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Abstract
The increased dominance of intra-die process variations has

motivated the field of Statistical Static Timing Analysis (SSTA) and
has raised the need for SSTA-based circuit optimization. In this
paper, we propose a new sensitivity based, statistical gate sizing
method. Since brute-force computation of the change in circuit
delay distribution to gate size change is computationally expensive,
we propose an efficient and exact pruning algorithm. The pruning
algorithm is based on a novel theory of perturbation bounds which
are shown to decrease as they propagate through the circuit. This
allows pruning of gate sensitivities without complete propagation of
their perturbations. We apply our proposed optimization algorithm
to ISCAS benchmark circuits and demonstrate the accuracy and
efficiency of the proposed method. Our results show an improve-
ment of up to 10.5% in the 99-percentile circuit delay for the same
circuit area, using the proposed statistical optimizer and a run time
improvement of up to 56x compared to the brute-force approach.

1  Introduction
Static Timing Analysis (STA) has been the mainstay of perfor-

mance verification for the past two decades. Traditionally, process
variation has been addressed in STA using corner-based analysis
where all gates are assumed to operate at a worst-, typical- or best-
case condition and within-die variability is not modeled. However,
in the nanometer regime, within-die variation has become a sub-
stantial portion of the overall variability and corner-based STA suf-
fers from significant inaccuracy. This has given rise to a new field
of statistical timing analysis known as SSTA. 

In SSTA, the circuit delay is considered a random variable and
the objective of SSTA is to compute its probability distribution. So-
called block-based SSTA approaches [1-5] are analogous to STA in
that they propagate arrival times through the circuit. As the arrival
times traverse gates, the delay of the gate is added to the arrival time
and a maximum arrival time is selected when multiple arrival times
converge at a gate. In SSTA, the arrival times also become random
variables, and hence, the addition and maximum operations of STA
are replaced by convolution and a statistical maximum, respec-
tively. Like STA, they require a single pass of the circuit to compute
the circuit delay distribution. From the CDF (cumulative distribu-
tion function) of the circuit delay, the user is then able to obtain the
percentage of fabricated dies which meets a certain delay require-
ment, or conversely, the expected performance for a particular
yield. In turn, gate or transistor sizing approaches should consider
such metrics for their objective function and should perform their
optimization in a statistically aware manner.

SSTA-based optimization can significantly improve the yield of
a design compared to deterministic optimization. This is due to the
fact that deterministic optimization tends to create a so-called
“wall” of critical and nearly critical paths, as shown in Figure 1a,
since there is no incentive to improve path delays that are not criti-
cal. All critical paths can affect the circuit delay due to delay vari-
ability, and hence, a balanced circuit with many near-critical paths
is highly susceptible to process variations. This is illustrated in Fig-
ure 1(a) and (b), where a balanced and unbalanced path distribu-

tions are shown with their associated circuit delay distributions.
While both path distributions have the same deterministic circuit
delay, the unbalanced distribution results in a better statistical cir-
cuit delay since it has fewer near-critical paths. Hence, deterministic
optimization can actually worsen the true statistical circuit delay
due to the lack of a true statistical objective function.

Recently, a number of statistical optimization algorithms have
been proposed in [6-9]. In [6] it is shown that by performing deter-
ministic optimization, it is possible to degrade the performance of
the die statistically due to the creation of a timing wall (Figure 1).
Hence, in [7] the authors propose a method to avoid the formation
of such a wall by purposely improving non-critical paths in the
deterministic optimization. In [8] and [9], the statistical optimiza-
tion problem has been considered as a nonlinear programming
problem. Delays are considered to be gaussian and approximations
are used for computing the statistical maximum. In [9], a heuristic
approach is proposed using the concept of statistically ‘undomi-
nated’ paths. These approaches suffer from lack of true sensitivity
computation and prohibitive runtimes for large circuits.

In this paper, we therefore propose a new sensitivity based, sta-
tistical gate sizing algorithm. We use a coordinate descent algorithm
where in each iteration the gate with the highest sensitivity is sized
up. We show that such a statistically aware optimization can
improve the 99-percentile delay by up to 10.5% over that obtained
with traditional deterministic optimization. It should be noted, as
shown in Figure 2, that a sizing change can impact both the mean
and the shape of the circuit delay CDF. Depending on the objective
specified by the user, the CDF perturbation can be evaluated in a
number of ways. In this paper, we consider as objective the CDF
delay at the 99% probability or confidence point, as shown in Fig-
ure 2. Hence, the computed sensitivity is measured as the change in
the 99-percentile delay of the circuit delay CDF. However, other
objective functions could be equally well supported by the proposed
framework.

Since brute-force computation of such CDF perturbation sensi-
tivities is extremely expensive, a key contribution of this paper is an
efficient and exact pruning algorithm that allows for identification
of the most sensitive gate in the circuit. Our pruning approach is
based on a proposed theory of bounds on CDF perturbations due to
sizing. We establish the useful property that these perturbation
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bounds can only diminish as the arrival time perturbations are prop-
agated through the circuit using convolutions and maximum opera-
tions. Based on this property, we propose a pruning algorithm for
finding the highest sensitivity gate in a sizing iteration, without
complete propagation of the perturbed arrival times for all gates.
We perform an iterative propagation of perturbed arrival times for a
pruned set of gates by maintaining their so-called perturbation
fronts (defined later). We test our approach on a number of bench-
mark circuits, and demonstrate up to 56 times faster runtimes than
the brute force sensitivity computation based optimization, without
loss in accuracy.

The remainder of this paper is organized as follows. In Section 2,
we present our modeling assumptions, along with the problem for-
mulation, basic definitions and delay model. In Section 3, we
present our approach for sensitivity computation and optimization.
In Section 4, we present our results and compare deterministic opti-
mization with brute force statistical and our proposed accelerated
approach. Finally, in Section 5 we draw our conclusions. 

2  Problem Formulation
In this section we define our modeling assumption and our SSTA

approach. We also formulate the statistical optimization problem
and present basic definitions and the delay model.

Gate delay variability is composed of two primary components:
inter-die (between-die) variability and intra-die (within-die) vari-
ability. Inter-die variability expresses the change in gate delay from
one die to the next and has traditionally been modeled using corner
analysis with reasonable accuracy. The main focus of SSTA has
therefore been on intra-die variability, which corner-based analysis
is unable to model. Hence, similar to the optimization approaches
proposed in [8,9] we focus on intra-die variability in this paper.

One of the difficulties in SSTA arises from reconvergent circuit
structures, which results in correlations between arrival times. In
[2,3], it was shown that the worst-case runtime for exact computa-
tion of the circuit delay CDF in a reconvergent circuit is exponential
with circuit size, making its computation impractical. However, in
[3] a simple method where these correlations are ignored was
shown to result in an upper bound on the circuit delay CDF and
hence a conservative analysis. Furthermore, it was shown that these
bounds are typically tight and give a reasonably close approxima-
tion of the exact circuit delay CDF while their computation runtime
is linear with circuit size. In this paper, we therefore use the bounds
proposed in [3] for computation of the circuit delay CDF. It is
important to note that the optimization objective is defined on this
bound of the circuit delay CDF and not on the exact circuit delay
CDF itself, since this would lead to prohibitive runtimes. However,
we show in the result section that the optimization of the bounds, as
performed by our method, results in nearly equivalent improvement
of the exact circuit delay, as verified using Monte-Carlo simulation. 

In addition to reconvergent circuit structures, spatial correlation
of the gate delays can also give rise to correlation of arrival times
[5]. However, similar to previous optimization methods [8,9], our
optimization approach does not model such correlations at this time,
although the proposed methods form a basis from which such corre-
lations can be incorporated.  

In a statistical timing paradigm, the delay of the circuit is a ran-
dom variable. As a result, one needs to determine an appropriate
objective function for optimization, defined on the distribution of
the circuit delay random variable. Since we use propagation of dis-
cretized arrival time PDFs, and not merely the statistical measures
such as mean and variance, we obtain the entire shape of the circuit

delay distribution. Hence, the proposed framework can support a
wide range of cost functions as optimization objectives. For sim-
plicity of explanation, however, we choose as our optimization

objective the p-percentile point  of the delay distribution. In
our experiments, we choose p to be the 99-percentile point, as
shown in Figure 2. 

We use the following graph representation for our circuits.

Definition 1. A timing graph G is a directed graph having

exactly one source and one sink node: G={N,E,ns,nf}, where
N={n1,n2,...,nk} is a set of nodes, E={e1,e2,...,el} is a set of

edges,  is the source node, and  is the sink node

and each edge  is simply an ordered pair of nodes
e=(ni,nj).

The nodes in the timing graph correspond to nets in the circuit,
and the edges in the graph correspond to connections from gate
inputs to gate outputs.

2.1 Delay Model

We use a simple delay model for our experiments, similar to that
used in [6], based on the logic effort model. In this model, the pin-
to-pin delay (edge delay) of a gate is defined as 

 , (EQ 1)

where, Dint is a constant, intrinsic delay due to cell-internal

capacitances, Cload is the total load capacitance, K is a constant for

the standard cell and Ccell is the total capacitance of the standard

cell.
We determine these constants for all the standard cells in our syn-

thesis library for our experiments. For the statistical modeling of
these delays we assume that the standard deviation is a fixed per-
centage of the nominal delay, although our method is not restricted
to this model.

3  Proposed Optimization Approach
We first present in Section 3.1 the straightforward approach to

performing statistical optimization using sensitivities. In Section
3.2, we develop novel properties of sensitivity propagation based on
which an efficient pruning algorithm is presented in Section 3.3.

3.1 Straightforward Approach

Our brute force statistical algorithm is similar in structure to a
deterministic coordinate descent algorithm. The deterministic opti-
mization is sensitivity based and iteratively minimizes the circuit
delay starting from a minimum size implementation. During each
iteration, the gate with the maximum sensitivity is identified and
sized up. If the optimization is deterministic in nature, any gate that
improves the circuit delay by being sized up, must lie on the critical
path of the circuit and hence, the sensitivity computation can be
restricted to only those gates on the critical path. 

However, in optimizing statistical circuit delay, there may be no
single longest path, because the circuit delay PDF is a combination
of all the path delay PDFs. Hence, statistical sensitivity needs to be
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p

Figure 2. Optimization objective (99-percentile delay point)

Perturbed CDF

Unperturbed CDF

delay

0.99

Change in the 
99-percentile
delay point 

ns N∈ nf N∈
e E∈

De Dint K Cload Ccell⁄×+=



computed for all gates in the circuit making a sensitivity based sta-
tistical optimization significantly more computationally demanding.
According to the objective function defined in Section 2, the statis-
tical sensitivity is the change in the p-percentile point of the circuit
delay CDF due to the upsizing of a gate. This means that the pertur-
bation of sizing a gate must be propagated to the sink node in order
to calculate the sensitivity of the gate. This necessitates a statistical
timing analysis run for each gate in the circuit at every sizing step of
the algorithm with a runtime complexity of O(N*E) for every sizing
iteration, where N is the number of nodes and E is the number of
edges of graph G. This results in unacceptable runtimes. Therefore,
we propose an approach where the gate with maximum sensitivity
can be identified without explicit propagation of perturbed arrival
time CDFs for each gate. 

3.2 Properties of sensitivity propagation

To allow for pruning of sensitivities, we now introduce the fol-
lowing useful definitions and properties of sensitivity propagation.

As shown in Figure 5, Ai is the CDF of the arrival time random

variable at node i and A'i is the corresponding perturbed CDF

obtained by scaling up a gate. Their PDFs are denoted by ai and a'i,

respectively. We define the difference in the p-percentile point of

the CDFs Ai and A'i as . The maximum

difference over all p is given by .

First, we assume that the perturbed CDF A'i has the exact same

shape as the unperturbed CDF Ai and differs from Ai only by a con-

stant shift in time, i.e. Ai(t) = A'i(t - ∆i) and also ai(t) = a'i(t - ∆i).

This is assumed to be true for all perturbed CDFs. Under this
assumption, we prove in Theorems 1 through 3 that the maximum
difference ∆i between the perturbed and unperturbed CDFs at a

node can not increase as the perturbed CDFs are propagated
through the circuit using convolution and statistical maximum. This
property is useful in bounding the difference between the perturbed
and unperturbed CDFs at the sink node, without complete propaga-
tion of the gate’s perturbed CDF to the sink node. However, a
change in a gate size often affects not only the mean of the gate
delay, but also the shape of the CDF. Therefore, we show that it is
possible to construct a lower bound on the perturbed CDF, such that
the shape of this lower bound is identical to the unperturbed CDF,
as illustrated by CDF B'i in Figure 5. We then apply Theorems 1

through 3 to this lower bound on the perturbed CDF and show that
these theorems are true for any shape perturbation. Finally, we show
the use of these theorems to effectively prune out the propagation of
perturbed CDFs.

Theorem 1. Convolution operation: Consider the timing graph
shown in Figure 3a. Let ai and a'i be the original and the per-

turbed PDF at node i such that ai(t) = a'i(t - ∆i) and let de be the

delay PDF of edge e. If the arrival time PDF aj and the perturbed

a'j at node j are given by aj = Conv(ai , de) and a'j = Conv(a'i , de)

, then ∆i = ∆j.

Proof : The proof is obvious and omitted for brevity.

In the following two theorems, we show that a similar property to
that  of Theorem 1 holds for the maximum operation. As previously
mentioned, we assume that correlation of the arrival times due to
reconvergent fanout can be ignored for the maximum operation and
hence, the theorems are defined for an upper bound of the exact
arrival time CDF [3]. 

Theorem 2. Max operation with multiple perturbed arrival
times: Consider a node i in the probabilistic timing graph shown
in Figure 3b. Let Ai1 and Ai2 be the arrival time CDFs of two

fanin subgraphs incident at node i. Let A'i1 and A'i2 be the per-

turbed CDFs obtained by scaling a single gate x that is common
to the fanin cones of Ai1 and Ai2. If the arrival time CDF Ai and

perturbed CDF A'i at node i are given by, Ai = max(Ai1, Ai2) and

A'i = max(A'i1, A'i2) respectively, then .

Proof : We consider two cases.
case 1: Consider ∆i1 = ∆i2.

By definition of maximum operation assuming independence,

  (EQ 2)

and (EQ 3)

R.H.S. of EQ2 and EQ3 being same, Ai(t) = A'i(t - ∆i1), but we

know that Ai(t) = A'i(t - ∆i). Hence, ∆i = ∆i1 = ∆i2.

case 2: Consider .

Without loss of generality, assume ∆i1 > ∆i2, and also ∆i1 =

∆i2(case1) and ∆i2 < ∆i2(case1) as shown in Figure 4. We define a new

CDF due to ∆i2  as A''i2, and the new resultant max as A''i. Again by

definition,

(EQ 4)

Also, A''i2(t - ∆i1) < A'i2(t - ∆i1), because ∆i2 < ∆i2(case1). Hence, by

equating EQ3 and EQ4, we get A''i(t - ∆i1) < A'i(t - ∆i1). This

implies, , and

 by algebraic manipula-

tion. Hence, .

Note that the proof can be trivially extended for gates with more
than two inputs.

Theorem 3. Max operation with single perturbed arrival
time: Consider a node i in the timing graph shown in Figure 3c.
Let Ai1 and Ai2 be the arrival time CDFs of two fanin subgraphs

incident at node i. Let A'i1 be the only perturbed CDF. If the

arrival time CDF Ai and perturbed CDF A'i at node i are given by,

Ai = max(Ai1, Ai2) and A'i = max(A'i1, Ai2) respectively, then

.

Proof : This is a special case of Theorem 2, where ∆i2 = 0.

The above three theorems were defined assuming that the per-
turbed CDF has the exact same shape as the unperturbed CDF. As
mentioned, this may not be true in practice and hence, we define a

δi p( ) T Ai p,( ) T A'i p,( )–=

∆i maxpδi p( )=
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lower bound on the perturbed CDF which has the exact same shape
as the unperturbed CDF as follows.

Definition 2. The lower bound CDF B'i of perturbed arrival time

A'i is defined as the time shifted CDF Ai by ∆i (Figure 5).

Since the shape of the lower bound B'i is the same as that of the

unperturbed CDF Ai, Theorems 1 through 3 can be applied to this

lower bound. Note, however, that the maximum time difference
between the lower bound of the perturbed CDF B'i and the unper-

turbed CDF Ai is equal to the maximum difference between the per-

turbed CDF A'i itself,  and Ai (by Definition 2). Hence, implicitly,

Theorems 1 through 3 also hold for arbitrary shaped perturbations
of an arrival time CDF. This allows the use of the perturbation

bound ∆i as an upper bound on the actual difference between the

perturbed and unperturbed CDFs at the sink node. Using this bound
allows gates to be pruned from consideration for the highest sensi-
tivity gate as explained in more detail in Section 3.3.

Before presenting such a general upper bound on the perturba-
tion of a CDF at the sink node, we first recognize that when we
propagate a perturbed CDF in a circuit, multiple perturbed CDFs
are generated at points of multiple fanout. We therefore introduce a
so-called perturbation front, Pk, which is the set of nodes that is vis-

ited in each iteration of a breadth-first propagation of the perturbed
CDF to the sink node. We now define the maximum over all ∆i

where node i belongs to a perturbation front due to upsizing gate x
as ∆mx = maxi ∆i. Note that when the perturbation front reaches the

sink node, it consists of only a single perturbed arrival time corre-
sponding to the sink node.

Theorem 4. Given a perturbation front Pk associated with a gate

x then , where  is the maximum difference

between perturbed and unperturbed arrival times over all nodes
in the perturbation front Pk and ∆nf is the maximum difference

between perturbed and unperturbed CDF at the sink node nf.

Proof : The proof follows from Theorems 1 through 3. 

Theorem 4 states that the maximum difference between the per-
turbed and unperturbed CDF at the sink node, is bounded by the
maximum change of the perturbed and unperturbed CDFs in the
perturbation front.

3.3 Our Algorithm

In this section, our statistical gate sizing algorithm is presented.
The objective function is the p-percentile point of the circuit delay
CDF. The sensitivity Sx of gate x is computed numerically using the

ratio of the change in p-percentile circuit delay per unit change in

gate width:  where,  is the change in gate

width and nf is the sink node of G. Based on the computed sensitivi-
ties, the most sensitive gate in each iteration of the coordinate
descent is selected.

The goal of the inner loop of the optimization is to find the gate
with maximum sensitivity without performing a complete SSTA run

for each gate perturbation in the circuit. The idea is to propagate
highly sensitive gates (i.e. gates which have a large value of Si) to

the sink node and then use their Si value to prune out gates which

can be shown to have a lesser sensitivity using the proposed bounds.
Given a gate x with partially propagated arrival time CDFs at per-
turbation front Pk, we define the perturbation front sensitivity bound

, where  is the maximum perturbation

change across the nodes of the front. From Theorem 4 it follows
that Smx < Sx and hence the sensitivity bound Smx can be used to

prune gate x before its perturbation front reaches the sink node. In
other words, if at any time during the propagation of the front for
gate x the bound Smx become less than a previously computed sen-

sitivity Si of gate i, gate x can be eliminated from further consider-

ation.  

It is advantageous to identify a gate with a high sensitivity value
Si early in the analysis so that a large number of gates can be

pruned. In our approach, we therefore perform level by level propa-
gation of perturbed arrival times in an iterative manner. During
every iteration the perturbation front with the maximum Smx value

is propagated one level forward and its Smx value is recomputed.

When a perturbation front reaches the sink node, its true sensitivity
Si is computed and is used to prune the perturbation front of other

gates. The pseudo-code of the statistical gate sizing algorithm is
given in Figure 6. 

First, SSTA is performed to compute the arrival times at each
node (step 2). To implement level by level propagation, we maintain
propagated arrival times A' and Smx for each candidate gate and use

the notation ‘x.A'set’ which represents the super-set of gates in the
current perturbation front of gate x. It is a super-set as it also con-
tains the fanout gates of the current perturbation front, which is
required to advance the perturbation front one level forward. Smx

and A'set are initialized for every gate in the circuit by calling pro-
cedure Initialize (step 3 and 4). In step 5, a sorted list of all gates in
G is created by arranging gates in descending order of Smx. It repre-
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Figure 5. Arrival time CDFs at node i 
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 Statistical_Gate_Sizing(G)     
1.      do {
2.           SSTA(G);
3.           For each gate x 
4.                x.A'set = Initialize(x);
5.           gate_list = list of all gates x in G sorted by Smx
6.           Max_S = 0;
7.           while( gate_list is not empty) {
8.                x = Head(List);
9.                PropagateOneLevel(x);        
10.              Update Smx ;
11.              if (x.curr_prop_level = # of levels in G) {
12.                   gate_list = gate_list - {x};
13.                    if (Max_S < Sx) {
14.                         Max_S = Sx;
15.                         best_gate = x;  
16.                    }
17.               } 
18.               else 
19.                     Update position of x in gate_list;
20.               gate_list = gate_list - {x | Smx < Max_S}
21.          }
22.           best_gate.w = best_gate.w + ;
23.     } while ( Max_S >  0) ;

∆w

Figure 6.  Statistical Gate Sizing Algorithm 



sents the list of all unpruned candidates which may or may not
result in maximum Sx, i.e. the set of all gates having Smx > Max_S,

where Max_S is the maximum Sx amongst all candidate nodes

whose perturbation front have reached the sink node. Max_S is ini-

tialized to be ‘0’ (step 6) before beginning the search for the most
sensitive gate. 

In each iteration, the head of the sorted gate_list is selected for
propagation. The procedure PropagateOneLevel  propagates the
arrival times by one level and updates the A'set of gate x accord-
ingly, as explained later. During propagation, new nodes are added
to A'set and nodes which do not belong to the perturbation front are
deleted. Smx is re-computed in step 10. If perturbation front of gate

x reaches the sink node, gate x is removed from the candidate
gate_list (step 11 and 12) and Max_S is updated (step 13-17). On
the other hand, if the perturbation front has not yet reached the sink
node, the position of gate x in the sorted gate_list is updated with
respect to its new Smx (step 19). In Step 20, gates in the list for

which Smx < Max_S are removed from the list. When the candidate

gate_list becomes empty the propagation loop terminates and the
gate with maximum sensitivity is sized up by ∆w. The algorithm can
be easily modified to size multiple gates in the same iteration.

The pseudocode for procedure Initialize is given in Figure 7.

Given a gate x, the algorithm initializes the perturbation front A'set
and computes the initial value Smx for gate x. The width w of gate x

is temporarily sized up by ∆w and the CDF for all pin-to-pin delays
of gate x are updated. In addition, the delay CDFs of fanin gates that
drive the inputs of gate x are also updated due to the increased load-
ing by gate x (step 1). Consequently, the arrival time CDFs at gate x
and its fanins will be perturbed and hence, these nodes are added to
the initial perturbation front (step 2). In general, it is possible that
the fanin of x is also a fanin of other fanins of x. Therefore, per-
turbed arrival times are computed starting from the minimum level
gate (step 3). The procedure PropagateOneLevel is called itera-
tively until the propagation level reaches the level of gate x (step 4
and 5). The perturbation front created after step 5 is shown in Figure
8. Thereafter, Smx is computed in step 6. Finally, the original pin-to-

pin delays of gate x and its fanin gates are restored (step 7).

The pseudocode for procedure PropagateOneLevel is given in
Figure 9. In step 1-4, a list of gates at the propagation level is cre-
ated from the A'set of x. For every node in the list, the perturbed
arrival time distribution AT_PDF, is computed by performing con-
volution and max operations (step 6). Then ∆i is computed by com-

paring the propagated perturbed arrival time and the original arrival
time (i.e. the arrival time computed in step 2). For each node in
prop_list, fanout nodes are added to the A'set in steps 8-12. Note
that a node can be removed from the A'set once the perturbed
arrival times at all its fanouts are computed. This is performed using
a count variable fo_count which is initialized to the number of
fanouts of the gate (step 11). When a perturbed arrival time is prop-
agated from a node, fo_count of all fanin gates is decremented. A
node is removed from A'set when its fo_count becomes zero.

4  Results
The proposed statistical optimization method was implemented

and tested on a synthesized version of ISCAS’85 [10] benchmark
circuits using a 180nm commercial cell library. We compare our
proposed approach with deterministic and brute-force statistical
optimization methods. Intra-die process variation was modeled
using a truncated Gaussian gate delay distribution. The standard
deviation was 10% of the nominal delay and the distribution was
truncated at the 3 sigma point. However, any delay distribution
could be used in our framework. As shown later, the arrival time
bounds as suggested in [3] were compared with Monte Carlo simu-
lation, showing an acceptable difference, especially for the 99-per-
centile point (< 1%). 

The deterministic optimization that we use for comparison is
similar to a coordinate descent algorithm. Sensitivities are com-
puted for all the gates on the critical path and the gate with the high-
est sensitivity is sized up. These sensitivities are computed as the
change in the circuit delay due to a change in the gate size. The
brute force statistical optimization, on the other hand, computes sta-
tistical sensitivities exactly by performing an SSTA run for every
candidate gate.

Table 1 shows a comparison between the proposed statistical
optimization and deterministic optimization. Results have not been
shown for the brute force approach as they match exactly with the
proposed optimization algorithm. The optimization results for the

Initialize( gate x)
1.   Change delays of x & fanin(x) for  increase in x.w;

2.    x.A'set = x fanin( x );

3.    x.curr_prop_level = x.Aset[i].level;

4.   while (x.curr_prop_level <= x.level)
5.          PropagateOneLevel(x);
6.   Compute Smx ;
7.   Restore Change in delay of x & fanin(x);

∆w

  ∪
min

i x.A'set∈

Figure 7.  Initialize creates a perturbation front for gate x

Figure 8. Pertubation front after the Initialize routine for gate x
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PropagateOneLevel( gate x )
1.      prop_list = ;

2.      for_each_gate i   x.A'set 
3.           if (i.level = x.curr_prop_level)
4.               prop_list = prop_list  i;

5.      for_each_gate i   prop_list {
6.           Compute x.A'set[i].AT_PDF using prop. & max;
7.           Compute ;

8.           for_each_gate j fanout( i ) 

9.                if (j x.A'set) {

10.                    x.A'set = x.A'set j;
11.                    x.A'set[j].fo_count = j.fo_count;
12.              }
13.         for_each_gate k fanin( i ) 

14.              if (k x.A'set) {
15.                   x.A'set[k].fo_count = x.A'set[k].fo_count - 1;
16.                   if ( x.A'set[k].fo_count = 0)
17.                        x.A'set = x.A'set - { k };
18.              }
19.    }
20.    x.curr_prop_level = x.curr_prop_level + 1;
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Figure 9. Propagate One Level



99-percentile circuit delay point, after performing over 1000 sizing
iterations, is shown in column 3-6. Note that while the deterministic
optimization does not use SSTA in the optimization process, the
reported 99-percentile delay point was obtained by running SSTA
on the circuit solution after every sizing iteration. In column 3, we
report the % increase in the total gate size of the circuit due to opti-
mization. Column 4 and 5 show the 99-percentile delay obtained
from deterministic and statistical optimization, respectively. The
improvement obtained from statistical optimization over determin-
istic optimization is shown in column 6. The average improvement
is 7.8% over all benchmarks with a maximum improvement of
10.5%. 

Table 2 shows a comparison of runtimes between brute force sta-
tistical optimization and our accelerated approach. Our optimization
results are identical with those of the brute force approach, but pro-
vide a runtime improvement of up to 56x for large circuits. The
results demonstrate that as many as 55 out of 56 candidate nodes are
pruned, demonstrating the effectiveness of the proposed bounds and
pruning algorithm. We also found that the runtime per iteration var-
ies significantly over the optimization iterations. In certain cases,
there is a large range of gate sensitivities, and a highly sensitive gate
quickly prunes out many inferior gates, whereas in other cases,
many gates in the circuit have similar sensitivities, making pruning
more difficult. Note that in the latter case, exact identification of the
most sensitive gate will not be as important for the optimization
result, opening the way for future research on fast heuristics for
finding the most sensitive gate. In column 2 and 3, we report the
average runtime per iteration (computed over a 1000 iterations)
using the brute force and our accelerated approach, respectively.
column 4 shows the runtime improvement factor. The improvement
is higher for larger circuits, since in these circuits the cost of main-
taining additional data structures is amortized over the savings of
statistical computations, such as convolution and max. Finally, col-
umns 5 and 6, show the range of runtimes per iteration for our
approach and corresponding range of improvement factors, respec-
tively.

Figure 10 shows the area-delay curve using our approach and
deterministic optimization for c3540. The 99-percentile points of
the circuit delay CDF are plotted on the x-axis and the correspond-
ing total gate size value on the y-axis, for every sizing iteration. We
have also plotted the 99-percentile points of the circuit delay using
Monte Carlo simulations. As shown in the figure, there is a very
small difference between the bounds and Monte Carlo results. Thus,
using bounds as an optimization objective results in a comparable
improvement in the exact circuit delay. 

5  Conclusions
In this paper, we have demonstrated the need for a fast statistical

optimization algorithm. We have shown through our experiments
that there is a clear advantage in using statistical optimization com-

pared to a deterministic one. We proposed a fast statistical optimiza-
tion which is exact in comparison with a brute force statistical
optimization but provides significant speedup. Our approach is
based on proposed theory of perturbation bounds which allow effi-
cient identification of the highest sensitive gate for sizing. The per-
turbation bound is used in pruning out less sensitive gates without
explicitly propagating their effect, and is a key contribution of this
paper. Finally, we demonstrated the accuracy and efficiency of our
approach over a large number of test cases. Our results show a max-
imum runtime improvement by a factor of 56. Future work includes
development of heuristics for fast and approximate identification of
the statistically most sensitive gate in the circuit. 
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Table 1. Results for the 99-percentile delay point

Circuit Results for the 99-percentile delay pt. (ns)

name node/edge % inc. deterministic statistical %impr.

c432 214/379 97 3.49 3.14 10.03

c499 561/978 25.6 3.98 3.56 10.55

c880 425/804 93 4.09 3.74 8.55

c1355 570/1071 23.7 4.80 4.30 10.41

c1908 466/858 20.9 6.48 6.12 5.50

c2670 1059/1731 21.4 3.65 3.40 6.85

c3540 991/1972 11.5 5.98 5.70 5.0

c5315 1806/3311 6.7 5.90 5.40 8.47

c6288 2503/4999 28.1 16.00 15.05 5.93

c7552 2202/3945 13.1 8.10 7.60 6.17

Table 2. Results for the runtime improvement

Circuit
name

Average time per iteration (sec) Range of time 
per iteration(s)

Range of
impr. factorbrute force our algo. imp. factor

c432 5 1.35 3.7 0.72-1.81 3-7

c499 90 22.4 4.01 5-30 3-18

c880 15 4.0 3.75 1.5-5 3-10

c1355 95 23 4.13 9-31 3-11

c1908 102 25 4.08 10-36 3-10

c2670 43 5.0 8.6 1.6-7.0 6-27

c3540 194 28 6.9 6-35 6-32

c5315 403 40 10.07 16-55 7-25

c6288 3600 248 14.5 64-310 12-56

c7552 1190 114 10.4 34-150 8-35

Figure 10. Area- delay curve for c3540
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