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Abstract circuit is the probability of its net values to change from 0 to 1 or
vice versa. It correlates directly with the average power dissipa-
Graph dominators provide a general mechanism for identify- tion of the circuit [3], thus its analysis is useful for guiding logic
ing re-converging paths in circuits. This is useful in a number optimization methods targeting low power.
of CAD applications including computation of signal probabili- Computation of signal probabilities and switching activities
ties for test generation, switching activities for power and noise based on topologically processing the circuit from inputs to out-
analysis, statistical timing analysis, cut point selection in equiv- puts and evaluating the gate functions generally produces incor-
alence checking, etc. Single-vertex dominators are too rare in rectresults due to higher-order exponents introduced by correlated
circuit graphs to handle re-converging paths in a practical way. signals. For example, if the functiorfsandg have variables in
This paper addresses the problem of finding double-vertex domi-common, therP[f A g] # P[f] - P[g], whereP is the signal prob-
nators, which occur more frequently. First, we introduce a data ability. Dominators provide the earliest points during topological
structure, called dominator chain, which allows representing all processing at which the re-converging paths meet and thus the sig-
possible @n?) double-vertex dominators of a given vertex itnd nals cease to be correlated. Therefore, the computation of signal
space, where n is the number of vertices of the circuit graph. Dom- probabilities and switching activities can be efficiently partitioned
inator chains can be efficiently manipulated, e.g. it takes constant along the dominator points [4, 5, 6]. At the origin of a reconverg-
time to look-up whether a given pair of vertices is a double-vertex ing path,v, an auxiliary variable is introduced. At the end of the
dominator. Second, we present an efficient algorithm for finding path, the immediate dominator efthis variable is eliminated. As
double-vertex dominators. The experimental results show that thea result, the computation is carried out using a minimum set of
presented algorithm is an order of magnitude faster than existing variables.
algorithms for finding double-vertex dominators. Thus, it is suit- Single-vertex dominators can be found in time linear in the
able for running in an incremental manner during logic synthesis. number of vertices of the graph [7, 8, 9]. However, they are quite
rare in circuits. It is more common that a vertex is dominated by a
set of vertices. For example, in Figure 1, primary inpig domi-
nated by the sefte,h}. To be able to deal with re-converging paths
in a practical way, an efficient algorithm for computing multiple-
dominators of a small size is needed. Small size is important be-
cause usually2combinations of values of kvertex dominator
This paper considers the problem of finding dominators in cir- have to be manipulated [4].

1 Introduction

cuit graphs. A vertex is said todominateanother vertexiif every General algorithms for finding multiple-vertex dominators

path fromu to the output of the circuit containg1]. For example, have exponential worst case complexity [10]. Multiple-vertex

in the circuit graph in Figure 1, vertexdominates verteg; vertex dominators of a fixed siZkecan be computed i@(nk) time, where

p dominates vertek. n is the number of vertices of the circuit graph [11]. This pa-
Dominators provide a general mechanism for identifying re- per presents an algorithm for finding double-vertex dominators

converging paths in circuits. If a vertexis the origin of a re- (k= 2), which is significantly faster than the algorithm [11]. The

converging path, then the immediate dominatov &f the earliest efficiency of our algorithm is due to a number of interesting prop-
point at which such a path converges. For example, in Figure 1, erties of double-vertex dominators. The most important one is that
the re-converging path originatedextnds an; the re-converging the set of all possible double-vertex dominators of a given ver-
path originated ag ends atf. tex can be represented by a unigi@minator chairof linear size
Knowing the precise starting and ending points of a re- which can be looked-up in constant time.
converging path is useful in a number of applications including Being able to efficiently represent and manipulalledouble-
computation of signal probabilities for test generation, switching vertex dominators for a given vertex is important, because it makes
activities for power and noise analysis, statistical timing analysis, the computation of common dominators easy. As we show in the
cut point selection in equivalence checking, etc. paper, double-vertex dominators for a set of vertices can be derived
Thesignal probabilityof a net in a combinational circuitisthe  from the dominator chains of individual vertices.
probability that a randomly generated input vector will produce The paper is organized as follows. Section 2 presents the no-
the value one on this net [2]. Efficient signal probability analysis tation. Section 3 summarizes the previous work. Sections 4 and
allows to improve the coverage of test generation for biased ran-5 introduce the new data structure and the dominator algorithm,
dom simulation. The averagavitching activityin a combinational respectively. The experimental results are shown in Section 6.
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Figure 1: (a) Example circuit; (b) Its dominator tree.

Properties of Dominators

LetC = (V, E,root) denote a single-output directed acyclic cir-
cuit graph, wher& represents the set of gates and primary inputs
andE CV xV describes the nets connecting the gates. A particu-
lar vertexroot € V is marked as the circuit output.

A vertexv dominatesanother vertex if every path fromu to
the root containsv [1]. Vertexv is theimmediate dominatoof
u, if v.dominatesu and every other dominator ef dominatesv.

For example, in Figure 1, vertex is the immediate dominator
of j,e andk; vertex f is the immediate dominator af and p.
Every vertexy € V exceptroot has a unique immediate dominator,
idom(v) [12]. The edgeq (idom(v),v) | veV — {root}} form a
directed treeT (C) rooted atroot, called thedominator treeof C.
Figure 1(b) shows the dominator tree for the circuit in Figure 1(a).

Dominators provide a general mechanism for identifying re-
converging paths in circuit graphs. Every edge of the domina-
tor tree(idom(v),v) € T(C) represents the starting and the ending
points of a path. If the fanout degreewpfFanoutv) = {u|(v,u) €
E}, is one, then the re-converging path is trivial (i.e. an edge).
Otherwise, vertex is the origin of a re-converging path and ver-
tex idom(v) is the earliest point at which such a path converges.
For example, in Figure 1(a), the re-converging path originated at
ends atdom(e) = n; the re-converging path originatedta¢nds at
idomb) = f.

Many graphs do not have any single-vertex dominators except

root. Itis more common that a vertex is dominated by a set of ver-
tices. Below we give a general definition for a set of vertices being

dominated by another set. When the sizes of both sets are one, thi

definition reduces to the above mentioned definition from [1].

Definition 1 A set of verticegvs,..., v} is a common multiple-
vertex dominator of size k for a set of vertides,...,u} CV —
{V]_, . ,Vk}, if

1. every path from any;upe {1,...,1}, to root contains some
vi,ie{l,....k}

2. for every y, there exists at least one path from somg pic
{1,...,1}, to root which containsj\and does not contain any
otherv, i, je{1,...,k},i#]j.

In the paper, we omit the word "common” whén= 1, i.e.
when a set dominates a single vertex.

The second condition of the Definition 1 is needed to remove
redundancies. For example, in Figure 1(a), all paths feora
f pass through the set of verticé$,n}. However, vertexj is
redundant, becauses a single-vertex dominator ef

Note, that the notion of dominator is more general than the
notion ofmin-cutin circuit partitioning [13]. A min-cut is required
to dominate all vertices in its transitive fanin.

A number of properties are specific for multiple-vertex dom-
inators. First, in single-vertex case, any vernexV — {root} is
dominated by at least one vertegot. Multiple-vertex dominators
may not exist for some vertices. For example, a tree-like circuit
does not have any multiple-vertex dominators. In a tree structure
the condition (2) of the Definition 1 is not satisfied for any subset
{v1,..., %}, k> 1, since the individual vertices, i € {1,...,k},
dominate all vertices in their transitive fanins.

Second, the immediatevertex dominators are not unique for
k > 2. We define immediatk-vertex dominators as follows.

Definition 2 The setW= {vy,...,V} in an immediate common k-
vertex dominator ofuy,...,u }, if W is a common k-vertex domi-
nator of{us,...,u } and there is no other common k-vertex dom-
inator of {uy,...,u}, W, such that each vertex of \Ws either
dominated by W or belongs to W.

Figure 1 gives an example. Vertéxhas two immediate 3-
vertex dominatorsy{e,|,m} and {h, j,k}. In Section 4 we show
that immediaté&-vertex dominators are unique fore= 2.

3 Previous Work

The problem of finding single-vertex dominators was first con-
sidered in global flow analysis and program optimization. Lorry
and Medlock [12] presented &)(n?) algorithm for finding all im-
mediate single-vertex dominators in a flowgraph witkertices.
Successive improvements of this algorithm were done by Aho and
Ullman [14], Purdom and Moore [15], and Tarjan [16], culminat-
ing in Lengauer and Tarjan’s [O(ea (e, n)) algorithm, wheree is
the number of edges andis the standard functional inverse of the
Ackermann function which grows slowly witandn.

The asymptotic time complexity of finding single-vertex dom-
inators was reduced to linear by Harel [7], Alstrup et al. [8] and
Buchsbaum et al. [9]. However, these improvements in asymp-
totic complexity did not contribute much to reducing the actual
Tuntime. For example, the algorithm [9] runs 10% to 20% slower
than Lengauer and Tarjan’s [1]. Lengauer and Tarjan algorithm ap-
pears to be the fastest of algorithms for single-vertex dominators
on graphs of large size.

While it is possible to compute all single-vertex dominators
in linear time, algorithms for finding all multiple-vertex domina-
tors for a directed graph have exponential worst case complex-
ity [10]. In [11], it was shown that it is possible to compute
multiple-vertex dominators of a fixed sizein polynomial time.
The algorithm presented in [11] finds the set of all possible
vertex dominators for a circuit gragh= (V, E, root) by iteratively
restrictingC with respect to one of its vertices,e V. The re-
striction is done by removing fror all vertices dominated by
v, S(v). Dominators of siz&k — 1 are computed for the result-
ing restricted grapiC’ = (V/,E’,root), with V/ =V — §v) and



E'=E—{(u,w)|ue S(v) vwe S(v)}, by applying the same tech-
nigue recursively. Onckis reduced to 1, a single-vertex domina-
tor algorithm is used. Since single-vertex dominators can be com-
puted in linear time, the overall complexity of the algorithm [11]
is bounded byO(|V|¥).

4 Dominator Chain

In this section, we introduce a data structure catlechina-
tor chainwhich allows representing all possib|V|?) double-
vertex dominators of a given vertex@(|V|) space.

Definition 3 For any ue V, the dominator chain [u) is a vector
of type

<{V117V21}7 {V127V22}7 sy {Vlm7V2m}>

whose elementsVie {1,2}, j€ {1,...,m},0<m< |V|/2, are
vectors of vertices of V. Every pajiyj,Voj} satisfies the fol-
lowing properties:

1. For every ve Vjj, there exists a matching vector W
(wg,...,Ws), which is a sub-vector (i.e. linear interval) of
Vi, ke {1,2},k #1i, such that

e forallr € {1,...,s}, {vw} is a double-vertex domi-
nator of u;

e no other pair of verticegv,v' }, V €V —W, is a double-
vertex dominator of u;

e the order of the elements of the matching vector W is
given by:

if {v,w; } is a double-vertex dominator ofythent<r,
forallr,t € {1,...,s}, r #t.

2. The immediate double-vertex dominator of u is the first el-
ements of ¥4 and \b1. For all j € {2,...,m}, the immedi-
ate common double-vertex dominator of the last elements of
Vij_1 and \bj_1 is the first elements ofiyand \j. There is
no common double-vertex dominator of the last elements of
Vim and Vo,

3. No pair{V1j,Voj}, Vj € {1,...,m}, can be partitioned into
two pairs {V1j,,Vzj, } and {Vyj,,V2j,}, where \{j, UVljz_:
Vij, Vij, NVij, = D, Vaj, UVaj, = Vi, Voj, NVoj, = @, which
satisfy properties 1 and 2.

As an example, consider the circuit shown in Figure 2. The
set of all double-vertex dominators foris: {a,b}, {a,c}, {a,d},

{e.c}, {ed}, {hc}, {h.d}, {h,g}, {kI}, {m1}, {kin}, {m.n}.

The dominator chain fon is

<{V117V21}7 {V12>V22}> = <{<a7 ) h>7 <b> C>d>g>}> {<k7 m>7 <| ’ n>>}>

The matching vectoW of any vertexv in the dominator chain
contains all vertices such that{v,w} is a double-vertex domina-
tor of u. In Figure 2, the matching vector for vertexs (b, c,d);
the matching vector fod is (a,eh). The first elements o¥11
andVyi, {a,b}, are the immediate double-vertex dominatomof
The first elements o¥1> andVay, {k,1}, are the immediate com-
mon double-vertex dominator of the last element¥afandVa,

{h,g}. The pair{m,n} does not have any common double-vertex
dominator.

To prove that the dominator chain contains all possible double-
vertex dominators of a vertex, we first show several fundamental
properties of double-vertex dominators. LBom(u) denote the
set of all possible double-vertex dominatoraiofThe first Lemma
says that, if two dominators have a vertex in common, then one of
them dominates the non-common vertex of the other one.

Lemmal If {vq,vo} € Dom(u) and{v,,v3} € Dom(u), then ei-
ther {v1,vo} € Dom(vz) or {vo,v3} € Dom(vy).

Proof: Supposer; is not dominated byvy,vo}. Since{v,,v3} €
Dom(u), there exists a path fromto root, py—root, Which contains
vz and does not contai. Since{vy,vo} € Dom(u), Py—root CON-
tainsvy. Furthermorey; precedess in py—root, because, by as-
sumption{vy, 2} ¢ Dom(vz) and thus there exists a paiy,—root
which does not contain neithey norv,.

The partpy—y, of the pathpy—root does not contaim andvs.
Each pathpy, —root CONtains eithev, norvs, because otherwise the
existence of the patpy_v, Py, —root Would contradict{vo,v3} €
Dom(vy). Thus, by Definition 1{vz,v3} € Dom(vy). Similarly
we can show thafv,, vz} ¢ Dom(vy ) implies{vy,v>} € Dom(vg).

]

The second Lemma covers the case of two dominators with no
vertices in common.

Lemma 2 If {v1,v2} € Dom(u) and{vs,v4} € Dom(u), such that
at least one of the vertices ¢, v» } is not dominated byvs, v}
and vice versa, then either

{v1,va} € Dom(u) and{vp,v3} € Dom(u)

or
{v1,v3} € Dom(u) and{vz,v4} € Dom(u)

Proof: Suppose thafvz,va} ¢ Dom(v1) and{vi,vo} ¢ Dom(vg).
Then, there exists a pa,—root Which does not contain neither
v3 nor v4. Also, there exists a patpy,—root Which does not con-
tain neithervy norv,. Two cases are possible: (1) there is a path
Pv;—v,; (2) there is no such path.
case 1:(a) Suppose that; precedes, in py,—y,. Then, all paths
from u to v1 containvs, since{vs,v4} € Dom(u) and py, -root
exists. Thus, every pathy_root CONtainingvy containsvs as well.
Since{vy, vz} € Dom(u), this implies thaf v, v3} € Dom(u).
(b) Suppose that, precedes; in py,—v,. Then, all pathgy—.y,
containvy, since{vy,vz} € Dom(u) and py,—root €Xists. Thus,
every pathpy—_root CONtainingv, containsvo, as well. Since
{v3,v4} € Dom(u), this implies thafv,,v3} € Dom(u).
case 2:If there is no patlpy, .y, then, similarly to (a), every path
Pu—root CONtainingvy should contairvs as well. Since{vy, vy} €
Dom(u), this implies thaf{v,v3} € Dom(u).

Consider vertices, andvs. Two cases are possible: (1) there
exists a pattpy,—v;, (2) there is no such path.
case 1:(a) Suppose thab precedess in py,—v,. Then{vy,vo} €
Dom(vg) implies thatv; is a single-vertex dominator . Thus,
{v3,va} € Dom(u) implies that{vy,v4} € Dom(u).
(b) Suppose thats precedesvs in py,—v,. Then, {vs,v4} €
Dom(v,) implies thatv, is a single-vertex dominator @b. Thus,
{v1,v2} € Dom(u) implies that{vi,v4} € Dom(u).



Figure 2: Example circuit.

case 2:If there is no pathpy,—.v,, then, similarly to (a){vi,v2} €
Dom(vs) implies thatv; is a single-vertex dominator of. Thus,
{v3,v4} € Dom(u) implies that{vi,v4} € Dom(u). O

Next, we prove that immediate double-vertex dominators are
unique. As we showed in Section 2, this property does not extend
to dominators of larger size.

Theorem 1 For every vertex & V, the immediate double-vertex
dominator, if it exists, is unique.

Proof: By contradiction. Suppose has two immediate double-
vertex dominators{vi,vo} and{vs,v4}. Two cases are possible:
(1) {v1,v2} and{vs,v4} have one common vertex, and @), v, }
and{vs,v4} do not have common vertices.

case 1:Supposer, is the common vertex, i.e. the second imme-
diate dominator ivo,v3}. By Definition 2, every vertex of an
immediate dominator cannot be dominated by any other domina-
tor. Sincev, is common, it should hold th&tvi,vo} ¢ Dom(vg)
and{vp,v3} ¢ Dom(v1). This contradicts Lemma 1, which says
that either{vy,vo} € Dom(vg) or {vz,v3} € Dom(vy).

case 2:By Lemma 2, either (1Jv1,v2} dominates both vertices

in {v3,v4} (or vice versa), or (2) there exists two other domina-
tors ofu, each having a vertex in common with bdtm, v, } and
{v3,Vv4}. In the first case, one of the dominators does not satisfy
Definition 2. In the second casease lapplies to show that only
one of the overlapping dominators can be immediate.

O

Now we give the main result of the paper. The proof is based
on Lemmata 1 and 2 and Theorem 1.

Theorem 2 The dominator chain exists for anyaV . It contains
all possible double-vertex dominators of u. All paig;j,Vo;},

j € {1,...,m}, are uniquely defined. For eaclei{1,2}, the over-
all number of verticeg [, Vi | is smaller than the longest path
from u to root.

For vertices with no double-vertex dominators, ergot, the
dominator chain is an empty vector.

The following Lemma shows that different vectdrg's of a
dominator chain do not intersect.

Lemma 3 Any two distinct vectorsjyand \ in the dominator
chain do not have vertices in common:

Vij =V,
Vij NV =
(/]

foralli,ke {1,2},j,l €{1,2,...,m}.

ifi =kand j=1,

otherwise

It follows from Lemma 3 that the dominator chain can be rep-
resented in a®(|V|) space. To make possible constant-time look-
up in the dominator chai®(u), three parameters are assigned to
vertices:

e ForallveV: flag(v) € {1,2}, distinguishing whethev be-
longs toV;; or toVsj. In the example in Figure 2, vertices
b, c,d andg belong toV,1, hence theirflag equals 2.

Forallve D(u): indexv) € {1,2,..., 3}, |Vjj|} indicating
the position ofv in the vector(Vi1,Viz, ..., Vim), i = flag(v).
By Lemma 3,jndexV) is uniquely defined (up to permutation
of vectorsVyj andVy; in the pairs{Vyj,V»j}). In the example
in Figure 2,indexb) = 1, indexc) = 2, index!) =5 and
indexn) = 6.

e For all ve D(u): a pair (min(v),maxv) = (indexwy),
indeXwy)), wherew; andw are the first and the last ver-
tices of the matching vect& of v. In the example in Fig-
ure 2, (min(b),maxb)) = (1,1), (min(c),maxc)) = (1,3),
(min(d),maxd)) = (1,3) and(min(g),maxg)) = (3,3).

Then, checking whethefvi, v} dominatesu can be done as
follows:

1. Check whetheflag(vy) is not equal toflag(v,). If yes, go
to step 2. Otherwisevy,Vvo} ¢ D(u).

2. Check whethemin(vy) < indexvy) < maxvy). If yes, the
{V1,v2} € D(u). Otherwise{vi,v2} & D(u).

For example, suppose we check whetheth} dominatesu in
the example in Figure 2. Vertekis in Vy1, thereforeflag(d) = 2.
Vertex h is in Vi1, i.e. flag(h) = 1. Sinceflag(d) # flag(h),
we continue to the step 2. We hawen(d) = 1, maxd) = 3 and
indexh) = 2. Since 1< 2 < 3 holds, we conclude thdtd, h}
dominatesu.

As another example, let us check whetligra} dominatesu.
Onstep 1flag(g) =2 andflag(a) = 1. Sinceflag(g) # flag(a),
we continue to the step 2. We haw@n(g) = maxg) = 3, and
indexa) = 1. Since 3< 1 < 3 does not hold, we conclude that
{g,a} does not dominata.

The problem of computing common double-vertex dominators
for a set of verticesis, Uy, ..., Ux can be transformed to the prob-
lem of computing double-vertex dominators for a single vertex us-
ing the following technique. We add a “fake” vertexas a prede-
cessor ofig, Uy, ..., Ux. Clearly, eacH vy, v} € D(u) is a common
dominator for the satq, Uy, ..., Uk as well. Thus, Definition 3 can
be extended to the set of verticBgus,uy,...,uyx) with a small
modification that the first elements\éf; andV,1 represent the im-
mediate common double-vertex dominator of theusetly, . . . , Uk.
Similarly, all presented theorems and lemmata can be extended to
common double-vertex dominators.

Dominator chainD(uy,up,...,ux) can be computed directly
from the dominator chains of individual vertic&{u;) in O(k -
min{|Dy, |, |Dus,l,.-.,|Dy,]) time,i € {1,...,k}.

5 Dominator Algorithm

The presented algorithm takes as its input a Boolean circuit
C = (V,E,root) and a vertexu € V. It returns the dominator chain
D(u). The pseudo-code is shown in Figure 3.



algorithm DOMINATORCHAIN (V, E, root, u)
v=u;
k=1;
last.index = 0; last.index = 0;
while 1 do
idom(v) = SINGLEIDoM (v,V, E, root);
/* defines the end of search region */
S={v};
while 1 do
i=1j=1
Vi = @; Vox = B
{wi,W,} = DouBLEIDOM (S\V, E.idom(v));
if {wi,wp} =@ then
break ;
/* wy andw, become the 1st elements\gf andVyy */
indexw; ) = lastindex +1; indexw,) = last.index + 1;
ADDVECTOR(Vik, 1, (W1),Wz);
ADDVECTOR(Va, 2, (W2 ), Wy );
while i < |Vy|or j < |Vy| do
if i <[V then
i = UPDATECHAIN (1,2,i,k,w);
else
j = UPDATECHAIN (2,1, j,k,w);
* end ofwhile i < |Vyorj < |Vx| doloop*/
v, is the last element &fyy;
V, is the last element &fy;
lastiindex = indexv1);
lastindex = indexVvy);
S={v1,V2};
/* v1 andv;, are the last elements Wiy andVy */
D(u) = APPEND(D(U), {Vak, Vau});
K+ +;
/* end of innerwhile 1 do loop */
if idom(v) =root then
return D(u);
else
v=idom(v);
/* end of outerwhile 1 do loop */
end

Figure 3: Pseudo-code of the presented algorithm.

The outerwhile-loop partitions the circuit graph into regions
using single-vertex dominators afas cut points. Double-vertex
dominators ofu are searched within these regions.

The immediate double-vertex dominator for a givenSistob-
tained byDoublelDon{S,V, E,idom(v)) by computing themaxi-
mum flowbetween the multiple sources defined®gnd the sink

idom(v). Each vertex in th® except the source and sink vertices
is assigned a unit capacity. The source and sink vertices are as-

algorithm UPDATECHAIN (a,b,i.k,root)
Findith element o4, v;
W = FINDMATCHINGV ECTOR(V, Vi, Foot);
ADDVECTOR(Vpk, b, W, V);
1++;
return i;

end

algorithm FINDMATCHINGV ECTOR(V, Vi, root)
Findw € Vi with indexw) = min(v);
W = (w);
V' =V —{v};
E'=E—{(yv) |lyeV—{vi}
while 1 do
idom(w) = SINGLEID oM (w,V’, E', root);
if idom(w) = root do
return W;
else
W = APPEND(W,idom(w));
w=idom(w);
end

algorithm UPDATEINDEX (i,W)
Findith element ofV, v;;
if indexv;) is not defined
indexVj) = UPDATEINDEX (i — 1L, W) +1;
return index(vy);
end

Figure 4: Pseudo-codes of POATECHAIN, FINDMATCHING
VEcTORand UPDATEINDEX.

ADDVECTORVak, a,W,v) modifiesVy to accommodate the
matching vectoW of v as a part of it. Then, indexes of ver-
tices ofVy are updated by the functionRiATEINDEX(|Vak], Vak)
(Figure 4). Besides, BDVECTOR assigns(min(v),maxv)) =
(indexwy),indexwy)) in Vak, wherew; andwy, are the first
and the last elements &V, respectively. Further, for aly;,
i€ {1,...,]\W|}, the valuea assigned toflag(w;), and the val-
ues ofmin(w;) andmaxw; ) are updated as follows:

1. min(w;) is assigned the minimal of valugmin(w; ), indexv)},
2. maxw;) is assigned the maximal of valuefmaxw;),
indexVv)},

3. if min(w;) andmaxw;) are not defined yetmin(w;), maxw;))
are set tqindexv),indexv)).

Next, the dominator chain is updated PRATECHAIN applies

signed infinite capacity. The capacity limits the amount of flow FINDMATCHINGVECTORV, Vi, root) to find the matching vector
through a vertex. According to min-cut maxflow theorem [17], for v which isith element oWay. The resulting vector is added to

the maximum possible flow is equal to the capacity of the min-cut Vbk USing ADDVECTOR

disconnecting the source and the sink. In our case, the maximal-

FINDMATCHINGV ECTORV, Vi, root) works as follows. First,

volume min-cut of size two corresponds to the immediate double- We 100k-upVyy to find a vertexw with indexw) = min(v). Such

vector dominator foiS. If the size of the cut is larger than two,
DousLEID oM returns an empty set.
Maximum flow is computed by constructimgigmenting paths

a vertexw always exists. This vertex becomes the first element
of W. Then, we compute the immediate single-vertex dominator
of w for the restricted circui€’ = (V’,E’,root), with V/ =V —

from the sources to the sink [17]. The algorithm repeatedly seeksV andE’ = E — {(y,v)ly € V — {v}}. By restricting the circuit
an augmenting path and uses it to increase the maximum flow. Atwe exclude from consideration all paths framto root (root is
the same time, the capacitance of all edges involved in the pathlocal to HNDMATCHINGVECTORY,root)) which containv. The
gets reduced by a unit. The algorithm stops when no such aug-computedidom(w) together withv is a double-vertex dominator
menting path exists. Our version of the augmenting path algorithm for u, thusidom(w) is appended to the end Y. While-loop
uses vertex capacitances instead of edge capacitances. Edges agentinues until the locabot is reached.

used to direct possible path construction only.

If the double-vertex dominator{wi,w,} computed by
DousLEIDoOM is not an empty set, thenw; is added tdvyx and
Wy is added td/y as first elements.

When the current paifVi,Vox} is updated for all vertices,
it is added toD(u) as next element. Wherpot is reached,
DoMINATORCHAIN terminates by returning the resulting domi-
nator chairD(u) for u.
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alu2 10 6 48 55 081 | 0.16 | 5.06 . . .o
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