
An Efficient Algorithm for Finding Double-Vertex Dominators in Circuit Graphs

Maxim Teslenko Elena Dubrova
Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden

Abstract

Graph dominators provide a general mechanism for identify-
ing re-converging paths in circuits. This is useful in a number
of CAD applications including computation of signal probabili-
ties for test generation, switching activities for power and noise
analysis, statistical timing analysis, cut point selection in equiv-
alence checking, etc. Single-vertex dominators are too rare in
circuit graphs to handle re-converging paths in a practical way.
This paper addresses the problem of finding double-vertex domi-
nators, which occur more frequently. First, we introduce a data
structure, called dominator chain, which allows representing all
possible O(n2) double-vertex dominators of a given vertex in O(n)
space, where n is the number of vertices of the circuit graph. Dom-
inator chains can be efficiently manipulated, e.g. it takes constant
time to look-up whether a given pair of vertices is a double-vertex
dominator. Second, we present an efficient algorithm for finding
double-vertex dominators. The experimental results show that the
presented algorithm is an order of magnitude faster than existing
algorithms for finding double-vertex dominators. Thus, it is suit-
able for running in an incremental manner during logic synthesis.

1 Introduction

This paper considers the problem of finding dominators in cir-
cuit graphs. A vertexv is said todominateanother vertexu if every
path fromu to the output of the circuit containsv [1]. For example,
in the circuit graph in Figure 1, vertexn dominates vertexe; vertex
p dominates vertexh.

Dominators provide a general mechanism for identifying re-
converging paths in circuits. If a vertexv is the origin of a re-
converging path, then the immediate dominator ofv is the earliest
point at which such a path converges. For example, in Figure 1,
the re-converging path originated ate ends atn; the re-converging
path originated atg ends atf .

Knowing the precise starting and ending points of a re-
converging path is useful in a number of applications including
computation of signal probabilities for test generation, switching
activities for power and noise analysis, statistical timing analysis,
cut point selection in equivalence checking, etc.

Thesignal probabilityof a net in a combinational circuit is the
probability that a randomly generated input vector will produce
the value one on this net [2]. Efficient signal probability analysis
allows to improve the coverage of test generation for biased ran-
dom simulation. The averageswitching activityin a combinational

circuit is the probability of its net values to change from 0 to 1 or
vice versa. It correlates directly with the average power dissipa-
tion of the circuit [3], thus its analysis is useful for guiding logic
optimization methods targeting low power.

Computation of signal probabilities and switching activities
based on topologically processing the circuit from inputs to out-
puts and evaluating the gate functions generally produces incor-
rect results due to higher-order exponents introduced by correlated
signals. For example, if the functionsf andg have variables in
common, thenP[f ∧g] 6= P[f] ·P[g], whereP is the signal prob-
ability. Dominators provide the earliest points during topological
processing at which the re-converging paths meet and thus the sig-
nals cease to be correlated. Therefore, the computation of signal
probabilities and switching activities can be efficiently partitioned
along the dominator points [4, 5, 6]. At the origin of a reconverg-
ing path,v, an auxiliary variable is introduced. At the end of the
path, the immediate dominator ofv, this variable is eliminated. As
a result, the computation is carried out using a minimum set of
variables.

Single-vertex dominators can be found in time linear in the
number of vertices of the graph [7, 8, 9]. However, they are quite
rare in circuits. It is more common that a vertex is dominated by a
set of vertices. For example, in Figure 1, primary inputb is domi-
nated by the set{e,h}. To be able to deal with re-converging paths
in a practical way, an efficient algorithm for computing multiple-
dominators of a small size is needed. Small size is important be-
cause usually 2k combinations of values of ak-vertex dominator
have to be manipulated [4].

General algorithms for finding multiple-vertex dominators
have exponential worst case complexity [10]. Multiple-vertex
dominators of a fixed sizek can be computed inO(nk) time, where
n is the number of vertices of the circuit graph [11]. This pa-
per presents an algorithm for finding double-vertex dominators
(k = 2), which is significantly faster than the algorithm [11]. The
efficiency of our algorithm is due to a number of interesting prop-
erties of double-vertex dominators. The most important one is that
the set of all possible double-vertex dominators of a given ver-
tex can be represented by a uniquedominator chainof linear size
which can be looked-up in constant time.

Being able to efficiently represent and manipulateall double-
vertex dominators for a given vertex is important, because it makes
the computation of common dominators easy. As we show in the
paper, double-vertex dominators for a set of vertices can be derived
from the dominator chains of individual vertices.

The paper is organized as follows. Section 2 presents the no-
tation. Section 3 summarizes the previous work. Sections 4 and
5 introduce the new data structure and the dominator algorithm,
respectively. The experimental results are shown in Section 6.

1530-1591/05 $20.00 © 2005 IEEE

l

c

i

de

(b)(a)

f

a

l

ph

e

j

g

b

n

m

k

a

f

i
m

c
h

l

p

n

j

k

d

gb

Figure 1: (a) Example circuit; (b) Its dominator tree.

2 Properties of Dominators

LetC = (V,E, root) denote a single-output directed acyclic cir-
cuit graph, whereV represents the set of gates and primary inputs
andE ⊆V ×V describes the nets connecting the gates. A particu-
lar vertexroot ∈V is marked as the circuit output.

A vertexv dominatesanother vertexu if every path fromu to
the root containsv [1]. Vertex v is the immediate dominatorof
u, if v dominatesu and every other dominator ofu dominatesv.
For example, in Figure 1, vertexn is the immediate dominator
of j ,e and k; vertex f is the immediate dominator ofn and p.
Every vertexv∈V exceptroot has a unique immediate dominator,
idom(v) [12]. The edges{(idom(v),v) | v ∈ V −{root}} form a
directed treeT(C) rooted atroot, called thedominator treeof C.
Figure 1(b) shows the dominator tree for the circuit in Figure 1(a).

Dominators provide a general mechanism for identifying re-
converging paths in circuit graphs. Every edge of the domina-
tor tree(idom(v),v) ∈ T(C) represents the starting and the ending
points of a path. If the fanout degree ofv, Fanout(v) = {u |(v,u) ∈
E}, is one, then the re-converging path is trivial (i.e. an edge).
Otherwise, vertexv is the origin of a re-converging path and ver-
tex idom(v) is the earliest point at which such a path converges.
For example, in Figure 1(a), the re-converging path originated ate
ends atidom(e) = n; the re-converging path originated atb ends at
idom(b) = f .

Many graphs do not have any single-vertex dominators except
root. It is more common that a vertex is dominated by a set of ver-
tices. Below we give a general definition for a set of vertices being
dominated by another set. When the sizes of both sets are one, this
definition reduces to the above mentioned definition from [1].

Definition 1 A set of vertices{v1, . . . ,vk} is a common multiple-
vertex dominator of size k for a set of vertices{u1, . . . ,ul} ⊂V −
{v1, . . . ,vk}, if

1. every path from any uj , p∈ {1, . . . , l}, to root contains some
vi , i ∈ {1, . . . ,k}

2. for every vi , there exists at least one path from some up, p∈
{1, . . . , l}, to root which contains vi and does not contain any
other vj , i, j ∈ {1, . . . ,k}, i 6= j.

In the paper, we omit the word ”common” whenl = 1, i.e.
when a set dominates a single vertex.

The second condition of the Definition 1 is needed to remove
redundancies. For example, in Figure 1(a), all paths frome to
f pass through the set of vertices{ j ,n}. However, vertexj is
redundant, becausen is a single-vertex dominator ofe.

Note, that the notion of dominator is more general than the
notion ofmin-cutin circuit partitioning [13]. A min-cut is required
to dominate all vertices in its transitive fanin.

A number of properties are specific for multiple-vertex dom-
inators. First, in single-vertex case, any vertexv ∈ V −{root} is
dominated by at least one vertex,root. Multiple-vertex dominators
may not exist for some vertices. For example, a tree-like circuit
does not have any multiple-vertex dominators. In a tree structure
the condition (2) of the Definition 1 is not satisfied for any subset
{v1, . . . ,vk}, k > 1, since the individual verticesvi , i ∈ {1, . . . ,k},
dominate all vertices in their transitive fanins.

Second, the immediatek-vertex dominators are not unique for
k > 2. We define immediatek-vertex dominators as follows.

Definition 2 The set W= {v1, . . . ,vk} in an immediate common k-
vertex dominator of{u1, . . . ,ul}, if W is a common k-vertex domi-
nator of{u1, . . . ,ul} and there is no other common k-vertex dom-
inator of {u1, . . . ,ul}, W′, such that each vertex of W′ is either
dominated by W or belongs to W.

Figure 1 gives an example. Vertexb has two immediate 3-
vertex dominators:{e, l ,m} and{h, j ,k}. In Section 4 we show
that immediatek-vertex dominators are unique fork = 2.

3 Previous Work

The problem of finding single-vertex dominators was first con-
sidered in global flow analysis and program optimization. Lorry
and Medlock [12] presented anO(n4) algorithm for finding all im-
mediate single-vertex dominators in a flowgraph withn vertices.
Successive improvements of this algorithm were done by Aho and
Ullman [14], Purdom and Moore [15], and Tarjan [16], culminat-
ing in Lengauer and Tarjan’s [1]O(eα(e,n)) algorithm, wheree is
the number of edges andα is the standard functional inverse of the
Ackermann function which grows slowly withe andn.

The asymptotic time complexity of finding single-vertex dom-
inators was reduced to linear by Harel [7], Alstrup et al. [8] and
Buchsbaum et al. [9]. However, these improvements in asymp-
totic complexity did not contribute much to reducing the actual
runtime. For example, the algorithm [9] runs 10% to 20% slower
than Lengauer and Tarjan’s [1]. Lengauer and Tarjan algorithm ap-
pears to be the fastest of algorithms for single-vertex dominators
on graphs of large size.

While it is possible to compute all single-vertex dominators
in linear time, algorithms for finding all multiple-vertex domina-
tors for a directed graph have exponential worst case complex-
ity [10]. In [11], it was shown that it is possible to compute
multiple-vertex dominators of a fixed sizek in polynomial time.
The algorithm presented in [11] finds the set of all possiblek-
vertex dominators for a circuit graphC= (V,E, root) by iteratively
restrictingC with respect to one of its vertices,v ∈ V. The re-
striction is done by removing fromV all vertices dominated by
v, S(v). Dominators of sizek− 1 are computed for the result-
ing restricted graphC′ = (V ′,E′, root), with V ′ = V −S(v) and

E′ = E−{(u,w)|u∈ S(v)∨w∈ S(v)}, by applying the same tech-
nique recursively. Oncek is reduced to 1, a single-vertex domina-
tor algorithm is used. Since single-vertex dominators can be com-
puted in linear time, the overall complexity of the algorithm [11]
is bounded byO(|V|k).

4 Dominator Chain

In this section, we introduce a data structure calleddomina-
tor chain which allows representing all possibleO(|V|2) double-
vertex dominators of a given vertex inO(|V|) space.

Definition 3 For any u∈V, the dominator chain D(u) is a vector
of type

〈{V11,V21},{V12,V22}, . . . ,{V1m,V2m}〉
whose elements Vi j , i ∈ {1,2}, j ∈ {1, . . . ,m}, 0≤ m< |V|/2, are
vectors of vertices of V . Every pair{V1 j ,V2 j} satisfies the fol-
lowing properties:

1. For every v∈ Vi j , there exists a matching vector W=
〈w1, . . . ,ws〉, which is a sub-vector (i.e. linear interval) of
Vk j, k∈ {1,2},k 6= i, such that

• for all r ∈ {1, . . . ,s}, {v,wr} is a double-vertex domi-
nator of u;

• no other pair of vertices{v,v′}, v′ ∈V−W , is a double-
vertex dominator of u;

• the order of the elements of the matching vector W is
given by:

if {v,wr} is a double-vertex dominator of wt , then t< r,
for all r, t ∈ {1, . . . ,s}, r 6= t.

2. The immediate double-vertex dominator of u is the first el-
ements of V11 and V21. For all j ∈ {2, . . . ,m}, the immedi-
ate common double-vertex dominator of the last elements of
V1 j−1 and V2 j−1 is the first elements of V1 j and V2 j . There is
no common double-vertex dominator of the last elements of
V1m and V2m.

3. No pair{V1 j ,V2 j}, ∀ j ∈ {1, . . . ,m}, can be partitioned into
two pairs{V1 j1 ,V2 j1} and {V1 j2 ,V2 j2}, where V1 j1 ∪V1 j2 =
V1 j , V1 j1 ∩V1 j2 = Ø, V2 j1 ∪V2 j2 =V2 j , V2 j1 ∩V2 j2 = Ø, which
satisfy properties 1 and 2.

As an example, consider the circuit shown in Figure 2. The
set of all double-vertex dominators foru is: {a,b}, {a,c}, {a,d},
{e,c}, {e,d}, {h,c}, {h,d}, {h,g}, {k, l}, {m, l}, {k,n}, {m,n}.
The dominator chain foru is

〈{V11,V21},{V12,V22}〉 = 〈{〈a,e,h〉,〈b,c,d,g〉},{〈k,m〉,〈l ,n〉〉}〉

The matching vectorW of any vertexv in the dominator chain
contains all verticesw such that{v,w} is a double-vertex domina-
tor of u. In Figure 2, the matching vector for vertexa is 〈b,c,d〉;
the matching vector ford is 〈a,e,h〉. The first elements ofV11
andV21, {a,b}, are the immediate double-vertex dominator ofu.
The first elements ofV12 andV22, {k, l}, are the immediate com-
mon double-vertex dominator of the last elements ofV11 andV21,

{h,g}. The pair{m,n} does not have any common double-vertex
dominator.

To prove that the dominator chain contains all possible double-
vertex dominators of a vertex, we first show several fundamental
properties of double-vertex dominators. LetDom(u) denote the
set of all possible double-vertex dominators ofu. The first Lemma
says that, if two dominators have a vertex in common, then one of
them dominates the non-common vertex of the other one.

Lemma 1 If {v1,v2} ∈ Dom(u) and{v2,v3} ∈ Dom(u), then ei-
ther{v1,v2} ∈ Dom(v3) or {v2,v3} ∈ Dom(v1).

Proof: Supposev3 is not dominated by{v1,v2}. Since{v2,v3} ∈
Dom(u), there exists a path fromu to root, pu→root, which contains
v3 and does not containv2. Since{v1,v2} ∈Dom(u), pu→root con-
tainsv1. Furthermore,v1 precedesv3 in pu→root, because, by as-
sumption,{v1,v2} 6∈Dom(v3) and thus there exists a pathpv3→root

which does not contain neitherv1 nor v2.
The partpu→v1 of the pathpu→root does not containv2 andv3.

Each pathpv1→root contains eitherv2 norv3, because otherwise the
existence of the pathpu→v1 pv1→root would contradict{v2,v3} ∈
Dom(v1). Thus, by Definition 1,{v2,v3} ∈ Dom(v1). Similarly
we can show that{v2,v3} 6∈Dom(v1) implies{v1,v2} ∈Dom(v3).

2

The second Lemma covers the case of two dominators with no
vertices in common.

Lemma 2 If {v1,v2} ∈ Dom(u) and{v3,v4} ∈ Dom(u), such that
at least one of the vertices of{v1,v2} is not dominated by{v3,v4}
and vice versa, then either

{v1,v4} ∈ Dom(u) and{v2,v3} ∈ Dom(u)

or
{v1,v3} ∈ Dom(u) and{v2,v4} ∈ Dom(u)

Proof: Suppose that{v3,v4} 6∈ Dom(v1) and{v1,v2} 6∈ Dom(v4).
Then, there exists a pathpv1→root which does not contain neither
v3 nor v4. Also, there exists a pathpv4→root which does not con-
tain neitherv1 nor v2. Two cases are possible: (1) there is a path
pv1→v4; (2) there is no such path.
case 1:(a) Suppose thatv1 precedesv4 in pv1→v4. Then, all paths
from u to v1 containv3, since{v3,v4} ∈ Dom(u) and pv1→root
exists. Thus, every pathpu→root containingv1 containsv3 as well.
Since{v1,v2} ∈ Dom(u), this implies that{v2,v3} ∈ Dom(u).
(b) Suppose thatv4 precedesv1 in pv1→v4. Then, all pathspu→v4

containv2, since{v1,v2} ∈ Dom(u) and pv4→root exists. Thus,
every pathpu→root containing v4 containsv2 as well. Since
{v3,v4} ∈ Dom(u), this implies that{v2,v3} ∈ Dom(u).
case 2:If there is no pathpv1→v4, then, similarly to (a), every path
pu→root containingv1 should containv3 as well. Since{v1,v2} ∈
Dom(u), this implies that{v2,v3} ∈ Dom(u).

Consider verticesv2 andv3. Two cases are possible: (1) there
exists a pathpv2→v3, (2) there is no such path.
case 1:(a) Suppose thatv2 precedesv3 in pv2→v3. Then{v1,v2} ∈
Dom(v3) implies thatv1 is a single-vertex dominator ofv3. Thus,
{v3,v4} ∈ Dom(u) implies that{v1,v4} ∈ Dom(u).
(b) Suppose thatv3 precedesv2 in pv2→v3. Then, {v3,v4} ∈
Dom(v2) implies thatv4 is a single-vertex dominator ofv2. Thus,
{v1,v2} ∈ Dom(u) implies that{v1,v4} ∈ Dom(u).

a

g

h
e

d
c

n

f

b

u
k

m

l

Figure 2: Example circuit.

case 2:If there is no pathpv2→v3, then, similarly to (a),{v1,v2} ∈
Dom(v3) implies thatv1 is a single-vertex dominator ofv3. Thus,
{v3,v4} ∈ Dom(u) implies that{v1,v4} ∈ Dom(u). 2

Next, we prove that immediate double-vertex dominators are
unique. As we showed in Section 2, this property does not extend
to dominators of larger size.

Theorem 1 For every vertex u∈V, the immediate double-vertex
dominator, if it exists, is unique.

Proof: By contradiction. Supposeu has two immediate double-
vertex dominators:{v1,v2} and{v3,v4}. Two cases are possible:
(1){v1,v2} and{v3,v4} have one common vertex, and (2){v1,v2}
and{v3,v4} do not have common vertices.
case 1:Supposev2 is the common vertex, i.e. the second imme-
diate dominator is{v2,v3}. By Definition 2, every vertex of an
immediate dominator cannot be dominated by any other domina-
tor. Sincev2 is common, it should hold that{v1,v2} 6∈ Dom(v3)
and{v2,v3} 6∈ Dom(v1). This contradicts Lemma 1, which says
that either{v1,v2} ∈ Dom(v3) or {v2,v3} ∈ Dom(v1).
case 2:By Lemma 2, either (1){v1,v2} dominates both vertices
in {v3,v4} (or vice versa), or (2) there exists two other domina-
tors ofu, each having a vertex in common with both{v1,v2} and
{v3,v4}. In the first case, one of the dominators does not satisfy
Definition 2. In the second case,case 1applies to show that only
one of the overlapping dominators can be immediate.

2

Now we give the main result of the paper. The proof is based
on Lemmata 1 and 2 and Theorem 1.

Theorem 2 The dominator chain exists for any u∈V. It contains
all possible double-vertex dominators of u. All pairs{V1 j ,V2 j},
j ∈ {1, . . . ,m}, are uniquely defined. For each i∈ {1,2}, the over-
all number of vertices∑m

j=1 |Vi j | is smaller than the longest path
from u to root.

For vertices with no double-vertex dominators, e.g.root, the
dominator chain is an empty vector.

The following Lemma shows that different vectorsVi j ’s of a
dominator chain do not intersect.

Lemma 3 Any two distinct vectors Vi j and Vkl in the dominator
chain do not have vertices in common:

Vi j ∩Vkl =

{
Vi j = Vk j, if i = k and j= l ,

Ø, otherwise

for all i ,k∈ {1,2}, j , l ∈ {1,2, . . . ,m}.

It follows from Lemma 3 that the dominator chain can be rep-
resented in anO(|V|) space. To make possible constant-time look-
up in the dominator chainD(u), three parameters are assigned to
vertices:

• For all v∈V: f lag(v) ∈ {1,2}, distinguishing whetherv be-
longs toV1 j or to V2 j . In the example in Figure 2, vertices
b,c,d andg belong toV21, hence theirf lag equals 2.

• For all v ∈ D(u): index(v) ∈ {1,2, . . . ,∑m
j=1 |Vi j |} indicating

the position ofv in the vector〈Vi1,Vi2, . . . ,Vim〉, i = f lag(v).
By Lemma 3,index(v) is uniquely defined (up to permutation
of vectorsV1 j andV2 j in the pairs{V1 j ,V2 j}). In the example
in Figure 2, index(b) = 1, index(c) = 2, index(l) = 5 and
index(n) = 6.

• For all v ∈ D(u): a pair (min(v),max(v) = (index(w1),
index(w|W|)), wherew1 andw|W| are the first and the last ver-
tices of the matching vectorW of v. In the example in Fig-
ure 2, (min(b),max(b)) = (1,1), (min(c),max(c)) = (1,3),
(min(d),max(d)) = (1,3) and(min(g),max(g)) = (3,3).

Then, checking whether{v1,v2} dominatesu can be done as
follows:

1. Check whetherf lag(v1) is not equal tof lag(v2). If yes, go
to step 2. Otherwise,{v1,v2} 6∈ D(u).

2. Check whethermin(v1) ≤ index(v2) ≤ max(v1). If yes, the
{v1,v2} ∈ D(u). Otherwise,{v1,v2} 6∈ D(u).

For example, suppose we check whether{d,h} dominatesu in
the example in Figure 2. Vertexd is inV21, thereforef lag(d) = 2.
Vertex h is in V11, i.e. f lag(h) = 1. Since f lag(d) 6= f lag(h),
we continue to the step 2. We havemin(d) = 1, max(d) = 3 and
index(h) = 2. Since 1≤ 2 ≤ 3 holds, we conclude that{d,h}
dominatesu.

As another example, let us check whether{g,a} dominatesu.
On step 1,f lag(g) = 2 andf lag(a) = 1. Sincef lag(g) 6= f lag(a),
we continue to the step 2. We havemin(g) = max(g) = 3, and
index(a) = 1. Since 3≤ 1 ≤ 3 does not hold, we conclude that
{g,a} does not dominateu.

The problem of computing common double-vertex dominators
for a set of verticesu1,u2, . . . ,uk can be transformed to the prob-
lem of computing double-vertex dominators for a single vertex us-
ing the following technique. We add a “fake” vertexu as a prede-
cessor ofu1,u2, . . . ,uk. Clearly, each{v1,v2} ∈D(u) is a common
dominator for the setu1,u2, . . . ,uk as well. Thus, Definition 3 can
be extended to the set of verticesD(u1,u2, . . . ,uk) with a small
modification that the first elements ofV11 andV21 represent the im-
mediate common double-vertex dominator of the setu1,u2, . . . ,uk.
Similarly, all presented theorems and lemmata can be extended to
common double-vertex dominators.

Dominator chainD(u1,u2, . . . ,uk) can be computed directly
from the dominator chains of individual verticesD(ui) in O(k ·
min{|Du1|, |Du2|, . . . , |Duk |) time, i ∈ {1, . . . ,k}.

5 Dominator Algorithm

The presented algorithm takes as its input a Boolean circuit
C = (V,E, root) and a vertexu∈V. It returns the dominator chain
D(u). The pseudo-code is shown in Figure 3.

algorithm DOMINATORCHAIN (V,E, root,u)
v = u;
k = 1;
last index1 = 0; last index2 = 0;
while 1 do

idom(v) = SINGLEIDOM(v,V,E, root);
/* defines the end of search region */
S= {v};
while 1 do

i = 1; j = 1;
V1k = Ø; V2k = Ø;
{w1,w2} = DOUBLEIDOM(S,V,E, idom(v));
if {w1,w2} = Ø then

break ;
/* w1 andw2 become the 1st elements ofV1k andV2k */
index(w1) = last index1 +1; index(w2) = last index2 +1;
ADDVECTOR(V1k,1,〈w1〉,w2);
ADDVECTOR(V2k,2,〈w2〉,w1);
while i ≤ |V1k| or j ≤ |V2k| do

if i < |V1k| then
i = UPDATECHAIN (1,2, i,k,w);

else
j = UPDATECHAIN (2,1, j,k,w);

/* end ofwhile i ≤ |V1k|or j ≤ |V2k| do loop*/
v1 is the last element ofV1k;
v2 is the last element ofV2k;
last index1 = index(v1);
last index2 = index(v2);
S= {v1,v2};
/* v1 andv2 are the last elements ofV1k andV2k */
D(u) = APPEND(D(u),{V1k,V2k});
k++;

/* end of innerwhile 1 do loop */
if idom(v) = root then

return D(u);
else

v = idom(v);
/* end of outerwhile 1 do loop */

end

Figure 3: Pseudo-code of the presented algorithm.

The outerwhile-loop partitions the circuit graph into regions
using single-vertex dominators ofu as cut points. Double-vertex
dominators ofu are searched within these regions.

The immediate double-vertex dominator for a given setS is ob-
tained byDoubleIDom(S,V,E, idom(v)) by computing themaxi-
mum flowbetween the multiple sources defined bySand the sink
idom(v). Each vertex in theV except the source and sink vertices
is assigned a unit capacity. The source and sink vertices are as-
signed infinite capacity. The capacity limits the amount of flow
through a vertex. According to min-cut maxflow theorem [17],
the maximum possible flow is equal to the capacity of the min-cut
disconnecting the source and the sink. In our case, the maximal-
volume min-cut of size two corresponds to the immediate double-
vector dominator forS. If the size of the cut is larger than two,
DOUBLEIDOM returns an empty set.

Maximum flow is computed by constructingaugmenting paths
from the sources to the sink [17]. The algorithm repeatedly seeks
an augmenting path and uses it to increase the maximum flow. At
the same time, the capacitance of all edges involved in the path
gets reduced by a unit. The algorithm stops when no such aug-
menting path exists. Our version of the augmenting path algorithm
uses vertex capacitances instead of edge capacitances. Edges are
used to direct possible path construction only.

If the double-vertex dominator{w1,w2} computed by
DOUBLEIDOM is not an empty set, thenw1 is added toV1k and
w2 is added toV2k as first elements.

algorithm UPDATECHAIN (a,b, i,k, root)
Find ith element ofVak, v;
W = FINDMATCHINGVECTOR(v,Vbk, root);
ADDVECTOR(Vbk,b,W,v);
i++;
return i;

end

algorithm FINDMATCHINGVECTOR(v,Vbk, root)
Find w∈Vbk with index(w) = min(v);
W = 〈w〉;
V ′ = V −{v};
E′ = E−{(y,v) | y∈V −{v}};
while 1 do

idom(w) = SINGLEIDOM (w,V′,E′, root);
if idom(w) = root do

return W;
else

W = APPEND(W, idom(w));
w = idom(w);

end

algorithm UPDATEINDEX (i,W)
Find ith element ofW, vi ;
if index(vi) is not defined

index(vi) = UPDATEINDEX (i−1,W)+1;
return index(v1);

end

Figure 4: Pseudo-codes of UPDATECHAIN, FINDMATCHING

VECTORand UPDATEINDEX.

ADDVECTOR(Vak,a,W,v) modifiesVak to accommodate the
matching vectorW of v as a part of it. Then, indexes of ver-
tices ofVak are updated by the function UPDATEINDEX(|Vak|,Vak)
(Figure 4). Besides, ADDVECTOR assigns(min(v),max(v)) =
(index(w1), index(w|W|)) in Vak, wherew1 andw|W| are the first
and the last elements ofW, respectively. Further, for allwi ,
i ∈ {1, . . . , |W|}, the valuea assigned tof lag(wi), and the val-
ues ofmin(wi) andmax(wi) are updated as follows:

1. min(wi) is assigned the minimal of values{min(wi), index(v)},
2. max(wi) is assigned the maximal of values{max(wi),
index(v)},
3. if min(wi) andmax(wi) are not defined yet,(min(wi),max(wi))
are set to(index(v), index(v)).

Next, the dominator chain is updated. UPDATECHAIN applies
FINDMATCHINGVECTOR(v,Vbk, root) to find the matching vector
for v which is ith element ofVak. The resulting vector is added to
Vbk using ADDVECTOR.

FINDMATCHINGVECTOR(v,Vbk, root) works as follows. First,
we look-upVbk to find a vertexw with index(w) = min(v). Such
a vertexw always exists. This vertex becomes the first element
of W. Then, we compute the immediate single-vertex dominator
of w for the restricted circuitC′ = (V ′,E′, root), with V ′ = V −
v and E′ = E −{(y,v)|y ∈ V −{v}}. By restricting the circuit
we exclude from consideration all paths fromu to root (root is
local to FINDMATCHINGVECTOR(v, root)) which containv. The
computedidom(w) together withv is a double-vertex dominator
for u, thus idom(w) is appended to the end ofW. While-loop
continues until the localroot is reached.

When the current pair{V1k,V2k} is updated for all vertices,
it is added toD(u) as next element. Whenroot is reached,
DOMINATORCHAIN terminates by returning the resulting domi-
nator chainD(u) for u.

N N runtime, sec
single double [11] new impr.

name in out doms doms t1 t2 t1/t2
C1355 41 32 6 10512 3.5 0.45 7.78
C1908 33 25 636 5696 1.5 0.36 4.17
C2670 233 140 2091 410 1.55 0.23 6.74
C3540 50 22 727 5657 6.85 0.42 16.31
C432 36 7 195 2127 0.3 0.17 1.76
C499 41 32 960 9968 2.3 0.45 5.11
C5315 178 123 4093 11068 5.5 0.71 7.75
C6288 32 32 480 3366 58.89 0.88 66.92
C7552 207 108 4604 14728 7.27 1.16 6.27
C880 60 26 432 1309 0.26 0.18 1.44
alu2 10 6 48 55 0.81 0.16 5.06
alu4 14 8 77 214 3.36 0.16 21.00

apex5 114 88 800 8107 3.21 0.61 5.26
apex6 135 99 525 1169 0.42 0.24 1.75
apex7 49 37 140 476 0.17 0.15 1.13
cmb 16 4 38 60 0.16 0.09 1.78
comp 32 3 8 439 0.16 0.12 1.33
cordic 23 2 38 65 0.12 0.1 1.20

des 256 245 3361 2349 8.19 0.77 10.63
frg2 143 139 1502 3609 1.76 0.44 4.00
i8 133 81 2068 3296 2.87 0.5 5.74
i9 88 63 876 1827 0.95 0.3 3.17
i10 257 224 6446 30608 16.32 1.57 10.39
pair 173 137 2459 9196 1.82 0.63 2.89
rot 135 107 1657 4617 1.49 0.38 3.92

term1 34 10 46 453 0.31 0.16 1.94
too large 38 3 971 1467 423.73 0.69 614.1

x1 51 35 366 1297 0.99 0.22 4.50
x3 135 99 495 1801 0.68 0.22 3.09
x4 94 71 305 2250 0.41 0.18 2.28

average 95 67 1215 4607 18.5 0.42 27.65

Table 1: Benchmark results.

6 Experimental Results

This section compares the performance of the presented algo-
rithm to the algorithm [11]. Table 1 summarizes the results for 30
largest benchmarks from IWLS’02 benchmark set. Columns 1, 2
and 3 show the name of the function, the number of primary in-
puts and primary outputs, respectively. Column 5 shows the total
sum of double-vertex dominators which dominate at least one pri-
mary input. This number is the same for the presented algorithm
and the algorithm [11], because they both compute all possible
double-vertex dominators for a given vertex. For a comparison,
we also show in Column 4 the total sum of single-vertex domi-
nators which dominate at least one primary input, computed using
Lengauer and Tarjan’s algorithm [1]. In both cases, common dom-
inators are counted only once. Every output is treated as a separate
function. The numbers shown in Columns 4 and 5 are the total sum
for all outputs of the circuit.

Columns 7 and 8 show runtime, in seconds, measured using the
Unix commandtime(user time). The experiments were performed
on a PC with a 650 MHz Pentium3 CPU and 256 MByte main
memory. One can see that, on average, the presented algorithm is
27 times faster than the algorithm [11].

Some circuits may have less double-vertex dominators than
single-vertex ones (C2670, des). Usually these are circuits with
many single-vertex dominators. Recall that the definition of
multiple-vertex dominator excludes redundancies. Therefore, in
the extreme case of a tree-like circuit withn vertices ”N single
doms” would ben and ”N double doms” would 0. No pair of ver-
tices in a tree-like circuit satisfies the Definition 1.

7 Conclusion

This paper has two main contributions. First, we introduce a
data structure for representing double-vertex dominators, which
has a linear size and can be efficiently manipulated. Second,
we design an algorithm for finding double-vertex dominators,
which is, on average, an order of magnitude faster than the algo-
rithm [11]. The speed of the presented algorithm makes it suitable
for running in an incremental manner during logic synthesis.

Future work includes exploring new applications of the
presented algorithm, e.g. statistical timing analysis.

Acknowledgments
We are grateful to the anonymous reviewer who gave us many

valuable comments over the manuscript.
This work was supported in part by the Research Grant 2002-

4300 from the Swedish Research Council Vetenskpsr˚adet.

References

[1] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in a flow-
graph,”Transactions of Programming Languages and Systems, vol. 1, pp. 121–
141, July 1979.

[2] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general combina-
tional networks,”Transactions on Computers, pp. 668–670, June 1975.

[3] F. Najm, “Transition density: A new measure of activity in digital circuits,”
Transactions on Computer-Aided Design, vol. 12, pp. 310–323, February 1993.

[4] R. Krenz, E. Dubrova, and A. Kuehlmann, “Fast algorithm for computing spec-
tral transforms of Boolean and multiple-valued functions on circuit representa-
tion,” in Proceedings of the International Symposium on Multiple-Valued Logic,
(Tokyo, Japan), pp. 334–339, May 2003.

[5] S. C. Seth, L. Pan, and V. D. Agrawal, “PREDICT-probabilistic estimation of
digital circuit testability,” inProceeding of International Symposium on Fault-
Tolerant Computing, pp. 220–225, June 1985.

[6] J. Costa, J. Monteiro, and S. Devadas, “Switching activity estimation using
limited depth reconvergent path analysis,” inProceedings of the International
Symposium on Low Power Electronics and Design, pp. 184 –189, 1997.

[7] D. Harrel, “A linear time algorithm for finding dominators in flow graphs and
related problems,”Annual Symposium on Theory of Computing, vol. 17, no. 1,
pp. 185–194, 1985.

[8] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup, “Dominators in linear
time,” SIAM Journal on Computing, vol. 28, no. 6, pp. 2117–2132, 1999.

[9] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook, “A new, simpler
linear-time dominators algorithm,”ACM Transactions on Programming Lan-
guages and Systems, vol. 20, no. 6, pp. 1265–1296, 1998.

[10] R. Gupta, “Generalized dominators and post-dominators,” inProceedings of
19th Annual ACM Symposium on Principles of Programming Languages,
pp. 246–257, 1992.

[11] E. Dubrova, M. Teslenko, and A. Martinelli, “On relation between non-disjoint
decomposition and multiple-vertex dominators,” inProceedings of the IEEE
International Symposium on Circuits and Systems, IEEE, 2004.

[12] E. S. Lowry and C. W. Medlock, “Object code optimization,”Communications
of the ACM, vol. 12, pp. 13–22, January 1969.

[13] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
of electrical circuits,”Bell Systems Tech. Journal, vol. 9, pp. 291–307, 1970.

[14] A. V. Aho and J. D. Ullman,The Theory of Parsing, Translating, and Compil-
ing, Vol. II. Englewood Cliffs, NJ: Prentice-Hall, 1972.

[15] P. W. Purdom and E. F. Moore, “Immediate predominators in a directed graph,”
Communications of the ACM, vol. 15, pp. 777–778, August 1972.

[16] R. E. Tarjan, “Finding dominators in a directed graphs,”Journal of Computing,
vol. 3, pp. 62–89, March 1974.

[17] L. R. Ford and D. R. Fulkerson, “Maximum flow through a network,”Canadian
Journal of Mathematics, vol. 8, pp. 399–404, 1956.

[18] J. Moondanos, C. H. Seger, Z. Hanna, and D. Kaiss, “CLEVER: Divide and
conquer combinational logic equivalence verification with false negative elimi-
nation,” inComputer Aided Verification (CAV’01), (Paris, France), pp. 131–143,
July 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

