
A Prediction Packetizing Scheme for Reducing Channel Traffic
in Transaction-Level Hardware/Software Co-emulation

Jae-Gon Lee Moo-Kyoung Chung Ki-Yong Ahn Sang-Heon Lee Chong-Min Kyung
Department of EECS

Korea Advanced Institute of Science and Technology
Gusong-dong, Yusong-ku, Daejon, Korea

Tel: +82-42-862-6411
FAX: +82-42-862-6410

E-mail:{jglee, mystory, ahnky, shlee, kyung}@vslab.kaist.ac.kr

Abstract

This paper presents a scheme for efficient channel us-
age between simulator and accelerator where the acceler-
ator models some RTL sub-blocks in the accelerator-based
hardware/software co-simulation while the simulator runs
transaction-level model of the remaining part of the whole
chip being verified. With conventional simulation accelera-
tor, evaluations of simulator and accelerator alternate at
every valid simulation time, which results in poor simu-
lation performance due to startup overhead of simulator-
accelerator channel access. The startup overhead can be
reduced by merging multiple transactions on the channel
into a single burst traffic. We propose a predictive pack-
etizing scheme for reducing channel traffic by merging as
many transactions into a burst traffic as possible based on
‘prediction and rollback.’ Under ideal condition with 100%
prediction accuracy, the proposed method shows a perfor-
mance gain of 1500% compared to the conventional one.

1. Introduction

1.1. Transaction-Level Modeling

Transaction-level modeling (TLM), usually described in
SystemC, is a modeling style for SoC design with its focus
on the external functional behavior of each block and inter-
block communications without imposing excessive imple-
mentation details [7, 8]. According to the modeling of time,
TLM is divided into two categories: architectural TLM and
micro-architectural TLM [10, 11]. In architectural TLM,
simulation time is only roughly modeled. This method
is suitable for early stage prototyping of SoC. In micro-
architectural TLM, the simulation time is modeled in a fully

cycle-accurate manner. With micro-architectural TLM, we
can verify SoC design in the early design stage with 100%
cycle accuracy [3, 4]. This paper deals with simulation ac-
celeration of micro-architectural TLM.

The simulation speed of TLM is much faster than that of
RTL simulation. It is reported that the micro-architectural
transaction-level models run at least two orders of mag-
nitude faster than RTL models; simulation speeds of at
least 100 kHz for a complete system simulation are read-
ily achievable [2, 5, 10]. It is also possible to mix transac-
tion level models with RTL models for gradual refinements
but low simulation speed of RTL blocks limits the total sim-
ulation performance. In simulation accelerators, introduced
to increase the RTL simulation speed, the limited through-
put of the channel between simulator and simulation accel-
erator often restricts the overall performance gain.

1.2. Characteristics of the Simulator-Accelerator
Channel

The channel between the simulator and the accelerator
is composed of layers of API (Application Program Inter-
faces), device driver, and physical media each with static
startup overhead. When PCI-based built-in simulation ac-
celerator is used, experimental results show that startup
overhead time is as big as 12.2 usec for each channel ac-
cess whereas the payload times for simulator-to-accelerator
and accelerator-to-simulator transfers are 49.95 nsec/word
and 75.73 nsec/word each.1

To utilize the channel more efficiently, we need to send
lots of data at a single time. But that’s not possible with
conventional simulation accelerators where the progress of

1 Experimental results obtained with iPROVETM tested with Pentium-
4 2.8 GHz with 512 Mbytes of RAM and 32-bit PCI bus running at
33 MHz.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



simulator and accelerator are synchronized every simula-
tion time. The amount of data to be sent between two sim-
ulation domains for a single simulation cycle is often too
small to justify the startup overhead time of the channel;
for an SoC design where each building block is intercon-
nected via system bus, the amount of data does not exceed
five words at a time. As a result, the transfer on the chan-
nel is composed of a series of short bidirectional transfers.

If we can remove one of the two types of transfers, we
can merge remaining data transfers as a single transfer to
minimize the number of channel accesses. This requires
prediction of the states of the other simulation domain
and recoveries from bad predictions. This paper deals with
an optimistic simulator-accelerator channel usage based on
‘prediction and rollback’ to maximize the simulation speed
when transaction-level models are executed by simulator
while the behavior of RTL blocks is represented by acceler-
ator.

2. Related Works

Parallel discrete event simulation (PDES), sometimes
called distributed simulation, refers to the execution of a
single discrete event simulation program on a parallel com-
puter [6]. The concept of ‘prediction and rollback’ was first
developed in PDES to extract maximum parallelism from a
given problem. In the conservative method the progress of
each process is synchronized at every simulation time. On
the other hand, in optimistic method, each process proceeds
assuming that there are no incoming messages. When a pro-
cess receives a message with a time stamp smaller than the
current simulation time, the process rollbacks to a previous
state and sends negative messages to negate incorrect mes-
sages sent by the process.

The ‘prediction and rollback’ concept was first applied
to SoC design by Yoo [12], where ARM prototype board
models ARM processor and high level simulator models the
behavior of hardware IPs. Yoo tried to minimize the chan-
nel accesses between the prototype board and simulator.
But, his approach is based on high-level simulation with-
out cycle-accurate behavior, which limits its practical use.

In [9], we proposed an “optimistic” simualtor-
accelerator channel usage scheme based on ‘predic-
tion and rollback’. With the proposed method, one of the
two verification domains, i.e,simulation domainandaccel-
eration domain, leads the other. Theleaderpredicts the re-
sponses of thelagger so as to removelagger-to-leader
transfers on the channel. This allows to merge multi-
ple leader-to-lagger transfers on the channel to mini-
mize startup overhead of channel access. The proposed
method has two operating modes, i.e.,Simulator Lead-
ing Accelerator(SLA) andAccelerator Leading Simulator
(ALS) depending on which of the twoverification do-

mains leads the other. The duration of eachSLA or
ALS phase is named as atransition and a singletransi-
tion is composed of four steps.

• Run-Ahead step(RA step) whereleaderproceeds pre-
dicting responses oflagger. Output of leaderare not
sent tolagger until RA stepis over. Instead they are
stored inLeader Output Buffer(LOB).

• Follow-Up step(FU step) where lagger follows up
with the leader.

• Optional RollBack step(RB step) where leader rolls
back to a previous state in case of prediction error de-
tected.

• OptionalRoll-Forth step(RF step) whereleaderruns
again from the previous state to reach the progress of
lagger.

Even though the proposed method can have great perfor-
mance improvement compared to the conventional method,
the paper focused on cases where two blocks residing in
two differentverification domains communicate over static
interconnections between them and failed to handle cases
where multiple blocks are dynamically interconnected with
a bus.

3. Problem Definition

We applied the “optimistic” channel usage pattern to
SoC model where building blocks with different abstraction
levels, i.e., TL and RTL, are interconnected with a system
bus. It is assumed that the system bus follows theAdvanced
High-performance Bus(AHB) specification.2 The bus dy-
namically utilizes interconnections among bus components,
i.e., bus masters and bus slaves, to use the common resource
for multidirectional data transfers. The dynamic utilization
includes dynamic decision of data flow direction, dynamic
decision of active bus components, dynamic decision of ac-
tive interconnections, etc., which complicate the application
of the “optimistic” channel usage pattern to SoC verifica-
tion. The complications are summarized as follows.

1. How to split a single bus model into two sub-bus mod-
els withoutcombinatorial half loops between them?

2. How to limit number and types of signals between the
two sub-bus models so that we can predict contents of
at least one of the bidirectional data transfers between
them?

3. Dynamic decisions on how to packetize bus signal val-
ues between the two sub-bus models.

2 AHB specification is one of the most popular and widely-used bus
standards for embedded systems proposed by ARM [1].



4. Dynamic decisions amongSLA, ALS and “conserva-
tive” operating modes.

We can meet the first constraint by letting each bus com-
ponent to be present only in one of the twoverification do-
mains, i.e.,simulation domainandacceleration domain. As
most bus specifications limit communication between bus
components to take place only at edges of a clock signal,
there can be nocombinatorial half loopif each component
is present only in a singleverification domain.

We can meet the second constraint by limiting the sub-
ject of data transfers between simulator and accelerator only
to elements ofminimal set of active bus signals. Set of bus
signalsis a set of signals holding all the signals present in a
bus specification.Set of active bus signalsis a subset ofset
of bus signals, all of whose elements influences the opera-
tion of the bus. Signals driven by either by active bus mas-
ter or active bus slave are elements ofset of active bus sig-
nals.3 Signals driven by arbiter and decoder are also ele-
ments ofset of active bus signalsas well as arbitration re-
quest signals driven by any of bus masters.Minimal set of
active bus signals(MSABS) is a subset ofset of active bus
signals, values of whose elements can exclusively define the
operations and states of the bus without redundant elements
whose states can be deduced by combinations of states of
the other elements ofMSABS. Specifically,MSABSincludes
address (HADDR), control signals (HTRANS, HWRITE,
HSIZE, HBURST, and HPROT), write data (HWDATA) of
active bus master, read data (HRDATA), responses (HRESP,
HREADY, and HSPLITx) of active bus slave, and arbitra-
tion request signals (HBUSREQx) of all bus masters.4 Ex-
cept for the arbitration request signals, all the elements of
MSABSare related to data transfer on the bus and we call
it transaction bus signals. In short,MSABScan be divided
into two subsets ofset of transaction bus signalsand set
of arbitration request signals. Among elements ofset of
transaction bus signals, values of address and control sig-
nals of active bus master can be deduced from their val-
ues at the start of a burst transfer on the target bus as their
values either increase linearly over time or remain con-
stant throughout a single burst transaction on the target bus.
In other words, they are “predictable.” Responses of ac-
tive bus slave are also “predictable” as they just represent
whether the active bus slave can handle bus transaction at a
particular target time, which can be modeled with a sim-
ple producer-consumer model. This leaves read data and

3 Active bus master refers to a bus master that is granted for bus access
and active bus slave refers to a bus slave that is accessed by the active
bus master.

4 Signal name in parentheses denotes the name of the corresponding sig-
nal under AHB specification [1]. It is assumed that arbitration prior-
ity and address maps of bus slaves are statically defined. This removes
output signals of arbiter and decoder from theminimal set of active
bus signalswhose states (values) can be deduced from arbitration re-
quest signals and address signals.

Set of

transaction

bus signals


Set of bus signals

Set of active

bus signals


MSABS


Set of

arbitration


request

signals


RQ


Predictable

signals


Non-

predictable


signals


A
 Address signal of active bus master


C
 Control signal of active bus master


R
 Response signals of active bus slave


Address signal of inactive bus master


Control signal of inactive bus master


Response signals of inactive bus slave


WD
 Write data signal of active bus master
 Write data signal of inactive bus master


RD
 Read data signal of active bus slave
 Read data signal of inactive bus slave


A


C


R


WD


RD


arb
 dec
Arbitration result
 Address decoding result


A


C

R


Bus request signal of bus master


RQ


RQ


RQ
WD

RD


arb
 dec
 A
C

WD


A
C
WD


A
C


WD


R

RD


R

RD


Figure 1. Grouping of bus signals.

write data whose values cannot be effectively predicted, i.e.,
“non-predictable.” As only one of the two data signals is ac-
tive at a time, we set the source of the data flow asleader
and the sink of it aslagger so that we do not need to pre-
dict values of data signals.

Elements ofset of arbitration request signalsare “non-
predictable” as we cannot predict whether a bus master will
request for bus access at a particulartarget time. We can-
not apply the same solution we used for data signals here
as there can be sources of arbitration request signals, i.e.,
bus masters, on either side of simulator-accelerator chan-
nel. In other words, we should be able to predict the values
of bus request signals driven by bus masters residing inlag-
ger. But as the arbitration request signals contribute only
to the generation of arbitration result signal, it suffices to
be able to predict arbitration result signal value. In SoC de-
signs where large amount of data flow in bursts between
building blocks, the arbitration result tends to change only
occasionally and we can effectively predict its value from
its previous one. Figure 1 summarizes the above explana-
tion. When there is any signal other than bus signals inter-
connecting two building blocks residing in differentverifi-
cation domains, interrupt signal to be one of the most com-
mon examples, it should be treated the same as elements of
MSABSand should be a subject of prediction, too.

The remaining problems related to dynamic use of
simulator-accelerator channel are handled in Sect. 5.

4. Bus modeling

Figure 2 shows how a single SoC model is split into two
verification domains according to abstraction level of each
component. For this purpose, a single bus model should be



Acceleration Domain
Simulation Domain


CWA
CWS

Master 1


(TL)

Master 2


(RTL)

Master 3


(RTL)


HBMS
 in TL


Slave 1

(TL)


Slave 2

(TL)


Slave 3

(RTL)


HBMA
 in RTL


Master 1

(TL)


Master 2

(RTL)


Master 3

(RTL)


Slave 1

(TL)


Slave 2

(TL)


Slave 3

(RTL)


c
h

a
n


n
e

l


Figure 2. Bus modeling.

separately modeled by the twoverification domains and at
the same time the two sub-bus models should be working
closely together to model the behavior of a single target bus
model. This is achieved by twohalf bus models (HBMs)
and twoChannel Wrappers (CWs) in Fig 2.HBMs residing
in simulation domainand acceleration domainare called
Half Bus Model for Simulator(HBMS) andHalf Bus Model
for Accelerator(HBMA), respectively.CWs residing insim-
ulation domainandacceleration domainare calledChan-
nel Wrapper for Simulator(CWS) and Channel Wrapper
for Accelerator(CWA), respectively. The structure of each
HBM is just the same as conventional bus models. It holds
an arbiter and a decoder and is connected to bus masters and
slaves either in transaction-level or in pin-level. In either
verification domain, CW mimics the behavior of bus mas-
ters and slaves present in the otherverification domain. This
allows eachHBM in either verification domains to func-
tion just the same as the target bus model does. The two
CWs exchange active bus signal values over the simulator-
accelerator channel. When oneCW can predict all the sig-
nal values to read from the otherCW, it replaces the read
access with prediction for “optimistic” operation.

5. Operations of Channel Wrapper

The operation ofCW is realized with a state diagram
shown in Fig. 3. Each of the twoCWs holds its own state
and their combination represents each step of atransition.
Operations ofCWcan be grouped into six paths denoted as
F (roll-Forth),P (Prediction),S (Synchronization),L (Lag-
ger),R (Report), andC (Conservative) paths in Fig. 3. Each
path represents operations of aCW for a single simula-
tion cycle. Except for the case when operation of aCW is
blocked at some blocking read operations, state of theCW
flows fromSTARTto ENDat every positive edge of a clock
signal. This is called aunit cycle operationof CW. Let’s
assume that twoCWs start running in conventional operat-
ing modes: “conservative” cycle-by-cycle synchronization.
During this time, twoCWs takeC-path together leapfrog-
ging each other. At some moment, one of the twoCW re-
alizes that it can predict the response of the other and takes
P-path instead ofC-path. This is the start of a newtran-

sition. Even thoughleadertakesP-path, it does not run in
“optimistic” way (no predictions are made) when this is the
first time to takeP-path for a transition. This is to store
the state ofleaderbefore taking “optimistic” operations for
possiblerollbacks in the future. LeadingCW takesrb store
state (denoted asP-5 in Fig. 3) to register a state store af-
ter currentunit cycle operationis over.5 After that leader
takesC-path for “conservative” operation (P-6). The “op-
timistic” channel usage starts whenleadercomes back to
P-path again at the very nextunit cycle operation.6 Now
leadertakes different path in theP-pathto write output val-
ues ofleaderto LOBand to predicts the response oflagger.
The prediction result is stored in theLOB along with out-
put data ofleader. The prediction results is reflected on the
currentverification domainbefore currentunit cycle oper-
ation is over; predicted signal value is sent to the current
verification domainas if it was read from the otherverifi-
cation domain. This continues untilleadercannot predict
the response oflagger. Whenleadercannot proceed with-
out synchronization,leadertakesS-pathinstead ofP-path.
In S-path, the contents ofLOB are flushed tolagger (S-2)
andleaderwaits for the reply fromlagger in Get response
state (S-3).

Until then, laggerwaits for leaderto write data inRead
input datastate (C-3). Now thatLOB is flushed,laggercan
get out of the blocking read operation to finish the simula-
tion cycle and to takeL-path at the next simulation cycle.
Laggerchecks a single prediction every time it reachesPre-
diction checkstate (L-1). If the prediction coincides with
the actual response oflagger, lagger reads another leader-
to-lagger data and finishes theunit cycle operation. When
all leader-to-lagger data are consumed, i.e., all the predic-
tions are correct,lagger takesR-path, and reports this to
leader, which has been waiting for this response inS-3.7 In
R-path, the output oflagger is sent tolagger immediately
(R-2) and lagger once again waits for the leader-to-lagger
at Read input data state(R-3). And this is the end of a suc-
cessfultransition.

When a prediction failure is detected inPrediction check
state inL-path, it is reported toleader immediately (L-5).
After reporting the prediction failure,lagger waits for the

5 For simulator, the state is stored after all operations for the currentsim-
ulation timeis over and all the variables are stabilized. This is to save
memory requirements for the state storage. For accelerator, the state
is stored as soon asACWreachesP-5as the signal values of accelera-
tor is stabilized as soon as clock signal toggles [9].

6 If leadercannot predict the response oflaggerat the next simulation
cycle, thetransition is over and there is no optimistic channel usage
and the proposed method works just the same as conventional method
with unnecessary state store overhead spent at the previousunit cycle
operation.

7 Laggercan figure out that the last leader-to-lagger data is reached as
the last leader-to-lagger data does not contain prediction. The lastunit
cycle operationof leadingCWdoes not predict the state oflaggeras
it tries to read it fromlaggeras conventional method does.



Roll Leader Lagger Description
step state state

RA P L,R,C Leader predicts responses of
step path path lagger to remove read trans-

action except for the first
time in P-path.

FU S L Lagger follows upleader
step path path until either they are synch-

ronized or prediction error
is found.

R Lagger reports that all the
predictions were correct.

RB S L States ofleadergets
step path path rolled back to a prev. state
RF F L Leader follows up the prog-
step path path ress oflagger, which is

waiting for leader.

Table 1. Roll steps and CW states.

leader atL-6. Upon receiving this message,leader takes
prediction failure path inS-path. First, leaderstores the last
response oflagger(S-5), which leaderfailed to predict, and
requests state restore (S-6). After the unit cycle operation
of leadingCW is over, the state ofleader is rolled back to
a stateP-pathstored in the past.8 Now leadertakesF-path
for roll-forth operations. The operations ofF-path resem-
ble those ofP-pathexcept thatF-path does not write out-
put signal values toLOB. After iterating takingF-path for
the number of successful predictions, thetransition is over.

Operations of each path and their relations totransition
steps are summarized in Tbl. 1.

6. Experimental Results

The performance of the proposed idea is highly sensi-
tive to the prediction accuracy. Low prediction accuracy de-
grades performance by increasing not only the number of
rollbacks but also the number of state restores and state
stores. But the biggest degradation comes from the in-
creased number of clock cycles to be processed byleader
and channel accesses as shown in Tbl. 2. Table 2 shows the
effect of prediction accuracy to the duration of time spent by
each component operation underALSoperating mode. We
assumed simulator speed of 1,000 kcycles/sec, accelerator
speed of 10 Mcycles/sec,LOB depth of 64 and 1,000 roll-
back variables. Tsim. and Tacc.stand for the average time
spent by simulator and accelerator to model the behavior of
a target SoC model for a single target clock cycle, respec-
tively. Tstoreand Trestorestands for the time spent in stor-

8 The state ofCW is not rolled back.

ing and restoring the state ofleader. Tstorestands for the
time spent in accessing simulator-accelerator channel. Con-
ventional method has a simulation speed of 38.9 kcycles/sec
under the same environment. The proposed method has per-
formance gain of 16.75 when all the predictions are correct.
The performance of ALS drops as the prediction accuracy
drops. When it equals to 10%, the performance of ALS is
about the same as that of conventional method.

Figure 4 shows the performance estimation ofALSun-
der four different configurations with two different simu-
lator speed and twoLOB depths. As the performance of
hardware-based simulation accelerator is independent of
design sizes, we kept accelerator speed to be constant. The
bigger the simulator performance gets, we get the more per-
formance gain from the proposed method.LOB depth de-
cides the maximum number of predictions and tends to ac-
celerate the performance gain of the proposed idea when
the prediction accuracy is high. On the other hand, it de-
grades the performance gain when the prediction accuracy
is low.

The performance ofSLA has similar tendencies: max-
imum performance gain of 3.25 and 15.34 for simula-
tion performance of 100 kcycles/sec and 1,000 kcycles/sec,
each. But it was found thatSLA suffers more from low
prediction accuracies. This is because relatively low op-
erating speed ofsimulation domaincompared to that of
acceleration domainenlarges the effect of the most dom-
inant factor of performance degradation, i.e., time spent
by leader. SLA has the same simulation performance as
the conventional method when the prediction accuracy is
98%[70%] assuming that the simulation performance is
100 kcycles/sec[1,000 kcycles/sec].

Prob. 1.000 0.990 0.960 0.900 0.800 0.600 0.300 0.100

Tsim. 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Tacc. 1.0e-7 1.6e-7 2.9e-7 4.9e-7 8.1e-7 1.5e-6 2.4e-6 3.0e-6

Tstore 4.69-10 7.6e-101.6e-9 3.3e-9 6.2e-9 1.2e-8 2.1e-8 2.7e-8

Trest. 0 2.9e-101.2e-9 2.9e-9 5.7e-9 1.2e-8 2.0e-8 2.6e-8

Tch. 4.3e-7 6.8e-7 1.5e-6 2.9e-6 5.4e-6 1.1e-5 1.8e-5 2.3e-5

Perform. 652k 543k 363k 226k 138k 76.7k 46.1k 36.7k

Ratio 16.75 13.97 9.33 5.80 3.56 1.91 1.19 0.94

Table 2. Performance of ALS.

7. Conclusion

Micro-architectural transaction-level modeling enabled
early stage SoC verification with full cycle accuracy and
fast simulation speed. Usually, transaction-level models are
gradually refined to RTL models. But as the simulation



START


Roll-forth?


Predictable?


Prediction

to check?


is Lagger?


Clk. advance


Update prediction


no


yes


yes


Write

prediction results


no


Update prediction


yes


no


Flush LOB


Get response


Prediction

success?


yes


no


END


END
 Read input signals


END


Update last

response


Call rb_restore


END


yes


Prediction check


Prediction

success?


yes


Read input data


END


no


Invalidate input

buffer


Write output


Read input data


END


Write output
 Report

check?


Flush WR buffer


Write output

with check result


Flush WR buffer


Write output


Read input data


END


Read input data


yes


END


F-path


P-path


S
-

p
a


t
h



L-path
 R-path


C-path


First time

in P-path?


Call rb_store


no


yes

Write output


no


no


Jump to C-path


F-2


F-1


P-3


P-2


P-4


P-1


P-5


P-6


S-1


S-2


S-3


S-4

S-5


S-6
 S-7


L-1


L-2


L-3


L-4


L-5


L-6


R-1


R-2


R-3


C-1


C-2


C-3


Figure 3. Operations of Channel Wrapper. Each path of which is assigned to an alphabetical letter.

0.00E+00


1.00E+05


2.00E+05


3.00E+05


4.00E+05


5.00E+05


6.00E+05


7.00E+05


1
 0.995
 0.99
 0.96
 0.9
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1


Prediction accuracy


Si
m

ul
at

io
n 

pe
rf

or
m

an
ce

 (
cy

cl
es

/s
ec

)


Sim=100k, LOBdepth=64
 Sim=100k, LOBdepth=8
 Sim=1000k, LOBdepth=64
 Sim=1000k, LOBdepth=8


Simulation speed of

conventional method

when simulator runs

at 100 kcycles/sec

(28.8kcycles/sec)


Simulation speed of

conventional method

when simulator runs

at 1,000 kcycles/sec

(38.9kcycles/sec)


Figure 4. Experimental results.

speed of RTL models are too slow, the verification speed
degrades as the proportion of RTL blocks increases. We can
alleviate this problem with simulation accelerator, but now
the throughput of simulator-accelerator channel limits the
simulation performance. This gets worse as transactions on
the channel are composed of series of short transfers, which
suffers from static startup overhead of the channel. To min-
imize the effect of startup overhead and to get maximum
simulation speed, we introduced the concept of ‘prediction
and rollback’ to the synchronization between simulator and
accelerator. With this method, the progress of simulator and
accelerator are not synchronized at every simulaton time,
but they are synchronized only when it is inevitable for cy-
cle accurate behavior. We adopted the concept to a system

bus model to get a profound performance gain when predic-
tion accuracy is high.

References

[1] ARM. AMBA Specification (Rev 2.0), 1999.
[2] ARM. ARM System-Level Modeling, 2002.
[3] ARM. AMBA AHB Cycle Level Inteface (AHB CLI) Specifi-

cation, 2003.
[4] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi,

and C. Turchetti. Transaction-Level Models for AMBA Bus
Architecture Using SystemC 2.0. InProceedings of the De-
sign Automation and Test in Europe Conference and Exhibi-
tion, pages 26–31, 2003.

[5] A. Clouard. Experiences and Challenges of Transaction-
Level Modeling with SystemC 2.0. ST Microelectronics.

[6] R. M. Fujimoto. Parallel discrete event simulation.Commu-
nications of the ACM, 33(10), October 1990.

[7] T. Grotker, S. Liao, G. Martin, and S. Swan.System Design
with SystemCTM. Kluwer Academic Publishers, 2002.

[8] http://www.systemc.org. Functional Specification for
SystemCTM 2.0, Version 2.0-Q, 2002.

[9] J.-G. Lee, W. Yang, Y.-S. Kwon, Y.-I. Kim, and C.-M.
Kyung. Simulation Acceleration of Transaction-Level Mod-
els for SoC with RTL sub-blocks. InProceedings of the Asia
South Pacific Design Automation Conference, Jan. 2005.

[10] W. Muller, W. Rosenstiel, and J. Ruf.SystemCTM: Method-
ology and Applications. Kluwer Academic Publishers, 2003.

[11] S. Pasricha. Transaction level modeling of SoC with Sys-
temC 2.0. InSynopsys Users Group Conference India, 2002.

[12] S. Yoo, J.-E. Lee, J. Jung, K. Rha, Y. Cho, and K. Choi. Fast
Hardware-Software Coverification by Optimistic Execution
of Real Processor. InProceedings of the Design Automation
and Test in Europe Conference and Exhibition, pages 663–
668, 2000.


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




