
Design space exploration for dynamically reconfigurable architectures

Benoı̂t Miramond and Jean-Marc Delosme
LaMI, Université d’Evry Val d’Essonne - UMR 8042 CNRS

{miramond, delosme}@lami.univ-evry.fr

Abstract

By incorporating reconfigurable hardware in em-
bedded system architectures it has become easier to
satisfy the performance constraints of demanding appli-
cations while lowering system cost. In order to evalu-
ate the performance of a candidate architecture, the nodes
(tasks) of the data flow graphs that describe an appli-
cation must be assigned to the computing resources of
the architecture: programmable processors and reconfig-
urable FPGAs, whose run-time reconfiguration capabilities
must be exploited. In this paper we present a novel de-
sign exploration tool—based on a local search algorithm
with global convergence properties—which simultane-
ously explores choices for computing resources, assign-
ments of nodes to these resources, task schedules on the
programmable processors and context definitions for the re-
configurable circuits. The tool finds a solution that min-
imizes system cost while meeting the performance con-
straints; more precisely it lets the designer select the quality
of the optimization (hence its computing time) and finds ac-
cordingly a solution with close-to-minimal cost.

1. Introduction

Because of the quickly rising design cost of embed-
ded systems and the difficulty to fulfill tighter and tighter
time-to-market objectives, reuse between system gen-
erations must be intensified and systems must become
increasingly flexible. Thus upcoming systems should ex-
hibit heightened degrees of flexibility [7].
When performance constraints are stringent, programmable
logic is of particular interest since it offers an alterna-
tive to standard application specific ICs of equivalent effi-
ciency while being suited to more contexts.
Dynamically reconfigurable logic circuits (DRLCs), such
as the Virtex family of products from Xilinx, when com-
bined in a SoC with IP cores such as an ARM9x processor
[1] or an AVR-type micro-controller [2], provide solu-
tions that are both flexible and efficient. For reconfigurable
systems, rapid system prototyping amounts essentially to

programming a heterogeneous system consisting of proces-
sor(s) and dynamically reconfigurable logic. In comparison
with a custom SoC, a reconfigurable SoC may be more ex-
pensive but permit a shorter time-to-market and hence po-
tentially more units to be sold.
To perform periodic computations in a system with a
DRLC, the specification of the application must be parti-
tioned into run-time contexts. In order to meet the perfor-
mance constraints in a multiprocessor system, both a sched-
ule of the tasks assigned to the processors and a schedule
of the run-time contexts must be determined. Fast de-
velopment of embedded applications on reconfigurable
architectures thus requires system level tools that ex-
ploit to the full the dynamic reconfiguration capabilities of
the system resources and takes proper account of the recon-
figuration times of the DRLCs.
This paper presents a technique for automatically map-
ping an application described by a precedence graph
onto a heterogeneous architecture with at least one pro-
grammable processor and at least one reconfigurable cir-
cuit (RC). Section 2 summarizes the state of the art. The
scheduling and partitioning problem is formulated in sec-
tion 3, where the models of architecture and application are
given. Our partitioning algorithm and its application to re-
configurable architectures are detailed in section 4. Ex-
perimental results are given in section 5, followed by our
conclusions.

2. Related Work

To ensure that the performance constraints will be met in
an embedded system with DRLCs, the computations within
the application must be statically partitioned into those to be
executed on the DRLCs and those to be executed on the pro-
cessors (HW/SW spatial partitioning), the hardware tasks
must be partitioned into run-time hardware contexts (tempo-
ral partitioning), and the software tasks, the run-time hard-
ware contexts and the communications must be scheduled
(static software scheduling). Therefore, finding a solution
in order to run an application on a given reconfigurable ar-
chitecture amounts to determining a solution to each one of
the following three—coupled—subproblems: HW/SW spa-

1530-1591/05 $20.00 © 2005 IEEE

tial partitioning, SW scheduling, temporal partitioning.
Since we are interested in finding the solution with min-
imum cost that satisfies the performance constraints, we
have developed a local search method—an adaptive version
of simulated annealing—that explores the space of the so-
lutions to these three subproblems and converges to a solu-
tion close to the global optimum.
Partitioning and scheduling techniques targeting reconfig-
urable architectures have been recently presented, often
with differing objectives. Rakhmatov et al. [13] start from
a control flow formulation of the application and present
a solution of the spatial partitioning problem based on a
maximum flow formulation. Kaul et al. [8] introduce an
ILP-based method of resolution of the temporal partition-
ing problem. Maestre et al. have proposed in [10] a search
technique for the order of execution of the contexts of a
DRLC. The algorithm is greedy and finds a temporal parti-
tioning and a scheduling of the contexts for a partially re-
configurable circuit.
In contrast with the above three papers, Chatha et al. deal in
[5] with the hardware/software partitioning problem. They
propose a partitioning method by migrating tasks between
hardware and software and then applying a modified list
scheduling algorithm. This approach accounts for all of the
characteristics of the problem but considers neither the pos-
sibility of a partial reconfiguration of the FPGA nor the
overlap of processor computation (software tasks) and hard-
ware reconfiguration.
Studies such as the one of Noguera et al. [12] consider the
partitioning and the dynamic scheduling on an architecture
comprising a CPU and an RC connected via a bus. The RC
is composed of an array of programmable logic blocks on
which the tasks waiting to be executed are dynamically as-
signed. Concretely, these studies do not take into account
task performance estimates nor total system execution time
during the partitioning step, and then determine a dynamic
scheduling that decides at run time the order of execution
of the ready tasks. Consequently the tasks with the high-
est computational complexity are assigned to hardware with
no regard to the global effect on the system. The complex-
ity is thus relegated to the dynamic scheduler (a centralized
control scheme requiring dedicated hardware), and the ex-
ploration of the space of solutions of the three coupled sub-
problems described earlier is not performed.
Finally, Ben Chehida and Auguin present in [6] an ap-
proach dealing with all three sub-problems. Spatial parti-
tioning is explored with a genetic algorithm. For each such
solution, temporal partitioning is effected by means of a
clustering technique and is followed by global scheduling.
The two algorithms employed after spatial partitioning are
deterministic and generate a single temporal partitioning
and a single schedule for each spatial partitioning solution.
Our contribution, discussed in the next section, is to con-

currently explore all three sub-problems and hence exam-
ine different solutions for a spatial partitioning of the tasks
between hardware and software.

3. Problem formulation

We present in this section our formulation of the problem
of mapping an application on a reconfigurable architecture
following our partitioning methodology. First we present
the model used to represent the application, then the type of
architecture targeted and, finally, the definition of a problem
solution in terms of the three subproblems, HW/SW spa-
tial partitioning, temporal partitioning and HW/SW static
scheduling.

3.1. Application model

The application is described by a precedence graph
(hence acyclic) G =< V, E >. The graph nodes vi ∈ V

correspond to coarse grains. Each node is character-
ized by an index i ∈ [1, N], where N = |V |, a function-
ality F (vi) (FFT, DCT, FIR filter, etc.), the number C(vi)
of combinational logic blocks (CLBs) for the hardware im-
plementation, and an estimate of the execution time on
the processor, tswi , and on the RC, thwi . An edge eij , be-
tween nodes vi and vj , is characterized by the amount
of data transferred, qij , and by a transfer time depen-
dent on the communication link, tij . An example of repre-
sentation of an application is given in Fig. 1(a).

3.2. Reconfigurable architecture

Our method is not restricted to a particular target archi-
tecture since it can explore the types and numbers of pro-
grammable and dedicated computing resources in the sys-
tem in order to minimize the global system cost while sat-
isfying performance constraints [11]. However, as far as
this article is concerned, we restrict the application of
our method to a generic architecture composed of a pro-
grammable processor and a dynamically reconfigurable
unit, as expounded in [6]. Thus, the criterion to be opti-
mized becomes here the execution time.
The proposed approach applies to a partially reconfig-
urable architecture insofar as the FPGA reconfiguration
time depends on the number of CLBs needed to per-
form the desired computations. If an RC does not permit
multi-context execution, i.e. initiation of several con-
texts in parallel, reconfiguration cannot be overlapped with
computations on the FPGA. An objective is to decom-
pose the computations effected on the RC into different
contexts, and determine their sequential execution or-
der. Moreover, each context can carry out one or more
computational tasks, according to the numbers of CLBs re-
quired for the tasks. Finally, processor and RC com-
municate via a shared memory connected to each one
by a bus [6]. The transfer time tij of data between a

task vi executed on the processor and a task vj exe-
cuted on the circuit is estimated in terms of the size qij

of the data and the bus transfer rate D. Performance esti-
mates are made at compile-time, in particular communica-
tion latencies are statically evaluated as ordered transac-
tions.

3.3. Formulation

The problem to be solved is to find a spatio-temporal
mapping of an application, described by a task graph, onto
the architecture described in section 3.2. We do this by ex-
ploring the space of feasible solutions, where a solution is
defined by

• an assignment of the tasks on the processor (software)
and the reconfigurable circuit (hardware),

• an assignment of the hardware tasks to time segments
(logical contexts to be executed),

• an execution schedule for the software tasks and the
hardware contexts, and

• an ordering of the transactions on the shared communi-
cation medium, i.e. a total order imposed on the trans-
actions consistent with the task execution ordering.

Our method conforms to an object-oriented paradigm; the
object concept is exploited at every level to achieve a high
degree of flexibility and facilitate tool evolution. Class Pro-
cessing Element belongs to the Resource class of the sys-
tem, which is abstract and polymorphic. When several tasks
are assigned to the same resource, their execution order
on that resource depends on the resource type (proces-
sor, ASIC, reconfigurable IC). Indeed, at the (coarse) gran-
ularity level considered here, software task execution is
sequential—the processor exhibiting actual parallelism only
at a finer level. At the other extreme, the computations for
several tasks could be performed with maximal parallelism
on an ASIC dedicated to these computations. A dynami-
cally reconfigurable circuit provides an intermediate solu-
tion since it can execute contexts both sequentially and con-
currently; this corresponds to implementing a partial order
for task execution. Therefore, a solution consists of

• a total order on the system processor,
• a globally total, locally partial (GTLP) order on the

DRLC (see Fig. 1(b)) , and,
• if there were an ASIC in the system, a partial order on

that circuit.

To define a total order for a processor-type resource, se-
quentialization edges (hence with zero computation-time)
that enforce that order are inserted between the tasks as-
signed to the resource. The order is imposed by the search
algorithm at each iteration, see section 4. The set of sequen-
tialization edges for the processor-assigned tasks is denoted
by Esw. To impose the order A → C → B on the proces-
sor in Fig. 1(b), the edge (C,B) is added. Sequentialization

Total Order Locally Partial Order
Globally Total

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

DRC

Proc

Com

A

G

F

H

0 3010 20

C

D

I JE

B

Element Class
Processing
abstract public abstract void schedule(Vs, Vd)

Class ASIC/Context
Class

Reconfigurable
Circuit Class

Processor

Execution
Context 1

Execution
Context 2

CE BD

4

3

1

3

4

5 6

5

6

5

Reconfiguration(c)

(b)(a)

C

A

B

E

J

I

D

F

G

H

E

C D

A B

F G

H

I

J

Figure 1. (a) Task graph example, (b) a spatio-
temporal partitioning, and (c) its schedule.

edges are represented by black dashed arrows.
Within each context of a DRLC no edge needs to be added
(Fig. 1(b)). On the other hand, to take into account the time
of reconfiguration between contexts, the implementation of
the abstract method PE.Schedule adds context sequential-
ization edges between the terminal nodes of a context and
the initial nodes of the context that comes next. The set of all
the context sequentialization edges is denoted by Ehw. The
context sequentialization edges are represented by white
dashed arrows; their weight depends linearly on the number
of CLBs that must be reconfigured in the following context
(partial reconfiguration case). Hence an object of Reconfig-
urable type contains

• the ordered list of its k contexts Lc = [C1, C2, ...Ck],
• the reconfiguration time per CLB, tR,
• the total number of CLBs in the circuit NCLB .

Considering a context as a resource in itself, an object of
Context type is a Resource that contains in addition :

• the list I of initial nodes of the context, whose imme-
diate predecessors are all outside the context;

• the list T of terminal nodes of the context, whose im-
mediate successors are all outside the context;

• the number of CLBs used in the context.

The weight of a context sequentialization edge e ∈ Ehw is
therefore equal to te = tR×nCLB , where nCLB is the num-
ber of CLBs used by the context of the edge’s head.

4. Design-space exploration
Using the characterization of solutions of section 3, we

describe in this section the exploration of the space of solu-
tions. This exploration starts from a random initial solution

and then uses a version of the local search method based
on the simulated annealing meta-heuristics to reach a solu-
tion close to the global minimum of the cost function. This
method being iterative, it can be interrupted by the user at
any time and will then return the current solution. The tran-
sition from one solution to the next is the result of the selec-
tion and application of the so-called “moves”.

4.1. Local search algorithm

To perform a search that reaches a solution at most a few
percent away from the global optimum, we have pursued
the work carried out by Lam, who presented in [9] both an
adaptive cooling schedule and a scheme for move selection
that speed up significantly the convergence of simulated an-
nealing. Adaptive SA employs a cooling schedule whose
general form is independent of the optimization problem at
hand. The problem’s cost function is viewed as the energy
of a dynamical system whose states are the problem’s so-
lutions. The schedule is obtained by maximizing the rate at
which the temperature can be decreased subject to the con-
straint that the system be maintained in quasi-equilibrium.
The adaptive nature of the schedule comes from the fact that
it is expressed in terms of statistical quantities (mean, vari-
ance, correlation) of the system’s cost function. Move gen-
eration affects the correlation between consecutive cost val-
ues and the adaptive schedule specifies how to control move
generation to maximize cooling speed while satisfying the
quasi-equilibrium condition. This version of simulated an-
nealing has been used in VLSI circuit place and route tools
[15]. We have recently improved on the estimation proce-
dure and refined the move selection process [11]. These
modifications have been validated on several types of prob-
lems, including graph partitioning and continuous function
minimization.

4.2. Move definition

For our problem, a move consists in moving a node from
one resource to another. Each move is defined by randomly
selecting both the task vs to move (source object) and a des-
tination task vd (destination object). A simple rule consists
in randomly selecting an integer between 0 and N , the num-
ber of nodes in the graph, to determine the index of vs and
an integer between 0 and N , to determine the index of vd,
and effect accordingly one of four types of moves :
• (m1) If R(vs) = R(vd) and the resource R is a pro-

cessor, the move is a modification of the (total) exe-
cution order on the resource coherent with the prece-
dence relationships imposed by the task graph. For in-
stance, if vs = B and vd = A in Fig. 1(b) , the to-
tal order is modified from A,C,B to B,A,C. If R is
an ASIC or an RC context no move is performed.

• (m2) If R(vs) 6= R(vd), the move consists in switch-
ing the assignment of the source task to the same re-

source as the destination task. For instance, recalling
that the contexts of a DRLC are considered as re-
sources, if vs = C and vd = D in Fig. 1(b), the task C

will be executed on the DRLC and, moreover, in exe-
cution context 1.

• (m3) If 0 is selected for the source and if there is a task
that is alone on one resource, then that resource is re-
moved from the system and the task is assigned to the
same resource as the destination task.

• (m4) If 0 is selected for the destination, there is no des-
tination node. This is interpreted as a request for re-
source creation (processor, ASIC, DRLC) with assign-
ment of the source task to that resource.

Moves m1 and m2 allow the simultaneous exploration of
spatial partitioning (m2), temporal partitioning and context
sequential ordering (m2 with R(vs) and R(vd) of context
type), and the sequential ordering of software tasks (m1).
Moves m3 and m4 would allow the exploration of the sys-
tem architecture if it were not fixed a priori; however, in
this paper, the architecture comprises one processor and one
DRLC, hence the probability of generating a 0 is set to 0.

4.3. Move realization

Once a move has been selected, a search graph G ′ =
< V,E ∪ Esp ∪ Esr > is deduced from the task graph
by adding, temporarily, sequentialization edges. These
edges are added, according to its type, by the resource on
which the task is to be executed (see section 3.3). Con-
sider the move corresponding to vs = G and vd = J , which
concerns the DRLC. In a context-type resource, only a par-
tial order is imposed, and here vs only has to precede H .
The search graph G′ is updated by calling the method for
updating the source resource, R(vs).schedule(vs, vd),
and the method for updating the destination resource,
R(vd).schedule(vs, vd). Here, in the source resource (con-
text R(vs)), the temporary (dashed) edges (GF) and (GH)
are deleted and the edge (DF) is created while, in the des-
tination resource (context R(vd)), no modification is
needed since G goes from terminal node of the current con-
text to initial node of the following context. In the des-
tination resource, another context will be spawned if
nCLB(R(vd)) + C(vs) > NCLB .
A move will not be performed if a cycle appears when
the search graph is updated (detectable in O(1) opera-
tions on the associated transitive closure matrix).

4.4. Solution evaluation

After each move, the performance of the new solution is
evaluated by determining the longest path in the modified
search graph (Fig. 1(c)). Exploiting the property that sim-
ulated annealing is a local search method, the longest path
may in some cases be obtained incrementally by means of
a Woodbury-type update formula [4].

5. Experimental results

In order to assess the effectiveness of our method, we
have applied it to the motion detection application described
in [6]. The application performs object labeling with a real-
time constraint of 40 ms per image. Since a software imple-
mentation on an ARM922 processor leads to an execution
time of 76.4 ms, some portions of the application must be
hardware-accelerated to meet the time constraint [6]. The
target architecture consists of an ARM922 processor and a
reconfigurable FPGA of the Xilinx Virtex-E family. The re-
configuration time per CLB is tR = 22.5 µs. The perfor-
mance estimates for the tasks of the application on this ar-
chitecture were obtained in the EPICURE project [3]; sev-
eral estimates are provided for each task on the FPGA, thus
allowing exploration of the trade-off between number of
CLBs and execution time. For each function (node) in the
application, multiple implementations have been effectively
synthetized. The node implementations considered form a
set of dominant solutions in the area-time domain, each be-
ing characterized by the associated number of CLBs and
the corresponding execution time. During exploration, SA
chooses for each node implemented in hardware one of its
implementations (5 or 6 synthesized solutions per function).
Our method explores solutions characterized by a spatial
partitioning, a temporal partitioning and a sequential order-
ing of the FPGA contexts. Results from a typical example
of exploration of the solution space are presented in Fig. 2.
The FPGA size is 2000 CLBs for this run. Both the execu-
tion time in ms and the number of FPGA contexts allocated
at each iteration are plotted; the number of contexts ranges
from 1 to 8 for the example. The initial solution is gener-
ated with a random hardware/software partition. A random
number of tasks are moved, one by one, to the reconfig-
urable circuit. A new context is created when the capacity of
the last context is exceeded. In the example of Fig. 2, only 9
(among 28) tasks are assigned to hardware; they require 995
CLBs, hence only one context. The execution time of this
initial solution (67.9 ms) exceeds the 40 ms constraint; this
poor performance is due to the excessive communication
times resulting from the random nature of the initial par-
tition. To illustrate the optimization method, the first 1200
iterations are performed at infinite temperature and the so-
lution space is then broadly explored—the execution time
ranging from 35 ms to 70 ms and the number of contexts
from 1 to 8—while the average performance shows no im-
provement, as expected. When the method is activated and
adaptive cooling starts, the execution time falls quickly be-
low the 40 ms constraint. Between iterations 1500 and 3000
the number of contexts grows, as the relatively fine level
of improvement of the partition of the tasks between con-
texts is then reached and explored. The final, frozen, con-
figuration, has an execution time of 18.1 ms, well below the
constraint, and uses 3 contexts. The example shows that the

 0

 10 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
x

e
c
u

ti
o

n
 t

im
e
(m

s
)

iterations

’Number of Contexts’

’ExecutionTime’

N
u

m
b

e
r

o
f

c
o

n
te

x
ts

Figure 2. Evolution of execution time and
number of contexts in a typical run.

performance constraint can be satisfied with an FPGA de-
vice of size 2000 CLBs. We examine next the impact of the
device size (number of CLBs) on the performance that can
be achieved. As a byproduct of this study we determine the
size of the smallest device for which the 40 ms constraint is
attained. Fig. 3 presents the results of our experiments us-
ing simulated annealing for FPGA sizes ranging from 100
to 10000 CLBs. Each value is an average of the results ob-
tained for 100 runs. For each of the device sizes considered,
the average values of the execution time, the reconfigura-
tion time and the number of contexts are shown. As the size
increases, the execution time drops quickly once the num-
ber of CLBs is large enough for a context to hold more than
one task to be executed, since parallelism is then provided
within the hardware. A minimum execution time is reached
for about 800 CLBs and, as size increases further, execu-
tion time grows slowly and reaches a plateau around 5000
CLBs. Indeed, from this size up, all the hardware tasks can
be executed in a single context. For such large devices, the
optimisation method starts from random solutions with one
context and an execution time exceeding 75 ms to finally
reach solutions with a single context as well but whose exe-
cution time is more than halved. For small devices, holding
from 400 to 1500 CLBs, the small context size leads to so-
lutions with a large number of contexts (up to 10), number
which drops steadily as size increases. Because of the com-
pensation between number and size of contexts, total recon-
figuration time remains roughly constant. Our best solutions
improve on those obtained in [6], whose execution time is
28 ms. Moreover a run of our method takes less than 10 sec-
onds, to be compared to the 4 minutes of the genetic algo-
rithm used in [6]. In that paper, the population size is 300,
hence even if it was reduced to 100, the method would still
be an order of magnitude slower than ours.
Although the example seems simple, the solution space is

big. If the graph were a chain (hence with a total order),
then, for 28 nodes, 2 changes of context would give 378
combinations and 6 changes 376,740 combinations. How-
ever there are many total orders possible for the actual 28-
node example. Accounting just for the first 20 nodes, which
form, in this case, a 7-node chain followed by a 7-node
chain in parallel with a 6-node chain, there are 1716 total
orders.
In fact the 6-node chain is followed by a 2-node chain
in parallel with one node (3 orders) followed by 5 nodes,
hence the 28 nodes form a 7-node chain followed by a
7-node chain in parallel with one of 3 14-node chains.

Thus there are 3

(

21
7

)

total orders for the example, i.e.

348,840 orders, therefore for 2 changes of context there are
131,861,520 combinations and for, say, 4 changes of con-
text there are 7,142,499,000 combinations. This is assum-
ing that all the processing is performed on the RC; there
are many more combinations when the fact that some nodes
may be executed in software is taken into account.

6. Conclusions

This paper develops an application, to reconfigurable ar-
chitectures, of a general method of hardware/software parti-
tioning optimization [11]. We have been able to quickly spe-
cialize our tool to this class of architectures, thus demon-
strating the ease of incorporation of models of target ar-
chitectures. This flexibility has been made possible by the
object modeling effort on our application and architecture
models, and by our work on acceleration of the simulated
annealing algorithm.
Compared to other optimization methods, this approach
does not require either tuning, as one can find in tabu search
(tabu list sizes) or genetic algorithms (population size, re-
production rate...), or problem specific adaptation effort
(chromosome encoding). With our method, adaptation to
new models of computation and target arhitectures only re-
quires the definition of simple simulated annealing moves.
This study confirms that our method is not only flexible but
also efficient since the execution times for the motion de-
tection application improve on those available on the same
benchmark. We are currently working on developing sim-
ulated annealing moves for systems described by multiple
models of computation, including SDF and CFSM.

References

[1] Altera. Excalibur architecture, www.altera.com, 2004.
[2] Atmel. AT94K architecture, www.atmel.com, 2004.
[3] M. Auguin and K. Ben Chehida et al. Partitioning and code-

sign tools & methodology for reconfigurable computing: the
EPICURE philosophy. In Proc. 3rd Workshop on Systems,
Architectures, Modeling Simulation, pages 46–51, July 2003.

[4] B. Carré. Graphs and Networks. Oxford Univ. Press, 1985.

 10

 0

 5

e
x

e
c
u

ti
o

n
 t

im
e
(m

s)

 10

 20

 30

 40

 50

 60

 70

 80

 90

Number of CLBs
 0 2000 4000 6000 8000 10000

 0

N
u

m
b

e
r

o
f

c
o

n
te

x
ts

Initial reconfiguration time

Execution time

Number of contexts

Dynamic reconfiguration
time

Execution time = reconfiguration time (initial + dynamic)

+ computation and communication time

Figure 3. Execution time, reconfiguration
times, and number of contexts vs. FPGA size.

[5] K. S. Chatha and R. Vemuri. Hardware-software codesign
for dynamically reconfigurable architectures. In P. Lysaght
et al., editor, Field-Programmable Logic and Applications,
pages 175–184. Springer-Verlag, Berlin, 1999.

[6] K. B. Chehida and M. Auguin. HW/SW partitioning ap-
proach for reconfigurable system design. In Proc. Intnl.
Conf. on Compilers, Architectures and Synthesis for Embed-
ded Systems, pages 247 – 251, 2002.

[7] C. Haubelt, J. Teich, K. Richter, and R. Ernst. System de-
sign for flexibility. In Proc. Design Automation and Test in
Europe (DATE’02), pages 854–861, March 2002.

[8] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss. An au-
tomated temporal partitioning and loop fission approach for
FPGA based reconfigurable synthesis of DSP applications.
In Proc. of Design Automation Conf., pages 616–622, 1999.

[9] J. Lam. An efficient simulated annealing schedule. PhD the-
sis, Computer Science, Yale University, 1988.

[10] R. Maestre and F. Kurdahi et al. Kernel scheduling in recon-
figurable computing. In Proc. Conf. on Design, Automation
and Test in Europe (DATE’99), pages 90–110, March 1999.

[11] B. Miramond. Optimization method for hw/sw partitioning
of systems described with multiple models of computation.
PhD thesis, Université d’Evry, France, 2003, (in French).

[12] J. Noguera and R. Badia. HW/SW codesign techniques for
dynamically reconfigurable architectures. IEEE Transac-
tions on VLSI Systems, 10(4):399–415, August 2002.

[13] D. N. Rakhmatov and S. B. Vrudhula. Hardware-software
bipartitioning for dynamically reconfigurable systems. In
Proc. 10th Intnl. Worshop on Hardware/Software Codesign,
CODES’02, pages 145 – 150, May 2002.

[14] L. Shang and N. K. Jha. Hardware-software co-synthesis of
low power real-time distributed embedded systems with dy-
namically reconfigurable FPGAs. In 15th IEEE Intnl. Conf.
on VLSI Design, pages 345–352, Jan. 2002.

[15] W. Swartz. Automatic layout of analog and digital mixed
macro/standard cell integrated circuits. PhD thesis, Electri-
cal Engineering, Yale University, 1993.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

