dominates the non-common vertex of the other one.

Lemmal If {vq,vo} € Dom(u) and{v,,v3} € Dom(u), then ei-
ther {v1,vo} € Dom(vz) or {vo,v3} € Dom(vy).

Proof: Supposer; is not dominated byvy,vo}. Since{v,,v3} €
Dom(u), there exists a path fromto root, py—root, Which contains
vz and does not contai. Since{vy,vo} € Dom(u), Py—root CON-
tainsvy. Furthermorey; precedess in py—root, because, by as-
sumption{vy, 2} ¢ Dom(vz) and thus there exists a paiy,—root
which does not contain neithey norv,.

The partpy—y, of the pathpy—root does not contaim andvs.
Each pathpy, —root CONtains eithev, norvs, because otherwise the
existence of the patpy_v, Py, —root Would contradict{vo,v3} €
Dom(vy). Thus, by Definition 1{vz,v3} € Dom(vy). Similarly
we can show thafv,, vz} ¢ Dom(vy) implies{vy,v>} € Dom(vg).

]

The second Lemma covers the case of two dominators with no
vertices in common.

Lemma 2 If {v1,v2} € Dom(u) and{vs,v4} € Dom(u), such that
at least one of the vertices ¢, v» } is not dominated byvs, v}
and vice versa, then either

{v1,va} € Dom(u) and{vp,v3} € Dom(u)

or
{v1,v3} € Dom(u) and{vz,v4} € Dom(u)

Proof: Suppose thafvz,va} ¢ Dom(v1) and{vi,vo} ¢ Dom(vg).
Then, there exists a pa,—root Which does not contain neither
v3 nor v4. Also, there exists a patpy,—root Which does not con-
tain neithervy norv,. Two cases are possible: (1) there is a path
Pv;—v,; (2) there is no such path.
case 1:(a) Suppose that; precedes, in py,—y,. Then, all paths
from u to v1 containvs, since{vs,v4} € Dom(u) and py, -root
exists. Thus, every pathy_root CONtainingvy containsvs as well.
Since{vy, vz} € Dom(u), this implies thaf v, v3} € Dom(u).
(b) Suppose that, precedes; in py,—v,. Then, all pathgy—.y,
containvy, since{vy,vz} € Dom(u) and py,—root €Xists. Thus,
every pathpy—_root CONtainingv, containsvo, as well. Since
{v3,v4} € Dom(u), this implies thafv,,v3} € Dom(u).
case 2:If there is no patlpy, .y, then, similarly to (a), every path
Pu—root CONtainingvy should contairvs as well. Since{vy, vy} €
Dom(u), this implies thaf{v,v3} € Dom(u).

Consider vertices, andvs. Two cases are possible: (1) there
exists a pattpy,—v;, (2) there is no such path.
case 1:(a) Suppose thab precedess in py,—v,. Then{vy,vo} €
Dom(vg) implies thatv; is a single-vertex dominator . Thus,
{v3,va} € Dom(u) implies that{vy,v4} € Dom(u).
(b) Suppose thats precedesvs in py,—v,. Then, {vs,v4} €
Dom(v,) implies thatv, is a single-vertex dominator @b. Thus,
{v1,v2} € Dom(u) implies that{vi,v4} € Dom(u).

Figure 2: Example circuit.

case 2:If there is no pathpy,—.v,, then, similarly to (a){vi,v2} €
Dom(vs) implies thatv; is a single-vertex dominator of. Thus,
{v3,v4} € Dom(u) implies that{vi,v4} € Dom(u). O

Next, we prove that immediate double-vertex dominators are
unique. As we showed in Section 2, this property does not extend
to dominators of larger size.

Theorem 1 For every vertex & V, the immediate double-vertex
dominator, if it exists, is unique.

Proof: By contradiction. Suppose has two immediate double-
vertex dominators{vi,vo} and{vs,v4}. Two cases are possible:
(1) {v1,v2} and{vs,v4} have one common vertex, and @), v, }
and{vs,v4} do not have common vertices.

case 1:Supposer, is the common vertex, i.e. the second imme-
diate dominator ivo,v3}. By Definition 2, every vertex of an
immediate dominator cannot be dominated by any other domina-
tor. Sincev, is common, it should hold th&tvi,vo} ¢ Dom(vg)
and{vp,v3} ¢ Dom(v1). This contradicts Lemma 1, which says
that either{vy,vo} € Dom(vg) or {vz,v3} € Dom(vy).

case 2:By Lemma 2, either (1Jv1,v2} dominates both vertices

in {v3,v4} (or vice versa), or (2) there exists two other domina-
tors ofu, each having a vertex in common with bdtm, v, } and
{v3,Vv4}. In the first case, one of the dominators does not satisfy
Definition 2. In the second casease lapplies to show that only
one of the overlapping dominators can be immediate.

O

Now we give the main result of the paper. The proof is based
on Lemmata 1 and 2 and Theorem 1.

Theorem 2 The dominator chain exists for anyaV . It contains
all possible double-vertex dominators of u. All paig;j,Vo;},

j € {1,...,m}, are uniquely defined. For eaclei{1,2}, the over-
all number of verticeg [, Vi | is smaller than the longest path
from u to root.

For vertices with no double-vertex dominators, ergot, the
dominator chain is an empty vector.

The following Lemma shows that different vectdrg's of a
dominator chain do not intersect.

Lemma 3 Any two distinct vectorsjyand \ in the dominator
chain do not have vertices in common:

Vij =V,
Vij NV =
(/]

foralli,ke {1,2},j,l €{1,2,...,m}.

ifi =kand j=1,

otherwise

It follows from Lemma 3 that the dominator chain can be rep-
resented in a®(|V|) space. To make possible constant-time look-
up in the dominator chai®(u), three parameters are assigned to
vertices:

e ForallveV: flag(v) € {1,2}, distinguishing whethev be-
longs toV;; or toVsj. In the example in Figure 2, vertices
b, c,d andg belong toV,1, hence theirflag equals 2.

Forallve D(u): indexv) € {1,2,..., 3}, |Vjj|} indicating
the position ofv in the vector(Vi1,Viz, ..., Vim), i = flag(v).
By Lemma 3,jndexV) is uniquely defined (up to permutation
of vectorsVyj andVy; in the pairs{Vyj,V»j}). In the example
in Figure 2,indexb) = 1, indexc) = 2, index!) =5 and
indexn) = 6.

e For all ve D(u): a pair (min(v),maxv) = (indexwy),
indeXwy)), wherew; andw are the first and the last ver-
tices of the matching vect& of v. In the example in Fig-
ure 2, (min(b),maxb)) = (1,1), (min(c),maxc)) = (1,3),
(min(d),maxd)) = (1,3) and(min(g),maxg)) = (3,3).

Then, checking whethefvi, v} dominatesu can be done as
follows:

1. Check whetheflag(vy) is not equal toflag(v,). If yes, go
to step 2. Otherwisevy,Vvo} ¢ D(u).

2. Check whethemin(vy) < indexvy) < maxvy). If yes, the
{V1,v2} € D(u). Otherwise{vi,v2} & D(u).

For example, suppose we check whetheth} dominatesu in
the example in Figure 2. Vertekis in Vy1, thereforeflag(d) = 2.
Vertex h is in Vi1, i.e. flag(h) = 1. Sinceflag(d) # flag(h),
we continue to the step 2. We hawen(d) = 1, maxd) = 3 and
indexh) = 2. Since 1< 2 < 3 holds, we conclude thdtd, h}
dominatesu.

As another example, let us check whetligra} dominatesu.
Onstep 1flag(g) =2 andflag(a) = 1. Sinceflag(g) # flag(a),
we continue to the step 2. We haw@n(g) = maxg) = 3, and
indexa) = 1. Since 3< 1 < 3 does not hold, we conclude that
{g,a} does not dominata.

The problem of computing common double-vertex dominators
for a set of verticesis, Uy, ..., Ux can be transformed to the prob-
lem of computing double-vertex dominators for a single vertex us-
ing the following technique. We add a “fake” vertexas a prede-
cessor ofig, Uy, ..., Ux. Clearly, eacH vy, v} € D(u) is a common
dominator for the satq, Uy, ..., Uk as well. Thus, Definition 3 can
be extended to the set of verticBgus,uy,...,uyx) with a small
modification that the first elements\éf; andV,1 represent the im-
mediate common double-vertex dominator of theusetly, . . . , Uk.
Similarly, all presented theorems and lemmata can be extended to
common double-vertex dominators.

Dominator chainD(uy,up,...,ux) can be computed directly
from the dominator chains of individual vertic&{u;) in O(k -
min{|Dy, |, |Dus,l,.-.,|Dy,]) time,i € {1,...,k}.

5 Dominator Algorithm

The presented algorithm takes as its input a Boolean circuit
C = (V,E,root) and a vertexu € V. It returns the dominator chain
D(u). The pseudo-code is shown in Figure 3.

algorithm DOMINATORCHAIN (V, E, root, u)
v=u;
k=1;
last.index = 0; last.index = 0;
while 1 do
idom(v) = SINGLEIDoM (v,V, E, root);
/* defines the end of search region */
S={v};
while 1 do
i=1j=1
Vi = @; Vox = B
{wi,W,} = DouBLEIDOM (S\V, E.idom(v));
if {wi,wp} =@ then
break ;
/* wy andw, become the 1st elements\gf andVyy */
indexw;) = lastindex +1; indexw,) = last.index + 1;
ADDVECTOR(Vik, 1, (W1),Wz);
ADDVECTOR(Va, 2, (W2), Wy);
while i < |Vy|or j < |Vy| do
if i <[V then
i = UPDATECHAIN (1,2,i,k,w);
else
j = UPDATECHAIN (2,1, j,k,w);
* end ofwhile i < |Vyorj < |Vx| doloop*/
v, is the last element &fyy;
V, is the last element &fy;
lastiindex = indexv1);
lastindex = indexVvy);
S={v1,V2};
/* v1 andv;, are the last elements Wiy andVy */
D(u) = APPEND(D(U), {Vak, Vau});
K+ +;
/* end of innerwhile 1 do loop */
if idom(v) =root then
return D(u);
else
v=idom(v);
/* end of outerwhile 1 do loop */
end

Figure 3: Pseudo-code of the presented algorithm.

The outerwhile-loop partitions the circuit graph into regions
using single-vertex dominators afas cut points. Double-vertex
dominators ofu are searched within these regions.

The immediate double-vertex dominator for a givenSistob-
tained byDoublelDon{S,V, E,idom(v)) by computing themaxi-
mum flowbetween the multiple sources defined®gnd the sink

idom(v). Each vertex in th® except the source and sink vertices
is assigned a unit capacity. The source and sink vertices are as-

algorithm UPDATECHAIN (a,b,i.k,root)
Findith element o4, v;
W = FINDMATCHINGV ECTOR(V, Vi, Foot);
ADDVECTOR(Vpk, b, W, V);
1++;
return i;

end

algorithm FINDMATCHINGV ECTOR(V, Vi, root)
Findw € Vi with indexw) = min(v);
W = (w);
V' =V —{v};
E'=E—{(yv) |lyeV—{vi}
while 1 do
idom(w) = SINGLEID oM (w,V’, E', root);
if idom(w) = root do
return W;
else
W = APPEND(W,idom(w));
w=idom(w);
end

algorithm UPDATEINDEX (i,W)
Findith element ofV, v;;
if indexv;) is not defined
indexVj) = UPDATEINDEX (i — 1L, W) +1;
return index(vy);
end

Figure 4: Pseudo-codes of POATECHAIN, FINDMATCHING
VEcTORand UPDATEINDEX.

ADDVECTORVak, a,W,v) modifiesVy to accommodate the
matching vectoW of v as a part of it. Then, indexes of ver-
tices ofVy are updated by the functionRiATEINDEX(|Vak], Vak)
(Figure 4). Besides, BDVECTOR assigns(min(v),maxv)) =
(indexwy),indexwy)) in Vak, wherew; andwy, are the first
and the last elements &V, respectively. Further, for aly;,
i€ {1,...,]\W|}, the valuea assigned toflag(w;), and the val-
ues ofmin(w;) andmaxw;) are updated as follows:

1. min(w;) is assigned the minimal of valugmin(w;), indexv)},
2. maxw;) is assigned the maximal of valuefmaxw;),
indexVv)},

3. if min(w;) andmaxw;) are not defined yetmin(w;), maxw;))
are set tqindexv),indexv)).

Next, the dominator chain is updated PRATECHAIN applies

signed infinite capacity. The capacity limits the amount of flow FINDMATCHINGVECTORV, Vi, root) to find the matching vector
through a vertex. According to min-cut maxflow theorem [17], for v which isith element oWay. The resulting vector is added to

the maximum possible flow is equal to the capacity of the min-cut Vbk USing ADDVECTOR

disconnecting the source and the sink. In our case, the maximal-

FINDMATCHINGV ECTORV, Vi, root) works as follows. First,

volume min-cut of size two corresponds to the immediate double- We 100k-upVyy to find a vertexw with indexw) = min(v). Such

vector dominator foiS. If the size of the cut is larger than two,
DousLEID oM returns an empty set.
Maximum flow is computed by constructimgigmenting paths

a vertexw always exists. This vertex becomes the first element
of W. Then, we compute the immediate single-vertex dominator
of w for the restricted circui€’ = (V’,E’,root), with V/ =V —

from the sources to the sink [17]. The algorithm repeatedly seeksV andE’ = E — {(y,v)ly € V — {v}}. By restricting the circuit
an augmenting path and uses it to increase the maximum flow. Atwe exclude from consideration all paths framto root (root is
the same time, the capacitance of all edges involved in the pathlocal to HNDMATCHINGVECTORY,root)) which containv. The
gets reduced by a unit. The algorithm stops when no such aug-computedidom(w) together withv is a double-vertex dominator
menting path exists. Our version of the augmenting path algorithm for u, thusidom(w) is appended to the end Y. While-loop
uses vertex capacitances instead of edge capacitances. Edges agentinues until the locabot is reached.

used to direct possible path construction only.

If the double-vertex dominator{wi,w,} computed by
DousLEIDoOM is not an empty set, thenw; is added tdvyx and
Wy is added td/y as first elements.

When the current paifVi,Vox} is updated for all vertices,
it is added toD(u) as next element. Wherpot is reached,
DoMINATORCHAIN terminates by returning the resulting domi-
nator chairD(u) for u.

N N runtime, sec i
single double [11] [new [impr. 7 Conclusmn
name in out doms doms t [& [u/t
C1355 41 | 32 6 10512 35 045 | 7.78 ; ; [T ; ;
e e e = e T This paper has two main contributions. First, we |ntroduce_ a
C2670 | 233 | 140 || 2091 710 155 | 023 | 6.74 data structure for representing double-vertex dominators, which
C3540 50 | 22 727 5657 6.85 | 042 | 1631 i ; i i ;
e — e o — has a Il_near size aqd can be_ eﬁcnently manipulated. _Second,
Ca99 | 41 | 32 960 9968 23 | 045 | 511 we design an algorithm for finding double-vertex dominators,
C5315 | 178 | 123 || 4093 11068 55 071 | 7.75 ich i i -
e DL - e vyhlch is, on average, an order of magnltudg faster than_the_algo
C7552 | 207 | 108 || 4604 || 14728 | 727 | 116 | 627 rithm [11]. The speed of the presented algorithm makes it suitable
€880 | 60 | 26 432 1309 1 026 | 018 | 144 for running in an incremental manner during logic synthesis.
alu2 10 6 48 55 081 | 0.16 | 5.06 . . .o
20 12 8 -7 514 336 | 016 | 21.00 Future work includes exploring new applications of the
apex5 | 114 | 88 800 8107 | 321 | 061 | 526 presented algorithm, e.g. statistical timing analysis.
apex6 | 135 | 99 525 1169 042 | 024 | 175
apex7? 49 | 37 140 476 017 | 015 | 113
cmb 16 4 38 60 016 [0.09 | 178 Acknow|edgments
com| 32 3 8 439 0.16 | 0.12 | 1.33 .
Cordi'i =1 > 35 5 o T 01 120 We are grateful to the anonymous reviewer who gave us many
fdeg 252 2‘312 333; gggg 8-12 8-77 106603 valuable comments over the manuscript.
143 | 1 15 17 44 | 4] . .
2 13381 1 2066 1" 3296 | 287 05 572 This work was supported in part by the Research Grant 2002-
i9 88 | 63 876 1827 | 095 [03 | 317 4300 from the Swedish Research Council Vetensighest.
i10 257 | 224 || 6446 || 30608 | 16.32 | 157 | 10.39
pair 173 | 137 || 2459 9196 182 | 063 | 2.89
rot 135 | 107 || 1657 4617 149 | 038 | 392
terml 34 | 10 46 453 031 | 0.16 | 1.94 References
too_large 38 3 971 1467 423.73 | 0.69 614.1
x1 51 35 366 1297 099 | 022 | 450 [1] T.LengauerandR. E. Tarjan, “A fast algorithm for finding dominators in a flow-
x3 135 [99 495 1801 0.68 | 022 | 309 graph,"Transactions of Programming Languages and Systenis1, pp. 121—
x4 94 | 71 305 2250 041 | 018 | 2.28 141, July 1979.
[Laverage [95 [67 [1215 [] 4607 | 185 [042] 2765 | [2] K. P.Parker and E. J. McCluskey, “Probabilistic treatment of general combina-
tional networks, Transactions on Computergp. 668-670, June 1975.
Table 1: Benchmark results. [3] F. Najm, “Transition density: A new measure of activity in digital circuits,”
Transactions on Computer-Aided Desjgnl. 12, pp. 310-323, February 1993.
[4] R.Krenz, E. Dubrova, and A. Kuehimann, “Fast algorithm for computing spec-
i tral transforms of Boolean and multiple-valued functions on circuit representa-
6 Experlmental Results tion,” in Proceedings of the International Symposium on Multiple-Valued L.ogic
(Tokyo, Japan), pp. 334-339, May 2003.
[5] S.C. Seth, L. Pan, and V. D. Agrawal, “PREDICT-probabilistic estimation of

This section compares the performance of the presented algo-
rithm to the algorithm [11]. Table 1 summarizes the results for 30
largest benchmarks from IWLS’02 benchmark set. Columns 1, 2
and 3 show the name of the function, the number of primary in- [7]
puts and primary outputs, respectively. Column 5 shows the total
sum of double-vertex dominators which dominate at least one pri-
mary input. This number is the same for the presented algorithm
and the algorithm [11], because they both compute all possible [9]
double-vertex dominators for a given vertex. For a comparison,
we also show in Column 4 the total sum of single-vertex domi-
nators which dominate at least one primary input, computed using
Lengauer and Tarjan’s algorithm [1]. In both cases, common dom-
inators are counted only once. Every output is treated as a separatél]
function. The numbers shown in Columns 4 and 5 are the total sum
for all outputs of the circuit.

=

10]

[12]
Columns 7 and 8 show runtime, in seconds, measured using th 13

Unix commandime(user time). The experiments were performed

on a PC with a 650 MHz Pentium3 CPU and 256 MByte main [14]

memory. One can see that, on average, the presented algorithm is

27 times faster than the algorithm [11]. [15]

Some circuits may have less double-vertex dominators thaniie]
single-vertex onesQ267Q deg. Usually these are circuits with
many single-vertex dominators. Recall that the definition of [17]
multiple-vertex dominator excludes redundancies. Therefore, in (18]
the extreme case of a tree-like circuit withvertices 'N single
doms” would ben and "N double doms” would 0. No pair of ver-
tices in a tree-like circuit satisfies the Definition 1.

digital circuit testability,” inProceeding of International Symposium on Fault-
Tolerant Computingpp. 220-225, June 1985.

] J. Costa, J. Monteiro, and S. Devadas, “Switching activity estimation using

limited depth reconvergent path analysis,Hroceedings of the International
Symposium on Low Power Electronics and Despgm 184 —189, 1997.

D. Harrel, “A linear time algorithm for finding dominators in flow graphs and
related problems,Annual Symposium on Theory of Computingl. 17, no. 1,
pp. 185-194, 1985.

S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup, “Dominators in linear
time,” SIAM Journal on Computingrol. 28, no. 6, pp. 2117-2132, 1999.

A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook, “A new, simpler
linear-time dominators algorithmACM Transactions on Programming Lan-
guages and Systemsl. 20, no. 6, pp. 1265-1296, 1998.

R. Gupta, “Generalized dominators and post-dominatorsPrioceedings of
19th Annual ACM Symposium on Principles of Programming Languages
pp. 246-257, 1992.

E. Dubrova, M. Teslenko, and A. Martinelli, “On relation between non-disjoint
decomposition and multiple-vertex dominators,” fmoceedings of the IEEE
International Symposium on Circuits and SystelBEE, 2004.

E. S. Lowry and C. W. Medlock, “Object code optimizatio@bdmmunications

of the ACM vol. 12, pp. 13-22, January 1969.

B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
of electrical circuits,Bell Systems Tech. Journabl. 9, pp. 291-307, 1970.

A. V. Aho and J. D. UllmanThe Theory of Parsing, Translating, and Compil-
ing, Vol. Il. Englewood Cliffs, NJ: Prentice-Hall, 1972.

P. W. Purdom and E. F. Moore, “Immediate predominators in a directed graph,”
Communications of the ACMol. 15, pp. 777-778, August 1972.

R. E. Tarjan, “Finding dominators in a directed graplds{irnal of Computing

vol. 3, pp. 62-89, March 1974.

L. R. Ford and D. R. Fulkerson, “Maximum flow through a netwo&&dnadian
Journal of Mathematigsvol. 8, pp. 399-404, 1956.

J. Moondanos, C. H. Seger, Z. Hanna, and D. Kaiss, “CLEVER: Divide and
conguer combinational logic equivalence verification with false negative elimi-
nation,” inComputer Aided Verification (CAV'01(Paris, France), pp. 131-143,
July 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

