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Abstract

The objective of this paper is to introduce dependabil-
ity as an optimization criterion in the system-level design
process of embedded systems. Given the pervasiveness of
embedded systems, especially in the area of highly depend-
able and safety-critical systems, it is imperative to directly
consider dependability in the system level design process.
This naturally leads to a multi-objective optimization prob-
lem, as cost and time have to be considered too. This paper
proposes a genetic algorithm to solve this multi-objective
optimization problem and to determine a set of Pareto opti-
mal design alternatives in a single optimization run. Based
on these alternatives, the designer can choose his best solu-
tion, finding the desired tradeoff between cost, schedulabil-
ity, and dependability.

1 Introduction

Computer systems are becoming increasingly pervasive
such that our reliance on their continual provision of cor-
rect services, in spite of external perturbations such as node
crashes, has correspondingly increased. This means that
we, as users, want these systems to bedependable[13].
These computer systems are being deployed in a wide range
of areas, from safety-critical systems such as nuclear power
plants, fly-by-wire systems to consumer-oriented products
such as cars, mobile phones, washing machines etc.

Focusing on consumer-oriented products, cost is a criti-
cal issue. Where for safety-critical systems, dedicated pro-
cessors can be used to execute safety-critical applications,
in consumer-oriented products such as cars, safety-critical
applications, such as the braking system, may well exe-
cute on the same processor as a non-safety-critical appli-
cation, e.g., temperature control, so as to keep the cost
factor tractable. Such a design approach is already tak-
ing place in so-called Integrated Modular Avionics (IMA),
where safety-critical applications are being executed on the

same platform as non-safety-critical applications. Design-
ing dependable systems using such a methodology entails
ensuring that non-safety-critical applications do not inter-
fere with the safety-critical ones. Rushby [15] pointed out
that, for this approach to work, system partitioning along
two dimensions is needed: (i) spatial, and (ii) temporal. In
this work, we focus on temporal partitioning, and we as-
sume spatial partitioning.

The concern of temporal partitioning is to ensure that
activities in one partition do not interfere with the timing
of events in other partitions. In this paper, since tasks of
different ’criticalities’ may execute on a given processor,
we assume that each partition has to contain one task. As
suggested by Rushby in [15], static scheduling can be used
at the level of partitions, while dynamic scheduling can be
used within partitions. Since a partition consists of a single
task, in this paper, static scheduling is used for temporal
partitioning.

Designing for dependability in the latter stages of the de-
sign phase may lead to acomplete redesignof the system in
the worst case, or can be verycostly (as we will show in
Sec. 5). This means that dependability aspects must be con-
sidered during the earlier part of the design process. Hence,
there are certain dependability-driven factors that need to be
taken into consideration earlier on. One of these factors is
replication. Replication of the more critical tasks is needed
to ensure that, in case of a failure of a node upon which a
critical task resides, there is at least one other replica of that
task still executing to take over.

Replication of the more critical tasks makes the system
more dependable, however this may come at the expense
of cost (e.g., more resources may be needed to accomo-
date the extra tasks), and schedulability. This leads to a
multi-objective optimization problem (between cost, time
and dependability). To address this, we propose a genetic
algorithm to solve the multi-objective optimization prob-
lem, whereas a set of Pareto optimal design alternatives is
generated in a single optimization run. The system designer
can then choose the solution that best suits the system’s re-
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quirements.
The remainder of the paper is organized as follows.

Sec. 2 discusses the related work. In Sec. 3, our system
model is presented and the approach to increase the depend-
ability of embedded systems is introduced. Sec. 4 discusses
the proposed genetic design space exploration. Sec. 5 pro-
vides some experimental results and some insights. We con-
clude in Sec. 6.

2 Related Work

For reasons of space, we will focus in the sequel on work
related to the provision of dependabilty in embedded sys-
tems.

It has been shown that making a given system depend-
able requires that the given system has sufficient redun-
dancy [7]. There are two dimensions to be considered,
namely: (i) redundancy in space, and (ii) redundancy in
time. For example, to support a single node failure, there
should be at least two nodes to support continuous service
provision (space), or in order to mask a value failure, a re-
execution might be needed (time). In this work, we consider
the dependability aspect during the design phase and incor-
porate the necessary redundancy (spatial and temporal) so
as to make the system dependable.

[16] developed a fault containment-based approach,
whereby applications are first decomposed into their con-
stituents tasks and procedures, which are subsequently
transformed to create fault-containment blocks. These
blocks are later re-integrated to form dependable applica-
tions, which are then allocated to nodes, and scheduled.
This approach works when the source code is available, but
it is not readily usable at the system design level. A similar
approach has been adopted by [3]. Up to now, very little
work has addressed the problem of integrating dependabil-
ity as an optimization criterion. [9] developed an approach
in which processes/tasks are replicated until the overall de-
pendability utility of the system is maximized. However,
this comes at the expense of cost, which is an important
constraint in embedded system design. Also, they fail to
model factors such as importance.

System-level synthesis approaches based on task graphs
can be found in [6] and [14]. A comparison of simulating
annealing, genetic algorithm and tabu search for the func-
tional HW/SW partitioning using a single optimization cri-
terion is presented in [1]. [4] and [11] address genetic al-
gorithms for multi-objective system-level synthesis. But all
these approaches do not consider dependability at all. This
is done by [10], who introduces fault tolerance as a parame-
ter for the design of reconfigurable hardware. Overall, there
is a dearth of work that addresses dependability as an opti-
mization criterion in embedded systems design.

A good survey and a detailed description of specification

models for embedded systems can be found in [2]. Next
to state-oriented models and to abstract models like UML,
task graphs are a widely spread means for the specification
of data-flow dominated embedded systems. Beside the data-
flow, most embedded systems contain at least a few control-
flow decisions. Therefore, a lot of research was done ex-
tending task graphs by control- flow information [5, 12].

3 Models

System Model: We assume the following model in this
paper. A systemS consists of a set ofn applications,
A1 . . . An, and can be represented by a directed graph. Each
node in the graph represents an application. An edge from
nodeAj to nodeAk represents data flowing from applica-
tion Aj to Ak. Each applicationAi consists of a set ofki

tasks,t1i . . . tki
i . It can be represented by a task graph, where

each node in the graph represents a task, and the edges be-
tween the nodes represent data dependencies between these
tasks. By unwrapping each application node with their re-
spective task graph, the system can be represented as a task
graph, where nodes denote tasks and edges represent data
between tasks. Thus,S consists ofm tasks,T1 . . . Tm, re-
spectively.

We denote byR the set of available resources. A cost
factor vi is associated with every resourceri ∈ R. Every
time an additional resourcerj ∈ R is used, the overall sys-
tem cost increases byvj . Each taskti can be represented as
a tuple(Ri, Ei, Ci), where

• Ri ⊆ R is the set of resources taskTi can use.

• Ei ⊆ Ri × Z is the execution time of taskTi when
using a resource inRi (modeling heterogeneity).

• Ci represents the importance of the task. Importance
is necessary when dependability is taken into account.
The higher the importance of a task, the more critical
it is for providing correct services.

There are two possible ways to model replication. First,
we can associate areplication factorwith every application
of the system. The higher the replication factor, the more
critical the application is for the system. Suppose a system
designer decides to assign a replication factor of2 to a given
application. We can then duplicate every task of that appli-
cation. Second, since a system can be represented as a task
graph, we can directly associate a replication factor with
every task. In this work, we adopt the second approach.
Since every task in an application is possibly not critical, it
is not necessary to replicate all the tasks of that application.
Hence, the ability to selectively replicate tasks is crucial.

When replicating a given task, then the initial task graph
(hence called task graph) needs to be extended into arepli-
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cation task graph. The replication task graph is constructed
from the task graph as follows (Fig. 1):

• For every edge(n1, n2) pointing to a noden2 in the
task graph, there is a an edge(n1, n2) pointing to every
replicated noden2 in the replication task graph.

• For every edge(n1, n2) starting at noden1 in the task
graph, there is an edge(n1, n2) starting at every repli-
cated noden1 in the replication task graph.

T1

T2 T3

T4

T5

T6

T1

T2 T3

T4

T5

T6

T1T1

T2 T3 T3 T3

T5 T5T5

Figure 1. Initial and Replication Task Graph

When replication is introduced in the system-level de-
sign process, then another constraint regarding the binding
has to be taken into account. If a task is duplicated in order
to increase the dependability of the system, then it makes
no sense to bind the replicated task to the same resource as
the original task. If a failure occurs, then the replicas should
not be affected by this failure. So, each replication task of
Ti has to be bound to a resourcer ∈ Ri in such a way that
no other replica ofTi is bound to the same resource.

Based on failure probability, importance, and replication,
the dependability is calculated as follows:

Dependability =
T∑

i=1

Ci ∗ (1− pi
fi) (1)

whereas:
T: number of tasks;fi: replication factor of taskti;
Ci: importance ofti; pi: failure probability ofti.

We assume that the replication factor, and importance of
a task to be provided by the system designer. We further
assume that the failure probability of a task is equal to the
failure probability of the node it is running on, and the prob-
ability of failure of the node can be obtained from field data.

Fault Model: Since we are concerned with enhancing
dependability via replication, the underlying fault model is
resource crashes.

4 System-Level Synthesis

The purpose of system-level design or design space ex-
ploration is to determine a set of suited implementation

alternatives. This process can be detailed as the selec-
tion of the necessary resources (allocation) and the map-
ping of the functional units onto the selected architecture
in space (binding) and time (scheduling). Naturally, this is
a multi-objective optimization problem, since const, time,
and especially dependabilty are taken into account. There-
fore, no universal definition of an optimum can be given.
One solution for an appropriate definition of optimality in
multi-objective optimization was given by Vilfredo Pareto
in 1896. This definition expresses basically that a solution
is Pareto-optimalif there exists no feasible other solution,
which would decrease some objective without causing a si-
multaneous increase in at least one other objective.

Figure 2 illustrates a solution spaceS for two optimiza-
tion objectivesf1 andf2, respectively. The solution space
is restricted by the design constrains (dashed line) and by
the Pareto-front (solid line), which consists of all Pareto-
optimal solutions. Among the Pareto-optimal solutions S1
to S3, S1 is the best one according tof1 and S3 according
to f2, respectively. S2 dominates S1 with respect tof2 and
S3 regarding tof1.
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Figure 2. Illustration of Pareto-Front

4.1 Genetic Design Space Exploration

Genetic algorithms are choosen to solve this complex
multi-objective optimization problem, since a complete
search is in general not feasible due to the size of the so-
lution space. This optimization heuristic [8] is inspired by
Darwin’s theory of evolution and is very well-suited for
problems with large, non-convex search spaces and multi-
objective optimization goals.

Basically, a set of possible solutions (thepopulation) is
modified bycrossover, mutation, andselectionoperations.
Thereby, the selection is controlled by afitness function,
which measures the quality of each individual (one possible
solution) in the population. The general flow is illustrated in
Algorithm 1. First, the population is initialized by assign-
ing randomly some values to each individual. This popula-
tion is evaluated by a Pareto ranking, and then a subset of
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the population is mutated according to a given probability.
Subsequently, new individuals are generated by crossover
operations, which replace randomly individuals in the cur-
rent population.

Algorithm 1 Genetic Design Space Exploration
1: for (j=0;j<PopulationSize;j++)do
2: newInd.Init
3: P = P ∪ newInd
4: end for
5: while STOP=falsedo
6: PerformParetoRanking(P)
7: for all ind∈ P ′ ⊂ P do
8: ind.Mutate()
9: end for

10: for all i1, i2 ∈ P ′ ⊂ P do
11: newInd.Crossover(i1, i2)
12: newGen=newGen∪ newInd
13: end for
14: P ∪ newGen \ worstIndividuals
15: end while
16: Print Pareto SolutionsP

4.1.1 Representation

Each individual represents one possible solution for the op-
timization problem of embedded system design. Therefor,
a coding has to be found, which is suited to represent all
design alternatives of the envisaged solution space. First
of all, an individual must hold information about a com-
plete implementation of an embedded system (i.e., alloca-
tion, binding, and scheduling). Allocation is being repre-
sented by a set of resources on top of which the system can
be implemented. The binding assigns a resource instance
to each task considering both the current allocation and the
possible binding alternatives of the task. The schedule is
represented by unique priorities, which are utilized in the
evaluation phase to determine the start and end times for all
tasks. In addition, information about replication factors of
each task is assigned to each individual.

Figure 3 depicts the representation of the replication fac-
tors for the example of Figure 1. It can be easily seen, that
the list contains a replication factor for each task.

4.1.2 Genetic Operators

The genetic operators for initialization, mutation, and
crossover are divided into parts for allocation, binding,
scheduling, and replication factors too. The operators for
allocation, binding, and scheduling are working on the ex-
tended task graph including the replicas according to the
replication factors.
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T1:

T2:

T3:

T4:

T5:

T6:

3 Replicas for Task 1

2 Replicas for Task 2

4 Replicas for Task 3

1 Replicas for Task 4

4 Replicas for Task 5

1 Replicas for Task 6

Figure 3. Genetic Representation of Replica-
tion Factors

The population is initialized by randomly generating
some individuals, whereas only feasible solutions are gen-
erated. For the initialization of the allocation a subset of
all avaliable resources is chosen. The binding assigns ran-
domly a resource instance to each task considering the cur-
rent allocation. The schedule is initialized by simply giving
each task an unique priority and the replication factors re-
cive a value between 1 and a maximal replication count.

The mutation and the crossover operators for the repli-
cation factors are illustrated in Figure 4. Mutation chooses
randomly a position and changes the replication factor for
this task. For the crossover the lists of replication factors
are splitted into to sets: In the first set, the factors according
to the first parent are taken. The second set is generated ac-
cordingly from the data of the second parent. For the second
child the roles of the parents are swapped.

3   2   4   1   4   1 3   2   4   2   4   1

3   2   2   2   3   1 1   2   2   2   2   3

Child2Parent2

2   1   5   2   2   3 2   1   5   2   3   1

Child1Parent1

Mutation:

Crossover:

Figure 4. Genetic Operators

The allocation is mutated by removing or adding ran-
domly some resources. As a result, the allocated set may be
too small, so that tasks exist, for whom no resource is avali-
able. In contrast to “punishing” such individuals, the allo-
cation is repaired by adding randomly missing resources.
The binding is mutated by assigning a different resource
from the allocation to some tasks, if possible. For mutat-
ing the schedule, the priorities of two tasks are randomly
exchanged.

The crossover of the allocation is done by choosing ran-
domly resources from one parent and by completing this set
by resources from the other parent. For the crossover of the
binding the sets are divided into two parts: In the first set,
it is tried to bind each task according to the binding of the
first parent. If this is not possible, then the second parent
is taken. In the second part the same is done with swapped
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roles of the parents. Crossover of schedules is done by di-
viding the tasks into three parts. Hence filling the middle
with the priorities of one parent, and the first and last part
with the priorities of the other parent, if they were not used
yet. The rest of the data structure is filled with the remaining
priorities.

4.1.3 Evaluation

In the evaluation phase the costs, the dependability and both
the start and end times of all tasks are calculated. The cost
of a single solution is determined by summing up the costs
of all used resources. The dependability is calculated ac-
cording to eq. (1) considering importance, failure probabil-
ity, and replication factors of the tasks. A scheduling based
on the determined binding and on the calculated priorities
results in exact execution times for each task. So, the over-
all execution time and possible deadline misses of a single
task can be derived. The scheduling is done by globally
ordering the tasks on each resource according to the data
dependencies and the priorities. This circumvents the dis-
advantage of list scheduling algorithms. These algorithms
unveil the problem oftiming anomalies. Such a anomaly
occurs in the case that the overall performance of a system
increases, if a task is not started immediately after this tasks
becomes ready and the resource is available.

The evaluation is based on a Pareto ranking, which sorts
all solutions according to the amount of individuals which
are not dominated by this solution. The resulting scores
of each solutions are depicted as attributes in Fig. 2. E.G.,
S5 is not dominated byS3, but by all other solutions. At
the end of the design space exploration the complete set of
Pareto-optimal solutions is passed to the designer, the so-
called human decider, who can now selecthis bestdesign
solution.

5 Results

This section demonstrates the figures of merit of the pro-
posed approach, by means of a small but expressive exam-
ple. Here, we take|R| = 1. The advantages of directly
considering dependability in the system level design pro-
cess are illustrated by means of the example of Figure 5.
The results of a classical design approach are directly com-
pared in the following to our comprehensive system-level
synthesis approach.

Figure 6 depicts an implementation variant generated
by a classical design space exploration without considering
dependability at all. This implementation exploits the re-
sourcesR1 andR2 resulting in overall costs of 270. Faster,
but more expensive solutions exist when exploitingR2 and
R3.
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Figure 5. Example Task Graph

T6 T8 T7T3 T2

T4 T5

500 10000 time

R1

R2

T1

Figure 6. Implementation resulting from Clas-
sical System Synthesis

Late replication v/s our approach: Dependability is-
sues are being addressed by many designers of new systems.
Conceptually, dependability is treated as an “add-on”, e.g.,
it is accomplished by doubling the complete implementa-
tion. The resulting system has a dependability value of6
according to eq. (1), but the cost is doubled too. This sit-
uation occurs when dependability is considered late in the
system design phase.

T4T2

T2_R

T4_R

T3_R

T3

500 10000 time

T7R1

T1

T1_R

T8T6

T6_R T8_R

T5

T5_R

T7_R

1500

R3

R2

Figure 7. Dependable Implementation

On the other hand, Figure 7 shows an implementation
that is derived from applying our proposed approach, as-
suming all tasks to have the same importance value (hence,
same replication factor). A dependability value of6 is
achieved too, but by exploiting only three resources (rather
than4). This results in system cost of470 instead of540 for
the naive, i.e., doubled version. All Pareto optimal solutions
generated by the proposed genetic algorithm are presented
in Table 1. As it can easily be seen, the solution space spans
from of expensive and highly dependable systems to cheap
and fast implementations without any dependability. The
implementation presented in Figure 6 is not part of this list,
since a dependability value of4.25 can be reached with-
out increasing the costs or the overall execution time of the
system (alternative 9).This result shows that it pays off to
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consider dependability issues early in the design phase, as
opposed toa-posterioriadd-ons.

Alt. Execution Time Cost Dependability
1 1550 270 4.5
2 1025 670 5.5
3 1000 390 4.50
4 1150 590 5.50
5 1150 390 5
6 1350 440 5.75
7 1300 540 6.0
8 1550 470 6.0
9 1300 270 4.25
10 1550 320 5.25

Table 1. Implementation Alternatives

Different replication factor: A design space explo-
ration was performed by applying a maximal replication
factor of 4. The importance parameterCi of tasksT4 and
T5 is set to2, as these tasks are considered as the most crit-
ical once. and therefore should have a higher replication
factor. The replication factor for each task are given in Ta-
ble 2. The resulting implementation exploits four resources,
i.e., twoR1, oneR2 andR3. The overall cost sums up to
570, the dependability value results in6.375, and the over-
all execution time is 1300. Compared to previous cases (for
the same resource cost)we only pay an extra13% time for a
gain of more than16%. This result shows again that early
consideration of dependability is important, as well as an
individual assignment of replication factors to tasks, rather
than to applications (finer grained). This holds especially
for safety-critical systems, where resources are abundant.
Obviously replicating non-critical tasks does not necessar-
ily lead to a significant increase in dependability.

Task 1 2 3 4 5 6 7 8
Replication Factor 2 1 2 3 4 2 3 3

Table 2. Replication Factors

6 Conclusion

This paper presents a novel system-level design method
for embedded systems which considers dependability as an
optimization criterion. Replication is introduced at task
level to increase the dependability of the system. Further,
instead of determining a single solution only, a set of Pareto
optimal design alternatives is calculated by the proposed ge-
netic algorithm in a single optimization run to help the sys-
tem designer in finding the required tradeoff between run-
time, costs, and dependability. As demonstrated by the de-

tailed example, taking dependability directly into account
leads to superior implementations. Currently, we allow
tasks of different applications to be potentially distributed
across different processors. In other cases, this may not be
feasible, since it does not provide fault containment. So,
a subject of future work will be system design under more
complex failure models.
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