
Automated Synthesis of Assertion Monitors using Visual Specifications 
 
 

Ambar A. Gadkari and S. Ramesh 
Department of Computer Science and Engineering  

Indian Institute of Technology Bombay, India. 
ambar@cse.iitb.ac.in, ramesh@cse.iitb.ac.in 

 
 

Abstract 
 

Automated synthesis of monitors from high-level 
properties plays a significant role in assertion-based 
verification. We present here a methodology to 
synthesize assertion monitors from visual 
specifications given in CESC (Clocked Event Sequence 
Chart). CESC is a visual language designed for 
specifying system level interactions involving single 
and multiple clock domains. It has well-defined 
graphical and textual syntax and formal semantics 
based on synchronous language paradigm enabling 
formal analysis of specifications. In this paper we 
provide an overview of CESC language with few 
illustrative examples. The algorithm for automated 
synthesis of assertion monitors from CESC 
specifications is described. A few examples from 
standard bus protocols (OCP-IP and AMBA) are 
presented to demonstrate the application of monitor 
synthesis algorithm. 
 
 
1 Introduction 
 
     Assertion-based verification [1-4] is gaining 
popularity in system level design due to its capability 
to combine formal methods with simulation based 
validation techniques. Precise and unambiguous 
specification is central to the success of system design 
and verification. Capturing high-level assertions using 
specification languages such as PSL/Sugar [5] or 
temporal logic becomes complex for interactions 
involving long event sequences [6]. On the other hand, 
manual construction of assertion monitors using native 
languages is error-prone and does not scale well. This 
paper provides a novel methodology for automated 
synthesis of assertion monitors for complex SoC 
Designs. The methodology makes use of a visual 
specification language called CESC (Clocked Event 
Sequence Chart).  

     CESC is a visual language designed for specifying 
interactions between different modules in the system 
with single as well as multiple clock domains typically 
found in SoC designs.  Properties or assertions related 
to interactions can be captured intuitively using CESC. 
CESC has a precisely defined abstract textual syntax. 
In [7], we defined CESC and illustrated its use in the 
context of several real-life examples including single 
and multiple clock domains.  
     In this paper, we present an automated procedure to 
synthesize assertion monitors from CESC. An 
important feature of the procedure is that the monitor 
synthesized consists of a number of local monitors one 
for each clock domain in the given input CESC 
specification; the monitors communicate and 
synchronize with each other exchanging the 
information about the local states using a scoreboard-
like data structure. The scoreboard dynamically 
maintains the information about event occurrences, 
which is used in implementing the causality checks 
within the same and across different clock domains. 
 A formal semantics has been defined for CESC based 
on the synchronous language paradigm [8,9], which 
forms the basis for the correctness of the synthesis 
procedure. The methodology to automatically 
synthesize monitors from CESC specifications helps in 
smooth integration of formal specification with 
simulation-based verification, thus reducing the cycle 
time and errors involved in the manual development of 
monitors.  
     This paper is organized as follows: Section 2 
provides the background and related work. Section 3 
gives a quick overview of CESC language. Section 4 
describes the role of monitors in assertion-based 
verification and formally defines the monitor. Section 5 
describes the algorithm for synthesis of monitors from 
CESC specifications. Section 6 includes a few 
examples of application of the monitor synthesis 
algorithm on standard bus protocols. Section 7 
concludes the paper. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



2 Background 
 
     With the increasing adoption of formal verification, 
many property specification languages having 
notations similar to temporal logics or regular 
expressions have emerged for hardware verification. 
These include Acellera’s Sugar [5], Synopsys’ OVA 
[2] and Intel’s FTL [10]. These languages describe 
various event sequences and their temporal 
relationships in abstract symbolic notations unfamiliar 
to practicing engineers.  The industrial specifications 
often include intuitive and visual constructs such as 
timing diagrams, sequence diagrams, message 
sequence charts, which are easier to use.  For example, 
the specifications for protocol standards such as 
AMBA CLI [11] and OCP-IP [12] use notations like 
sequence diagrams and timing diagrams to explain the 
cycle accurate behavior of transactions.  But these 
notations are often informal and ambiguous. Recently, 
there have been efforts to formalize MSC-like 
notations and use them in system design [13,14]. CESC 
language differs from these formalisms in many ways: 
It offers features such as synchronizing clocks (grid 
lines) suited for formally specifying the interactions in 
hardware systems; besides, it has support for structural 
constructs and multiple clocks thereby making it a 
good choice for the system level specification of SoCs 
which are Globally Asynchronous Locally 
Synchronous (GALS) systems. 
     There have been efforts on formalizing other visual 
notations such as timing diagrams [6, 15]. But 
compared to CESC, these are limited in capability for 
specifying the complex event behaviors such as 
causality relationships, repetitive event sequences and 
multiple clocked synchronizations that are commonly 
found in SoC design context. Also, the structural 
constructs such as sequential and parallel compositions 
and alternative constructs, which are useful for 
systematic building of specifications for large system-
level designs, are missing in those notations.  
     With assertion-based verification approaches 
gaining wider acceptance in industry [16, 3-5], few 
attempts have been made for automatic construction of 
monitors and protocol checkers from temporal 
language specifications [17,18]. They involve 
generation of automata equivalent to the specified 
property in temporal logic. The work described in this 
paper attempts to take this one step further by 
providing a methodology to synthesize assertion 
monitors directly from the visual specifications given 
in CESC. 
 

3 Overview of CESC 
 
     Clocked Event Sequence Chart (CESC) language is 
designed for specification of the interaction behaviors 
in clocked systems. The simplest CESC is known as 
SCESC (Single Clocked Event Sequence Chart) and 
represents a finite duration event sequence or 
interaction scenario. The basic constructs provide 
representation for agents (referred to as instances 
pictured as vertical lines), synchronizing clocks (shown 
as horizontal grid lines) and the presence or absence of 
events. The events can be guarded by conditions given 
as propositions formed over system variables or events. 
Connecting arrows show the causality relationship 
between the events. Events occurring on external 
agents are shown on the frame of the chart and are 
referred to as environment events. Figure 1 shows an 
SCESC corresponding to the event sequence related to 
a typical read protocol within single clock domain. 

(clk1)

Master S_CNT

req2,rd2,addr2

data1

rdy1

req1,rd1,addr1

M1

e1

e2

e3
rdy_done

data_done

Figure 1. Typical read protocol (single 
clocked) 

 
Various structural constructs are provided to enable 
hierarchical specification of complex interaction 
scenarios. Such constructs include sequential and 
parallel composition, loop, alternative, and implication. 
CESC constructs also include a special construct for 
asynchronous parallel composition to allow 
specification of interactions involving multiple clocks.  
Figure 2 shows the CESC corresponding to the read 
protocol involving multiple clocks. 
 
Semantics 
     The semantics of CESC is based on clocked traces 
or runs. Each run describes the valuations of conditions 
and events along sequence of clock ticks. For formally 
defining the notion of a run we provide the following 
two definitions. 



(clk1)

Master S_CNT

req2,rd2,addr2

data1

rdy1

req1,rd1,addr1

(clk2)

M_CNT Slave

data2

req3,rd3,addr3

M1 M2CESC

rdy2 rdy3
data3

e1 e4

e5
e2

e6

e3
rdy_done

data_done

 
Figure 2. Typical read protocol (multi-clocked) 
 
Definition: State (s) 
     A state s ∈ STATES is defined as the assignment of 
truth-values to the propositions and the events. It is 
given as, s = {(f1, f2) | f1: PROP → Boolean; f2: 
EVENTS → Boolean}. The notation πi is used to 
denote the projection onto i-th element in a tuple. Thus, 
π1(s) = f1 and π2(s) = f2 for a state s.                           ♦ 
 
Definition: Run (r) 
     A run r ∈ RUNS is defined as r: N → STATES, a 
mapping that associates a sequence of clock ticks 
represented as integers with a sequence of states. r(n) 
denotes a state at n-th clock tick. Thus, π1(r(n)) denotes 
f1 and π2(r(n)) = f2 at clock tick n. We further denote 
the following: ∀p ∈ PROP (the set of all propositions), 
r(n)╞ p if π1(r(n))(p) = True; r(n)╞ ¬p  if π1(r(n))(p) = 
False. Also, ∀e ∈ EVENTS (the set of all events), 
r(n)╞ e if π2(r(n))(e) = True; r(n)╞ ¬e  if π2(r(n))(e) = 
False;                                                                            ♦ 
     The semantic domain consists of a set of all possible 
runs. Intuitively, such a set represents an unconstrained 
set of behaviors that any system can exhibit. The 
specifications given in form of CESC constrain the 
permitted behaviors. Each SCESC chart specifies the 
constraints on the event occurrences within a finite 
interval on any run. The length of this interval is 
determined by number of grid lines denoted within a 
given chart. Thus, for CLK = {1,..., n}, given SCESC 
specifies the event occurrence pattern over ‘n’ clock 
ticks on any run. Intuitively, it can be seen (Figure 3) 
that for every run associated with an SCESC there is a 
finite interval in which the events occur according to 
the ordering specified by the SCESC. It may be noted 
that since SCESC does not provide any absolute notion 
of clock, the starting point of this interval is arbitrary. 

e1

e2

Syntactic Domain

Semantic Domain (runs)

e1 e2r1

rn
e1 e2

 
Figure 3. Semantic mapping for SCESC 

 
     For defining the semantics of multi-clocked CESCs 
a global run is defined over a global clock, which is 
obtained as a union of clock ticks contributed by all the 
component clocks in the system. 
 
4 Assertion Monitors 
 
     A typical system-on-chip (SoC) verification flow is 
shown in Figure 4 (exclude the grey boxes). 

Informal specification documents

Stimuli
Design under 

test

Simulation environment
Verified

Failed

Development of verification plan

Development of checkers and monitors

Development of CESC based verification plan

Automated synthesis of checkers and monitors

 
Figure 4. SoC verification flow 

 
     Such verification flows often involve multiple 
reviews and iterations during the development of 
verification plan and implementation of monitors / 
protocol checkers making the entire process time-
consuming. Also the manual development of monitors 
introduces is prone to large number of errors. The 
CESC based flow suggested in [7], (refer to Figure 4 
by including the grey boxes), helps in multiple ways. 
The verification plan consisting of different scenarios 
specified as CESCs is easier to develop and review and 
can be formally analyzed for specification 



inconsistencies. The automated synthesis of monitors 
from CESC eliminates the step of manually developing 
checkers and monitors, thus reducing the cycle time 
and making the process less prone to human errors. 
     The monitor corresponding to a CESC is a finite 
state machine that can detect the traces (runs), which 
exhibit the event sequence behavior specified by the 
given CESC. The monitor automaton is an extension of 
the string-matching automaton described in [19]. The 
monitor automaton operates on clocked event traces. 
Each element of the input trace is a set valuations of 
events and propositions given as {(f1, f2) | f1: PROP 
→ Boolean; f2: EVENTS → Boolean}. The monitor 
automaton uses a dynamic ‘scoreboard’ for storing the 
information regarding the event occurrences, which is 
helpful in implementing the checks related to causality 
relationships between events during a run. 
 
Definition: Monitor 
     A monitor is a finite automata defined as a 5-tuple 
〈Q, ∑, δ, s0, sf〉 where, Q is a set of states. s0 and sf in Q 
represent the initial and final state respectively.  ∑ is 
the finite input alphabet consisting of events (EVENTS) 
and propositional symbols (PROP). The transition 
function δ is a mapping from Q× EXP× ACT to Q, 
where EXP is the set of logical expressions formed 
over EVENTS and PROP using logical connectives '∧', 
'∨' and '¬' with their standard meaning. ACT is a set of 
actions given as {Add_evt(), Del_evt(), Null}, which 
can be performed on the ‘scoreboard’.                         ♦ 
 
     Following the synchronous model of systems [9], 
the transitions in a monitor are instantaneous and a 
single clock tick separates two successive transitions. 
The monitor automaton begins in initial state s0 and 
reads one element of input trace in a clock step. If the 
monitor is in state ‘s’ and reads element ‘e’ from the 
input trace, it takes the transition labeled ‘exp/act’, 
provided the logical expression ‘exp’ evaluates to True 
for the valuations of EVENTS and PROP given by 
element ‘e’. The action ‘act’ is performed on 
scoreboard while taking this transition. A sequence of 
transitions that takes the monitor from initial state to 
final state is considered as the ‘accepting’ run and the 
input trace corresponding to that run represents the 
finite word in the language of the monitor. 
     An example of a monitor corresponding to an 
SCESC is shown in Figure 5. 
 

A B
p1:e1 

p3:e3

SCESC
e2

a=( (¬p1 ∨e1) ∧e2)
b=TRUE

c=(¬p3 ∨e3) ∧ Chk_evt(e1)
d=(¬a ∧ ¬c) 

Monitor

30 21

a / Add_evt(e1)
a

b c

d / Del_evt(e1)

e1
SCOREBOARD

 
Figure 5. SCESC and corresponding monitor 

 
5 Synthesis of Monitors 
 
     We have developed the algorithm for automated 
synthesis of monitors from CESC specifications. The 
algorithm constructs localized monitors for every 
SCESC, which are then combined using various 
composition operations. The monitors in each clock 
domain communicate and synchronize with the 
monitors in different domains exchanging the 
information about the local states using the dynamic 
scoreboard. 
 
Translation Algorithm -Tr 
     The algorithm for construction of monitor from 
SCESC is described below. 
main 
Input: SCESC ‘C’ 
Output: Monitor ‘M’ 
begin 
  Let n be the number of clock ticks in C. 
  Q = {0, ..., n} /* set of states in M */ 
  ∑ = EVENTS ∪ PROP  /* input alphabet */ 
  s0 = itial and final states */  0, sf = n /* in
  P = extract_pattern(C) /* events pattern */ 
  δ = compute_transition_func(P, ∑) /* 
transition function */ 
  For every pair (ex, ey) in C connected by a 
causality arrow do 
    call add_causality_check(ex, ey) 
  return M 
end /* end of main routine */ 
 
     The major subroutines used in main algorithm are 
described below. 
     Pattern P of events is an array where each element 
of the array is a logical expression formed over 
EVENTS and PROP. The pattern corresponding to 
given SCESC is extracted using following subroutine. 
 



extract_pattern 
input: SCESC ‘C’ 
output: Array ‘P’ 
begin 
 For clock tick i= 0 to n in C do 
 begin 
  Expression ‘exp’ corresponding to set of 
events on each grid line in C is obtained as 
follows: 

• Event ‘e’ translates to exp = (e) 
• Event ‘p:e’ translates to exp = (¬p∨e) 
• Multiple events ‘e1 ... ek’ translate 

to exp = (e1∧ ... ∧ek) 
  P[i] = exp 
 end 
 return P 
end 
     The subroutine to compute the transition function 
for a given pattern P is described below. 
compute_transition_func 
input: P, ∑ 
output: δ 
begin 
  n = length(P) 
  For s = 0 to n do 
  begin 
    For each valuation e ∈ 2∑  do 
    begin 
      k = min(n, s+1) 
      while not (Pk suffix_of Tse) do 
        k = k-1 
      δ(s, e, Null) = k 
    end 
  end 
  return δ 
end 
     For describing the relation ‘suffix_of’ used in the 
above routine we first define a notion of ‘matching’ for 
the pattern. Pk represents the sub-pattern of P 
consisting of first n elements, also referred to as 
‘prefix’ of P of length k. Similarly, Ts represents the 
sub-trace of input trace, after reading which the 
monitor is in state s. An element of pattern ep is said to 
be ‘matched’ by an element eT of input trace if the 
logical expression ep evaluates to True for the valuation 
of EVENTS and PROP given by eT. A prefix Pk of 
pattern P ‘matches’ with a suffix of input trace Tse 
(written as Pk suffix_of Tse), provided they have same 
length and there exists an element-by-element 
‘matching’ between their respective elements. 
     The subroutine add_causality_check(ex, ey) is 
implemented as follows: For every transition that 
depends on the occurrence of event ex, an action 
‘Add_evt(ex)’ is associated with the transition. For 
every transition that depends on occurrence of event ey, 
an additional guard ‘Chk_evt(ex)’ is included along 
with the matching of corresponding elements from the 
pattern. For all the backward transitions (i.e. those 

taking monitor from higher numbered state to lower 
numbered state) all the Add_evt actions appearing on 
the forward path between these two states are reversed 
by including Del_evt actions for all the events. The 
example given in Figure 5 illustrates monitor automata 
corresponding to the given SCESC with causality 
arrow. 
     It can be shown that the finite words accepted by 
the monitor automaton correspond to the finite prefixes 
of the valid runs of the system meeting the 
specification given by corresponding CESC. 
Result: Let ‘M’ be the monitor obtained by applying 
the above-described algorithm ‘Tr’ on SCESC ‘C’. The 
set of runs (sequence of states) corresponding to C is 
given as [[C]]. Also, the language of monitor automata 
M is given as L(M). Then we can show that: 
[[C]] = ∑* • L(M) • ∑ω. 
 
6 Case Study Examples 
 
The effectiveness of the CESC based specification and 
monitor synthesis approach has been studied by 
applying it on two standard bus protocols used widely 
in industry for SoC design, namely, the Open Core 
Protocol (OCP) [12] and Advanced Microcontroller 
Bus Architecture (AMBA) [11] bus protocols. We 
present here a few illustrative examples.  
Example 1. Figure 6 shows the SCESC corresponding 
to simple read transaction (refer to page 44 of [12]) in 
the OCP; the corresponding monitor, which can detect 
the depicted scenario is also included. 

SCESC

Monitor

Master Slave

MCmd_rd, Addr

SResp, SData

SCmd_accept

a = (MCmd_rd ∧ Addr ∧ SCmd_accept ∧ Chk_evt(MCmd_rd))
b = (SResp ∧ SData ∧ Chk_evt(MCmd_rd)) c = (¬a ∧ ¬b)

a / Add_evt(MCmd_rd)
1 2

a

b0

c / Del_evt(MCmd_rd)

MCmd_rd
SCOREBOARD

 
Figure 6. OCP simple read operation 

 
Example 2. Figure 7 shows a monitor corresponding to 
a pipelined burst read operation (refer page 49 [12]) in 
OCP. Various events and related scoreboard actions are 
shown. (In Figure 7 NOT of action Add_evt indicates 
Del_evt). 



1 60 2 3 4 5b/act2a/act1 c/act3 d/act4 e f

a
a

a
a

g/act5

a

h/act6
i/act7

j/act8 k/act8

a=(MCmdRd∧Burst4∧Addr∧SCmd_accept∧Chk_evt(MCmdRd))
b=(MCmdRd∧Burst3∧Addr)
c=(MCmdRd∧Burst2∧Addr∧SResp∧SData∧Chk_evt(MCmdRd)∧Chk_evt(Burst4))
d=(MCmdRd∧Burst1∧Addr∧SResp∧SData∧Chk_evt(MCmdRd)∧Chk_evt(Burst3))
e=(SResp∧SData∧Chk_evt(MCmdRd)∧Chk_evt(Burst2))
f=(SResp∧SData∧Chk_evt(MCmdRd)∧Chk_evt(Burst1))
g=(¬a ∧¬b) h=(¬a ∧¬c) i=(¬a ∧¬d) j=(¬a ∧¬e) k=(¬a ∧¬f )

SCOREBOARD ACTIONS
act1= Add_evt(MCmdRd, Burst4),  act2=Add_evt(MCmdRd, Burst3), 
act3=Add_evt(MCmdRd, Burst2),  act4=Add_evt(MCmdRd, Burst1), act5=NOT(act1), 
act6=NOT(act1 AND act2),  act7=NOT(act1 AND act2 AND act3), 
act8=NOT(act1 AND act2 AND act3 AND act4)  

Figure 7. OCP burst operation 
 
Example 3. We include here an example of application 
of CESC for specification of interactions in AMBA bus 
protocol. A master and bus transaction sequence (refer 
to page 23 [11]) is shown using SCESC with 
corresponding monitor in Figure 8. 
 

M a s t e r B u s

1 ,  2 3 ,  4 ,  5

6 ,7 8 ,  9

1 0

1 :  in i t _ t r a n s a c t io n (  )  

6 :  m a s t e r _ s e t _ d a t a (  )  
4 :  w r i t e (  )  2 :  m a s t e r _ c o m p le t e (  )  
3 :  g e t _ s la v e (  )  

5 :  c o n t r o l_ in f o (  )  
7 :  m a s t e r _ c o m p le t e (  )  8 :  b u s _ s e t _ d a t a (  )  

9 :  b u s _ r e s p o n s e (  )  1 0 :  m a s t e r _ r e s p o n s e (  )  

M o n i t o r

d  =  ( 1 0 )

S C O R E B O A R D
1 6

b  =  ( 6  ∧ 7  ∧ 8  ∧ 9  ∧ C h k _ e v t ( 6 ) )
a  =  ( 1  ∧ 2  ∧ 3  ∧ 4  ∧ 5  ∧ C h k _ e v t ( 1 ) )

c  =  ( ¬ a  ∧ ¬ b )

30 21
a /A d d _ e v t ( 1 ) b /A d d _ e v t ( 6 ) d

c  /  D e l_ e v t ( 1 )

a

e / ( D e l_ e v t ( 1 ) ,  D e l_ e v t 6 )

e  =  ( ¬ d )

S C E S C

 
Figure 8. AMBA AHB CLI transaction 

 
7 Conclusion 
 
     We have presented here a methodology to 
synthesize assertion monitors from high-level visual 
specifications. This effectiveness of the methodology 
has been tested on different parts of specifications of 
industrial protocols like OCP and AMBA and the 
initial results are very encouraging.  The high level 
constructs of CESC were found to be very useful in 
structuring complex specifications and arriving at 
monitors in a compositional way. As part of the future 
work, we plan to use the synthesized monitors for 
checking the implementations of these protocols. 

 
Acknowledgements 
 
We would like to thank Dr. Rubin A. Parekhji for 
discussions and valuable suggestions. We thank the 
Heads of Computer Science departments in IIT 
Bombay and IISc Bangalore for their support. 
 
References 
 
[1] H. Foster, A. Krolnik, D. Lacey. Assertion-Based 

Design, Kluwer, 2003. 
[2] Synopsys. Assertion-Based Verification, March 2003. 

Web site: http://www.synopsys.com/ 
[3] 0-In Design Automation. Web site: http://www.0-

in.com/ 
[4] Verisity Design. Web site: http://www.verisity.com/ 
[5] Accellera. Property Specification Language Reference 

Manual, version 1.01, April 2003. 
[6] K. Fisler. Towards Diagrammability and Efficiency in 

Event Sequence Languages. Daniel Geist, Enrico Tronci 
(Eds.): CHARME 2003, LNCS 2860, Springer, 2003. 

[7] A. Gadkari, S. Ramesh, R. Parekhji. CESC: A Visual 
Formalism for Specification and Verification of SoCs. 
Proc. of ACM GLSVLSI’04, 2004.   

[8] G. Berry. The Esterel V5 Language Primer, version 
5.91, 2000. 

[9] N. Halbwachs. Synchronous Programming of Reactive 
Systems, Kluwer, 1993. 

[10] R. Armoni et. al. The ForSpec temporal logic: A new 
temporal property specification language. TACAS, 
2002. 

[11] ARM Ltd. AMBA AHB Cycle Level Interface 
Specification, Document number AHBCLI.1.1.0, 2003. 

[12] OCP-IP. OCP Specification version 1.0, Web site: 
htttp://www.ocpip.org/ 

[13] A. Bunker, G. Gopalakrishnan. Using Live Sequence 
Charts for Hardware Protocol Specification and 
Compliance Verification, Proc. of Intl. Workshop 
HLDVT'01, 2001. 

[14] I. Krüger. Distributed System Design with Message 
Sequence Charts, Dissertation, Technische Universität 
München, 2000. 

[15] N. Amla, et. al.. Model Checking Timing Diagrams. 
Proc. of FMCAD 2000, pp. 283-298, 2000.  

[16] Cadence Design Inc. Web site: 
htttp://www.cadence.com 

[17] M.C.W. Geilen. On Construction of Monitors for 
Temporal Logic Properties. Ed.: K. Havelund, G. Rosu, 
Proc. of Runtime Verification, RV'01, 2001. 

[18] Y. Abarbanel, et. al.. FoCs: Automatic Generation of 
Simulation Checkers from Formal Specifications. Proc. 
of CAV 2000, pp. 538-542, 2000. 

[19] T. Cormen, C. Leiserson, R. Rivest. Introduction to 
Algorithms. MIT Press, 1990. 

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2000/krueger.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2000/krueger.html

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




