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Abstract

Efficient evaluation of design choices, in terms of selec-
tion of algorithms to be implemented as hardware or soft-
ware, and finding an optimal hw/sw design mix is an impor-
tant requirement in the design flow of Embedded Systems.
Time-to-market, faster upgradability and flexibility are some
of the driving points to put increasing amounts of function-
ality as software executed on general purpose processing el-
ements. In this scenario, dividing a monolithic task into mul-
tiple interacting tasks, and scheduling them on limited pro-
cessing elements has become very important for a system de-
signer. This paper presents an approach to model time-slice
based task schedulers in the designs where the performance
estimate of hardware and software models is less than time-
slice accurate. The approach aims to increase the simula-
tion efficiency of designs modeled at system level. We used
Metropolis [1] as our codesign environment.

1. Introduction

One of the main objectives of an effective hw/sw design
flow is to provide the system designer with the ability to
model a system at varying levels of abstraction, and with
tools and techniques to analyze and verify his models. Inte-
grated simulation of hardware and software components is
an important step of a codesign flow as it allows a designer
to explore the design space and evaluate the performance of
an algorithm on a particular hw/sw partition choice. Chang-
ing from one partitioning decision and algorithm implemen-
tation to another is less time consuming if the models are still
abstract and less detailed, which is usually the case early on
in the design stages. Hence codesign tools from companies
such as Mentor Graphics, Cadence, Synopsys and CoWare,
and from university groups such as Roses, Metropolis, and
others, support hw/sw cosimulations at various levels of ab-
straction.

Raising the abstraction level makes both design activities,
such as creating and changing components of a design, and

1530-1591/05 $20.00 © 2005 IEEE

Yosinori Watanabe
Cadence Berkeley Laboratories
Berkeley, CA, USA
watanabe@cadence.com

verification activities, such as simulation and formal verifi-
cation, much faster. It is generally considered the only means
to cope with the increased number of gates that Moore’s
law offers to designers whose number and whose productiv-
ity in terms of “design objects per day” are almost constant
over time. Debugging and optimization become much eas-
ier when the number of objects is reduced, as long as “refer-
ential transparency” is preserved, meaning that design deci-
sions have an obvious and controllable impact on the qual-
ity of the final results. Higher abstraction levels also increase
the modularity of design, by reducing the number of imple-
mentation details, and thus further increase productivity by
means of re-use. Designers can focus on functionality and
constraints, rather than on implementation details.

In this paper we focus on a design approach based on
the separation of concerns [2, 3], in which high-level func-
tional models are annotated, by hand or automatically, with
the results of mapping decision to a variety of architectural
components, such as processors, buses, memories, standard
cells, IP blocks, FPGAs, and so on. Annotating performance
directly at the algorithmic level makes design space explo-
ration much faster, even though often such high-level time
and power estimates are only approximate. This can how-
ever help identify algorithmic and communication blocks
which are bottlenecks in a given mapping choice, and hence
drive the designer to better solutions.

The goal of the paper is to show that one need not
annotate performance information at a very fine-grained
level (e.g. for software, instruction level or below), but
only coarser-grained information is really needed to make
choices with a good level of fidelity. We do so by using as an
example the Metropolis modeling and simulation environ-
ment [3], and by focusing on the representation of the func-
tionality and performance of a set of software tasks mapped
to a processor under control of a time-sliced real-time ex-
ecutive. While the results are specific to this application,
the techniques and the conclusions that we can draw from
this exercise are much broader, and can be extended to other
types of software execution environments and hardware ar-
chitectures.



2. Related Work

To cope up with the pressures of time-to-market and de-
sign complexity of hw/sw systems, several attempts have
been made to raise the level of modeling abstraction [1, 4, 5].
However, a design with abstract models introduces sev-
eral limitations on the accuracy of performance estimates.
Scheduling policies tend to have a significant effect on the
performance of a system and hence, capturing scheduler
overheads in system level design is important.

In the past, there have been several efforts expended in
the direction of modeling schedulers, preemptive and other-
wise, for coarse grain models of software tasks [2, 6, 7, 8].
The scheduler model we present, is closest to [8] and it can
be seen as an optimization to it for the case of modeling
time-slice based scheduling policies. While the authors of
[8] describe the scheduler model, they do not detail the ap-
proach to be used for time-slice based scheduling and dy-
namic scheduling in general.

Polis [2] represents each component of a design using a
finite state machine based representation. It can then synthe-
size an RTOS that schedules the models of software tasks on
the hardware model. While it can generate time-slice based
schedulers, it does not provide the designer any control over
modifying the behavior of a particular scheduler, and hence
the designer cannot exploit the efficiency that is on offer by
models of software that can be less than time-slice accurate.
A similar approach is adopted in [7]. Yi et.al. [6] annotate
a software model with a preemptive scheduler overhead by
running the software tasks on an instruction set simulator.
While this increases accuracy and is helpful towards the fi-
nal stages of the design, it is of no help when a designer only
needs a rough estimate on his software models also captur-
ing the scheduler overhead.

The basic advantage that our model aims to capture is
to exploit the level of abstraction, both of hardware and
software models, available in System Level Design frame-
works and use it to improve simulation efficiency. We used
Metropolis because it gave us an explicit control over how
a scheduler is modeled and how it interfaces with the hard-
ware and software components modeled at varying levels of
abstraction.

3. TheMetropolis Framework

Metropolis [1] is a system-level design infrastructure
based on a model with precise semantics that is general
enough to support existing computation models and accom-
modate new ones. It can represent all the key ingredients
in the design flows: function, architecture, mapping, refine-
ment, abstraction and platforms. To allow better reuse of
models, the focus is on separation of independent aspects,
such as:

e Computation and communication.
e Functionality and architecture.
e Behavior and performance.

The system to be developed is hierarchically decomposed
into several objects, with two distinct networks at the top
level. The scheduled network, which contains all blocks re-
lated to function, architecture and mapping, and the schedul-
ing network, which is used to drive the execution of the
scheduled network and assign cost and performance using
special objects called quantity managers.

Function is defined by a network of concurrent processes
that communicate through communication media (similar
to SystemC and SpecC channels). Processes and media are
both described using a sequential language called meta-
model, which is similar to Java™, but has been extended
to support modular specifications using ports and interfaces.
The behavior of the network is a sequence of event vectors,
where each event in a vector represents the execution of a
computation or communication step (e.g. an assignment, or
reading a shared memory location, or writing a FIFO queue)
by a particular process.

The architecture provides computation and communica-
tion services to the function. It is a network of processes
and media as well, and services are specified using the same
metamodel used in the function side. Services are decom-
posed into a sequence of events, and each event can be an-
notated with a value representing its cost and performance,
in terms of a number of physical and abstract quantities.

Mapping is used to associate functions to services pro-
vided by the architecture. It is achieved by synchronizing
events occurring within function processes with events oc-
curring in the architecture. The annotations defined for the
architectural events are thus inherited by those in the func-
tion side, allowing to determine the costs and performance
of the entire system.

Performance annotation and the modeling of scheduling
policies is done using the abstraction of quantity managers.
Figure 1 shows a high level anatomy of a quantity manager.
Its input can be seen as a set of annotation requests from the
software tasks, queued in using the request(...) method, and
its output can be seen as either a single result or a sequence,
indicating the execution order of the tasks, constructed by
the resolve(...) method.

Simulation of a hw/sw design is divided into two phases,
the request phase and the resolve phase. In the request
phase, the software tasks (as well as the hardware-mapped
processes, which are however outside the scope of this pa-
per) instantiated in the scheduled network execute their be-
havioral description till they reach a point where a request
for performance annotation is made. At this point they will
generate an event and queue in their annotation request to the
quantity managers which control the physical quantity that
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Figure 1. Quantity Manager Anatomy

the tasks want to be annotated with. After all the tasks have
made such requests, the second phase, the resolve phase
starts. In this phase a quantity manager will have a set of an-
notation requests from the tasks. Based on its policies, the
quantity manager will annotate the selected requests and no-
tify the owner tasks. The request phase now starts again. The
notified tasks will further execute their behavioral descrip-
tions till they reach the next annotation point. This alterna-
tion between the request and resolve phase is comparable to
the two-stage simulation cycle semantics of VHDL simula-
tors.

Figure 2 shows a design that contains more than one
quantity managers. It models a shared bus architecture. As
seen in this case, one quantity manager might need to know
the decision of other quantity managers before it can final-
ize on its own decision. In our example, as the bus is shared
between Cpul and Cpu2, before a CpuQM schedules a task
it has to know whether it has the bus ownership. In such
cases, the resolve phase might have to be run iteratively for
an implicit communication between the quantity managers.
In the interest of a modular, loosely coupled design spec-
ification, the modeling semantics of quantity managers do
not allow them to communicate with each other explicitly.
An iterative execution of the resolution phase allows all the
guantity managers to reach a mutually agreeable decision.
For instance, when Task A and Task C request cpu func-
tionality which also needs bus access, in the first execution
of the resolution phase each quantity manager, in our case
the bus-time quantity manager and the two cpu-time quan-
tity managers, determine their decision. In the next execu-
tion of the resolution phase each cpu-time quantity manager
can check if the decision of the bus-time quantity manager
conflicts with their own decision. If it does, the cpu-time
guantity manager can be modeled to do a rollback or make a
different choice and the resolution phase can be run again.

The main reason for using Metropolis as our design
framework was the ease and flexibility it gives in design
space exploration and rapid systems prototyping, and its
modeling abstractions being based on formal execution se-
mantics, all key requirements for Embedded Systems de-

[TaskA] [Task B [Task €] [Task D|

Figure 2. Shared Bus Architecture

sign.

4. The Scheduler Model

Our approach to model schedulers is based on the prin-
ciple of exploiting the availability of abstract hardware and
software models in system level design frameworks. It aims
to increase the simulation efficiency by reducing the amount
synchronization required between a scheduled network and
a scheduling network. It should be noted that, though we dis-
cuss our modeling technique in regard to Metropolis frame-
work, it is general enough to be applied to any simulation
environment that is based on two phase execution seman-
tics between functionality and scheduling. To generalize, a
scheduled network can be seen just as a group of compo-
nents capturing functionality in the system and the schedul-
ing network can be seen as a group of components captur-
ing the scheduling aspects of the system. Ptolemy [5], is one
such environment with analogous modeling and execution
semantics in terms of actors and directors.

In the following we will assume that the performance of
application software tasks is modeled at the level of basic
blocks. Several methods have been proposed to estimate the
CPU cycles required for an instruction [9, 10, 11]. Using
these methods, a designer can construct a model for soft-
ware, in which the cycle count of all the instructions in a ba-
sic block is aggregated, and a single request for the time an-
notation of this aggregated amount of cpu cycles is made
to the quantity manager. It should be noted that the aggre-
gated cycle count for a basic block is not yet annotated with
the overhead caused by scheduling effects, it is the quan-
tity manager model that does this annotation.

In this research we focused on modeling a time-slice
based task scheduler, improving simulation efficiency when
the annotation granularity of the processes to be executed is
coarser than the time-slice, as can happen in the case where
the designer wants to annotate software performance at the
basic-block level. The model is applicable to different kind
of shared resources, such as buses and memories with burst-
mode and DMA access, but in the following we will concen-
trate, without loss of generality, only on CPUs.



Our goal is to avoid starting a new resolution phase each
time a time-slice elapses, otherwise we would lose possi-
ble gains in simulation performance that can be achieved by
using coarser annotations at the process level. When the an-
notation granularity is fine, e.g. at the instruction level, our
technique, while still applicable, does not provide signifi-
cant advantages, since the performance bottleneck is created
by the high-detailed models.

Algorithm 1 details the resolution mechanism that we im-
plemented in a Metropolis quantity manager. At the start
of each resolve phase all quantity managers instantiated in
the scheduling network will have a set of requests. These
requests are from the software tasks that wish to use the
resource controlled by a quantity manager. Based on the
scheduling policy modeled, the quantity manager will de-
cide which task should be allowed to use the resource. Step
1 of the algorithm selects the request R from the input set X,
containing the task requests.

Our quantity manager model, instead of choosing a sin-
gle software task as its scheduling decision, will choose a
sequence of tasks. This sequence corresponds to the alter-
nation of execution slices of the various tasks mapped to the
shared resource and it is this sequence that captures the time-
sliced execution of the tasks. The sequence stops, and the re-
solve() method terminates, when the last slice selected com-
pletely fulfills the request of a task. This task is signaled
to proceed, while the other tasks in the sequence stay sus-
pended since they need more slices to finish.

Step 2 models this. It first checks whether the resource
amount requested by the selected software task exceeds the
time_slice defined for the resource. If it does then the re-
quest is updated to reflect that the task was alloted resource
amount = time _slice, and is put back in the request set X. It
then records the selected task in a sequence Y and the con-
trol goes back to step 1. When a task is selected whose re-
quested resource amount <= time_slice, the task is recorded
in the sequence Y and control is transferred to Step 3, which
exits with Y as its scheduling decision.

Ift1, to,..., ty denote n software tasks respectively, and the
value of Y is ty, tp, t1, to, t1 then the scheduling decision can
be seen as, t; got the entire amount of resource it had re-
quested for and that it can proceed, while ty got resource
amounting to two time slices and is waiting to get more re-
source. In reaching this scheduling decision, t; and to were
each preempted twice. The value of Y represents the execu-
tion order of tasks. In this case the order of preemption of
tasks is tq, tp, t1, to.

4.1. Example

Consider the hw/sw model of Figure 3. Here 3 tasks A,
B and C request cpu cycles. Suppose A requests 10 cycles,
B 20 and C 30 cycles and the time-slice for using the cpu

Algorithm 1: Select resource owners

Input: Set X of requests from software tasks

Output: Sequence Y representing the execution order
of software tasks

1. R=remove(X, selection_policy)
where selection_policy = FCFS, priority based, etc.
2. if requested_amount(R) > time_slice
requested_amount(R) =
requested_amount(R) - time slice
insert(X, R)
insert(Y, task_owner(R))
gotol
else
insert(Y, task_owner(R))
goto3
3. return Y

is defined as 10 cycles. Figure 4(a) shows the state of re-
quest queue of cpu time quantity manager after the execu-
tion of phase 1 . The number next to each task name in-
dicates the number of cycles the task is waiting to be allo-
cated. In this case, our model of preemptive scheduler, based

req(10) req(20)

Figure 3. Shared Cpu

on FCFS selection policy, will allocate first 10 and the next
10 cycles to C and B respectively, and then put them back
in the queue since their entire quantity request has not been
filled. Figure 4(b-d) show the state of the queue at the end of
each time slice. At the end of 3 time slices the scheduler has
with it at least one request, that of task A whose entire re-
quest for quantity has been satisfied. The cpu quantity man-
ager will remove the request of task A from the queue and
transfer the execution control to it. Figure 4(d) shows the sta-
tus of the queue after this scheduling decision.

It should be noted here that in theory, control should have
transferred to tasks C and B at the end of 10 and 20 cpu
cycles respectively, but the coarseness of the annotation re-
quested by the designer did not make this a requirement. If
the designer wants control to be transferred to the software
task at the expiry of each time slice, his annotation requests
should be always smaller than the time slice defined for the
resource. This allows him to introduce more details in his
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model at the cost of simulation efficiency. Our quantity man-
ager can handle this case without requiring any changes in
the modeling code.

4.2. Limitations

This approach to modeling time-slice based scheduling,
while reducing the number of calls to the scheduling net-
work, introduces some limitations. The foremost limita-
tion that we can see is that we cannot directly extend this
approach to handle preemptions caused by unpredictable
events, like when the occurrences of non periodic interrupts
are to be modeled. This is because, to exploit the technique,
the quantity manager should be able to make assumptions on
when to assign resources that are requested. This is clearly
impossible when the instant in which the event occurs is
not known in advance. The solution, that was first discussed
in [2], is to modify the Quantity Manager for the CPU so
that it does not allow any requests to be made to the Global
Time Manager (another quantity manager in Metropolis) un-
til it is known that global time has reached that point, and
hence no preemption can occur for the executing task any
longer. In case the task gets preempted before, such pending
requests are postponed in time, by the amount correspond-
ing to the duration of the preempting task (and possibly of
other tasks preempting it).

Also in a system modeling multiple schedulers as in Fig-
ure 2, where there exists dependencies between scheduling
decisions of each scheduler, in order to reach a global stable
state of the system at the end of each time-slice, a scheduler
might need to know the decision of scheduler lower in the hi-
erarchy before it can finalize its own decision. While this in-
creases the accuracy, it does introduce significant amounts of
overhead as we show in the experimental results. For the ex-
ample in Figure 2, a CPU scheduler before deciding on a
result sequence will need to know the scheduling decision
of the bus scheduler at the end of each time slice. This is
because each run of the resolve() method of the time-slice
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Figure 5. CPU and bus scheduler (a) synchro-
nized, (b) not synchronized

scheduler outputs a sequence of task executions, rather than
a single task as its result. Therefore to achieve results accu-
rate at time-slice level the resolution of bus requests from
the very same tasks should follow an equivalent execution
order for the two schedulers to be consistent.

In case the synchronization between schedulers cannot
be achieved, either because the models do not support it, or
because it may imply reduced simulation performance, the
events scheduled in the architecture might be in conflict be-
tween each other. For instance, the trace of the simulation
might show a bus access from a process that has made a re-
quest for CPU cycles while it is not actually running on the
CPU, because the current slice is assigned to another pro-
cess. If one is just interested in aspects not involving the per-
fect synchronization of the events, such as the total bus load
or its switching activity, then the model may still valid and
the results that are obtained are often correct, albeit approx-
imate. For a more refined simulation at a lower level of ab-
straction, on the other hand, the models should allow the
information sharing between schedulers, or the time-slice
scheduler should limit the sequences always to a single slice.

Figure 5 shows an example of what happens when two
schedulers are synchronized, and when they are not. It shows
a Gantt chart of three processes, that have requested a cer-
tain amount of CPU cycles, shown in parenthesis. The ar-
rows in the chart represent bus accesses. In both cases, three
runs of the resolve() method of the time-slice scheduler are
shown. In Figure 5-(a), the bus and the CPU scheduler are
synchronized; thus all bus accesses happen when the corre-
sponding process is actually running on the processor. On
the other hand, in Figure 5-(b), the two schedulers are not
synchronized. Without any other information, the bus sched-
uler will schedule accesses to the bus at its own convenience
(typically earlier than the previous case), so the result is in-
consistent. However, the number of bus accesses is the same
in both cases.

This model trades off these limitations with the efficiency
it can achieve at the simulation level, without compromising
on the accuracy of the functional behavior.



Design Environment || % reduction in simulation time
Metropolis 23
SpecC 27

Table 1.

5. Experimental Results

In this section we compare the results obtained by two
time-slice accurate scheduler models, S1 which optimizes
the simulation performance, using the technique presented
in Section 4, and model S2, that is based on a naive approach
of invoking the scheduler at the end of each time-slice.

The system we model and simulate has 4 software tasks.
Each of them models a behavior shown in Figure 6. It reads
a 1000 data words from memory, does some computation on
it and then writes back a 1000 words to memory.

Process { Cpu{
for (i=0to 1000) { load (n words) { annotate with

read (1000); n*estimate_for_1_word_memory_|oad;}
compute(); store (nwords) { annotate with
n*estimage_for_1_word_memory_store;}

} write (1000);

Figure 6. Process and Cpu Model

On the architecture side, we have a cpu model that has
performance estimates for load and store instructions. Our
RTOS model only contains the scheduler. To simulate this
hardware software combination, we map the read and the
write instructions of the software tasks to the load and store
instructions of the cpu.

In order to illustrate the generality of our approach, we
also model the same system specification in SpecC environ-
ment, where we model the 4 software tasks, the Cpu and the
Scheduler as a network of behaviors communicating by ex-
changing events.

As Table 1 shows, in the Metropolis framework, the
scheduler model S1 outperformed model S2 by reducing
the simulation time by upto 23%, and in the SpecC frame-
work by 27%. The difference in the performance numbers on
the two environments can be attributed to different model-
ing mechanisms and code generation backends. We achieve
performance improvements in simulation time by decreas-
ing the number of scheduler invocations. The results are re-
ported on the particular hardware/software combination we
modeled. Depending on the coarseness or the fineness of the
models the results may vary and one can achieve more or
less improvements.

6. Conclusion

System Level Design facilitates modeling at high-level
of abstraction as well as mixing highly detailed and low de-
tailed models. There is a lot of opportunity to exploit the
presence of abstract models in order to improve the perfor-
mance of design tools. This paper presented an approach to
model time-slice based schedulers in such environments ex-
ploiting this advantage. Our future work aims to address the
limitations of this technique.
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