
A Decompilation Approach to Partitioning Software for
Microprocessor/FPGA Platforms

Greg Stitt and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{gstitt, vahid}@cs.ucr.edu, http://www.cs.ucr.edu/{~gstitt, ~vahid}

*Also with the Center for Embedded Computer Systems, UC Irvine

Abstract
In this paper, we present a software compilation approach for
microprocessor/FPGA platforms that partitions a software
binary onto custom hardware implemented in the FPGA. Our
approach imposes less restrictions on software tool flow than
previous compiler approaches, allowing software designers to
use any software language and compiler. Our approach uses a
back-end partitioning tool that utilizes decompilation techniques
to recover important high-level information, resulting in
performance comparable to high-level compiler-based
approaches.

1. Introduction
Several commercial platforms have begun to integrate
microprocessors and FPGA onto a single-chip. Designers have
typically used the FPGA in these platforms for implementing
peripherals. More recently, designers have used the FPGA to
implement custom hardware that speeds up the execution of
software running on the microprocessor.

For several platforms, platform vendors have developed
compilers to enable software developers to automatically
partition high-level software source code onto the FPGA in order
to speedup software execution. These compilers provide good
technical solutions for partitioning software but impose several
restrictions that software developers may find undesirable. One
restriction is that these compilers generally support only one
particular language, generally C/C++. Software developers also
generally have well-established software development tools and
would resist a change to a different compiler.

Thus, a partitioning tool would likely be far more practical if
placed after the compiler in the tool flow, operating during the
software linking stage, or by parsing the final software binary.
The partitioning/synthesis tool would thus be independent of the
compiler tool – any source language and/or compilers could be
utilized. The partitioning/synthesis tool could be provided by the
platform vendor, thus incorporating specific knowledge of the
platform architecture, which may involve extensive details
involving communication, memory, interrupt, arbitration, etc.,
necessary to perform good partitioning and synthesis. Such an
approach will not replace the use of specialized languages and
compilers used by advanced designers, but will instead extend
the advantages of microprocessor/FPGA platforms to a much
wider range of software developers, for whom the possibly
lower-quality results compared to a compiler approach are still
far better than software-only implementations.

In this paper, we show that the key to performing good
partitioning and synthesis after compilation is to be able to
recover the necessary high-level information. Such recovery is
known as decompilation. We have therefore developed an
extensive set of decompilation methods specifically intended for
partitioning and synthesis. We point out that our methods are
also applicable for synthesizing an entire software application,
not just kernels, to a custom circuit.

2. Decompilation
Decompilation was originally developed for purposes of
translating software binaries from one instruction set architecture
to another and for recovering high-level code from legacy
assembly code. We use decompilation for a different purpose,
namely for converting a software binary into a representation
suitable for synthesis. That different purpose meant we had to
select among existing decompilation methods and adapt them to
our needs, and also that we had to develop new decompilation
methods specifically for our purpose.

Our decompilation process uses existing decompilation
techniques [1] to convert the software binary into a control/data
flow graph (CDFG) that is annotated with high-level
information. Initially, binary parsing converts the software
binary into an instruction set independent representation. Next,
CDFG creation builds a control/data flow graph (CDFG) for the
application. Control structure recovery analyzes the CDFG and
determines high-level control structures, such as loops and if
statements.

After recovering a CDFG of the application, we apply
several optimizations to eliminate overhead introduced by the
instruction set. One such overhead is the use of arithmetic
instructions with a immediate value of zero in order to move a
value between two registers. Although a move instruction is
more appropriate, binary-level synthesis cannot assume a
compiler will use instructions appropriate for synthesis. If the
arithmetic operator is synthesized, then large amounts of area
will be wasted. We remove this overhead using constant
propogation. We also perform operator size reduction, strength
reduction, and stack operation removal.

In addition to removing instruction set overhead, we must
also undo software compiler optimizations in order to make the
recovered CDFG more appropriate for synthesis. Strength
reduction of multiplication operations is a compiler optimization
that can reduce the quality of binary-level synthesis. Although
strength reduction is generally beneficial, the additional adders
and shift resources required to perform multiplications may
exhaust these resources, leading to increased latency, even if

1530-1591/05 $20.00 © 2005 IEEE

hardware multipliers are available. To achieve the fastest
hardware, the synthesis tool must decide whether strength
reduction is beneficial. To give the synthesis tool this added
flexibility, we perform strength promotion to convert series of
shift/add operations back into the original multiplication form.

Loop unrolling can also result in inefficient binary-level
synthesis. Loop unrolling can obscure high-level information
such as memory access patterns and resource requirements,
which are needed for effective synthesis. Loop unrolling can
also greatly increase the size of a software binary, which can
increase synthesis execution times and memory requirements,
making dynamic synthesis approaches infeasible. We use loop
rerolling to identify unrolled loops and then roll the loops back
into a representation similar to their original representation in
high-level code.

3. Partitioning and synthesis
Although we considered using standard hardware/software
partitioning approaches [2][3], we use a simpler technique based
on the well-known 90-10 rule in order to reduce the time
required for partitioning. Achieving a small partitioning
execution time is important because we intend to integrate our
approach with existing dynamic partitioning and dynamic
synthesis approaches [4]. Our partitioning algorithm proceeds in
three steps. In the first step, we use profiling results to identify
the most frequent few loops, which generally correspond to 90
percent of execution while consisting of only a few dozen lines
of code. We then include these loops in the hardware partition.
In the second step, we use alias information to find regions of
code that access the same memory locations as the loops in the
hardware partition. If space allows, we include these regions in
the hardware partition so that the required memory locations can
be moved to memory within the FPGA, increasing parallelism.
In the third step, we continue to add regions to the hardware
partition based on profiling results and hardware suitability until
the area constraint is violated. This final step allows an entire
application to be synthesized if space allows.

Our approach utilizes a behavioral synthesis tool that we
implemented ourselves. The input to the synthesis tool is the
decompiled CDFG for the regions selected for hardware
implementation. The output of the tool is register transfer-level
VHDL. We use Xilinx ISE to synthesize the VHDL to a netlist.

4. Results of decompilation-based
partitioning
We applied our decompilation-based partitioning approach to
twenty examples from EEMBC, PowerStone, MediaBench, and
our own benchmark suite. All examples were compiled using
gcc with –O1 optimizations.

Instead of using a commercial platform, we utilized a
hypothetical platform consisting of a MIPS microprocessor and
Xilinx Virtex II FPGA. Using a hypothetical platform allows us
to more easily evaluate different types of platforms with
different clock speeds and FPGA sizes.

The decompilation-based approach showed consistently
good application speedups and energy savings, averaging 5.4 and
69%, compared to a MIPS processor running at 200 MHz. The
average kernel speedup was 44.8. Compared to a 400 MHz
MIPS, the application speedups were 3.8 and the energy savings

were 49%. For slower platforms with a 40 MHz microprocessor,
the application speedup was 12.6 and the energy savings were
84%. The average area required was an equivalent of 26,261
logic gates. For these examples, our approach recovered almost
all the relevant high-level constructs successfully. The only
unsuccessful situations occurred during CDFG recovery, which
failed for two EEMBC examples because of indirect jumps.

In addition to the experiments based on software binaries
generated with –O1 optimizations, we performed the same
experiments on binaries generated using four different
optimizations levels for four of the previous examples. As
expected, software execution times improved as the level of
compiler optimizations increased. In most cases, the execution
times of the synthesized examples also improved with more
compiler optimizations. This phenomenon implies that software
compiler optimizations generally do not negatively impact
binary-level synthesis, and in many cases binary-level synthesis
actually improves when more compiler optimizations are
applied. Speedup was significant for all levels of compiler
optimizations, although the speedup did not always increase with
more compiler optimizations. Speedup did not always increase
because as more compiler optimizations are applied, the software
became significantly faster, which increased the difficulty of
achieving large speedups. Note that execution time is the true
measure of the effectiveness of binary-level synthesis. We
report speedups to simply show that significant improvements
are achieved for each individual level of compiler optimization.
The energy savings were also very similar across different levels
of compiler optimizations.

5. Acknowledgements
This research was supported in part by the National Science
Foundation (CCR-0203829) and by the Semiconductor Research
Corporation (2003-HJ-1046G).

References
[1] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T.

Waddington. Preliminary Experiences with the Use of the
UQBT Binary Translation Framework. Proceedings of the
Workshop on Binary Translation, Newport Beach, USA,
October 1999.

[2] J. Henkel. A Low Power Hardware/Software Partitioning
Approach for Core-Based Embedded Systems. Proceedings
of the 36th ACM/IEEE conference on Design automation
conference, pp. 122-127, June 1999.

[3] A. Kalavade and E. Lee. A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem. International Workshop on
Hardware/Software Codesign, 1994, pp. 42-48.

[4] R. Lysecky, F. Vahid, S. Tan. Dynamic FPGA Routing for
Just-in-Time Compilation. IEEE/ACM Design Automation
Conference (DAC), June 2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

