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Abstract
This paper presents a technique for eliminating redun-

dant cache-tag and cache-way accesses to reduce power
consumption. The basic idea is to keep a small number
of Most Recently Used (MRU) addresses in a Memory Ad-
dress Buffer (MAB) and to omit redundant tag and way ac-
cesses when there is a MAB-hit. Since the approach keeps
only tag and set-index values in the MAB, the energy and
area overheads are relatively small even for a MAB with a
large number of entries. Furthermore, the approach does
not sacrifice the performance. In other words, neither the
cycle time nor the number of executed cycles increases.
The proposed technique has been applied to Fujitsu VLIW
processor (FR-V) and its power saving has been estimated
using NanoSim. Experiments for 32kB 2-way set associa-
tive caches show the power consumption of I-cache and
D-cache can be reduced by 40% and 50%, respectively.

1 Introduction
On-chip cache memories are one of the most power

hungry components of microprocessors. For example, the
on-chip caches of DEC Alpha 21164 dissipate 25% of the
total power of the processor [1]. The StrongARM SA-
110 processor, which specifically targets low power appli-
cations, dissipates about 43% of the power in its on-chip
caches [2]. Thus, reducing the power consumption of a
cache memory can greatly reduce the overall power con-
sumption of a processor.

In [3-17], authors have proposed techniques which re-
duce the power consumption of on-chip cache memo-
ries. One simple approach is to employ a small L0-
cache between a CPU core and its L1 cache, e.g., S-cache
[4], block-Buffer [5], filter-cache [6], and loop-cache [7].
Since an L0-cache is small, it consumes less power per ac-
cess. Therefore, if there is a hit in the L0-cache, the power
consumption will be reduced. On the other hand, if there is
a miss, one extra cycle is required to access the L1 cache.
Another simple approach proposed is using a two-phase
cache [8]. In the first phase, tags of all cache-ways are ac-
cessed to find the cache-way having the data. If there is a

hit, in the second phase, only one of the cache-ways is ac-
tivated. Although this approach can eliminate unnecessary
way accesses, it results in a performance loss. The method
proposed in [9] can also reduce the number of tag accesses
by using a way-prediction table and accessing the tag and
data of the predicted way only. This approach also involves
a performance loss because in case of a misprediction, one
extra cycle is required to perform tag comparison for all
ways.

In this paper, we propose a new way memoization tech-
nique which eliminates redundant tag and way accesses to
reduce the power consumption. The basic idea is to keep
a small number of Most Recently Used (MRU) addresses
in a Memory Address Buffer (MAB) and to omit redundant
tag and way accesses when there is a MAB-hit. The MAB
is accessed in parallel with the adder used for address gen-
eration (see Figure 1 and 2). The technique does not in-
crease the delay of the circuit. Furthermore, this approach
does not require modifying the cache architecture. This is
considered an important advantage in industry because it
makes it possible to use the processor core with previously
designed caches or IPs provided by other vendors.

The rest of the paper is organized as follows. Section
2 describes related work on cache power reduction. Our
approach which reduces the power consumption without
any performance penalty, is presented in Section 3. Sec-
tion 4 presents experimental results and discussion on the
effectiveness of the approach, while Section 5 concludes
the paper.

2 Related work
Panwar et al. have shown that cache-tag access and tag

comparison do not need to be performed for all instruction
fetches [4]. Consider an instruction j which is executed
immediately after an instruction i. There are four cases,

1. Intra-cache-line sequential flow
This occurs when both i and j instructions reside on
the same cache-line and i is a non-branch instruction
or an untaken branch or a taken branch whose target
address is the next address.
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2. Intra-cache-line non-sequential flow
In this case, i is a taken branch instruction and j is its
target, i and j reside on the same cache-line and j is
not the next address of i.

3. Inter-cache-line sequential flow
This case is similar to the first one, the only difference
is that i and j reside on different cache-lines.

4. Inter-cache-line non-sequential flow
This is similar to the second case, but i and j reside on
different cache-lines.

In the first case, it is possible to identify the way num-
ber for j by memoizing the way number for i. Therefore,
without performing any tag check, we can find the way for
instruction j [3, 4, 10]. Since most instructions are sequen-
tially executed, this technique successfully reduces the
number of tag and way accesses. This technique, however,
is not effective for inter-cache-line sequential-flow. Ma et
al. [11] proposed a dynamic way-memoization technique
which eliminates the way-search operation even for inter-
cache-line sequential-flow. They augmented each cache
line with a sequential link. The sequential link had a field
indicating whether the link was valid, and another field
pointing to the way of the cache holding the next instruc-
tion. They proposed a similar technique for intra and inter
cache-line non-sequential flows using branch links instead
of sequential links. The downside of the approach is that it
requires two extra bits per instruction (one valid bit and one
way bit). Therefore, some extra energy is consumed to read
the additional bits. Furthermore, they require a mechanism
to invalidate sequential and branch links upon a cache-line
replacement. Unlike their approach, ours do not need such
a mechanism.

Another approach which can handle non-sequential
flow is based on Branch Target Buffer (BTB) [12]. Inoue et
al. extended BTB and used it to reduce the number of tag
checks for non-sequential flow. Their approach, however,
cannot handle the inter-cache-line sequential flow. Our
approach can handle both inter-cache-line sequential and
non-sequential flow.

For data caches, Su and Despain proposed in-cache two-
level hierarchies in which a single line-buffer is accessed
before the main cache [13]. The single line-buffer works
as a first level cache. This is conceptually the same as a
single-entry filter cache [6]. This approach, however, de-
grades the performance because a line-buffer miss will re-
quire additional cycles to access the main cache.

Yang et al. [14] proposed a lightweight set buffer to ex-
ploit set-wise access locality in data caches (a set includes
the lines in different cache-ways corresponding to the same
set-index). No additional cycle is required in case of a set
buffer miss. This technique, however, cannot exploit inter-
cache-line access locality.

Ghose and Kamble [15] proposed a multiple line-buffer
technique in which cache lines in the same set are orga-
nized in a single Wide Line Buffer (WLB) and multiple
such lines are kept. Each WLB entry has data, tag, and in-
dex number fields for each cache line. This technique im-
proves line buffer hit rate, but there is an energy overhead
associated with the method due to the power wasted to ac-
cess the WLB on a WLB miss and the power consumed for
accessing set-indices of the WLB for every cache access.
Since their technique keeps values of cache lines, its area
overhead is very large. Unlike their approach, the overhead
of our approach is small (around 3%).

Witchel et al. [16] presented a direct addressing scheme
which allows software to access cache data directly with-
out tag checks. The idea is to memoize the location of a
cache line so that hardware can eliminate tag checks when
software access the line again. They employ several di-
rect address registers (DARs) which are used by software
to memoize the location of cache lines. The main short-
coming of the scheme is the necessity of using special load
and store instructions and compiler support for them.

Ashok et al. [17] presented a Cool-Mem scheme which
keeps several number of recently used addresses in the
”Hotline Registers” and skip tag lookups and redundant
way accesses when there is a hit in the ”Hotline Registers”.
However, it requires the existence of a TLB access stage
between the address generation stage and the cache access
stage. Otherwise, the technique requires an extra cycle for
the Tag-Cache lookup. Our technique does not suffer from
this limitation because the table (MAB) lookup is done in
parallel with the address calculation.

3 Our Methods
Since the memory address generation unit is on the crit-

ical path in many processors, accessing the address gener-
ation unit and the MAB sequentially in the same pipeline
stage increases the cycle time. To solve this problem, in-
stead of addresses we keep tag and set-index values in the
MAB (see Figure 1 and 2) and access them in parallel with
the address generation unit. The technique is based on the
observation that the target address is the sum of a base ad-
dress and a displacement which is typically small [18, 19].
To the best of our knowledge, our method is the first one
which exploits small displacements in the context of way
memoization for data caches. Additionally, for the first
time we use the fact that most branch offsets are small to
reduce the power consumption of instruction caches.
3.1 Way-memoization for D-caches

The base address and the displacement for load and
store operations usually take a small number of distinct
values [18, 19]. Therefore, we can improve the hit rate
of the MAB by keeping only a small number of most re-
cently used tags. Assume the bit width of tag memory, the
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Figure 1: Way memoization for D-cache

number of sets in the cache, and the size of cache lines are
18, 512, and 32 bytes, respectively. The width of the set-
index and offset fields will be 9 and 5 bits, respectively.
Since most (according to our experiments, more than 99%
of) displacement values are less than ���, we can easily
calculate tag values without address generation. This can
be done by checking the upper 18 bits of the base address,
the sign-extension of the displacement, and the carry bit
of a 14-bit adder which adds the low 14 bits of the base
address and the displacement. Therefore, the delay of the
added circuit is the sum of the delay of the 14-bit adder
and the delay of accessing the set-index table. Our ex-
periment shows this delay is smaller than the delay of the
32-bit adder used to calculate the address. Therefore, our
technique does not have any delay penalty. Note that if
the displacement value is more than or equal to ��� or less
than����, there will be a MAB miss, but the chance of this
happening is less than 1%. The details of the MAB archi-
tecture and synthesis results will be presented in Section
3.3 and Section 4, respectively.

3.2 Way-memoization for I-caches
To eliminate redundant tag and way accesses for inter-

cache-line flows (see Subsection 2), we can use a MAB.
Unlike the MAB used for D-cache, the inputs of the MAB
used for I-cache can be one of the following three types: 1)
an address stored in a link register, 2) a base address (i.e.,
the current program counter address) and a displacement
value (i.e., a branch offset), and 3) the current program
counter address and its stride. In the case of inter-cache-
line sequential flow, the current program counter address
and the stride of the program counter are chosen as inputs
of the MAB. The stride is treated as the displacement value.
If the current operation is a ”branch (or jump) to the link
target”, the address in the link register is selected as the in-
put of the MAB as shown in Figure 2. Otherwise, the base
address and the displacement are used as done for the data
cache.
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3.3 The MAB architecture
The MAB has two types of entries: 1) tag and cflag (20

bits), 2) set-index (9 bits). The 2-bit cflag is used to store
the carry bit of the 14-bit adder and the sign of the displace-
ment value. If the number of entries for tags is �� and the
number of entries for set-indices is ��, the MAB can store
the information about �� � �� addresses. For example, a
���-entry MAB can store information about 16 addresses.
For each address, there is a flag indicating whether the in-
formation is valid. The flag corresponding to the tag entry
� and set-index entry � is denoted by vflag[�][�]. The MAB
entries are updated using Least Recently Used (LRU) pol-
icy [20].

Consider an address corresponding to a tag value � and
a set-index value �. Depending on whether there is a hit or
miss for � and �, there are four different possibilities,

1. There are hits for both� and �. In this case the address
corresponding to (�, �) is in the table. Assuming � and
� denote the entry numbers for � and �, respectively,
vflag[�][�] is set to 1.

2. There is a miss for � and a hit for �. If � denotes the
entry number for � and � replaces entry � in the MAB,
vflag[�][�] has to be set to 1, while other vflag[�][*]
are set to 0.

3. There is a hit for � and a miss for �. Assuming
� denotes the entry number of � and � replaces en-
try � in the MAB, vflag[�][�] is set to 1, while other
vflag[*][�] are set to 0.

4. Finally, there are misses for both � and �. If � and
� replace entry � and entry � in the MAB, vflag[�][�]
will be set to 1 and other vflag[�][*] and vflag[*][�]
will be set to 0.
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Figure 3: Detailed structure of MAB

To keep the MAB consistent with the cache, if not all
upper 18 bits of the displacement are zero and not all of
them are one, vflags corresponding to the entry ��� (i.e.,
vflag[��� ][*]) are set to 0. As long as the number of tag
entries in the MAB is smaller than the number of cache-
ways, this guarantees the consistency between the MAB
and the cache. In other words, if a tag and set-index pair
residing in the MAB is valid, data corresponding to them
will always reside in the cache. Figure 3 shows the details
of the MAB. The critical path delay is the sum of the delay
of the 14-bit adder and the delay of the 9-bit comparator
which is smaller than the clock period of our target proces-
sor.

4 Experimental results
We applied our technique to Fujitsu VLIW processor

(FR-V) [21] designed in a 0.13�	 CMOS process tech-
nology with a 1.3V supply voltage and the clock speed of
360MHz. The processor employs two 32kB 2-way set as-
sociative caches for instruction and data. The number of
sets and cache line size for both caches are 512 and 32
bytes, respectively.

Table 1: Area Overhead (		�)

# entries for set-indices
4 8 16 32

# entries for 1 0.016 0.027 0.065 0.307
set-indices 2 0.019 0.033 0.085 0.311

Table 2: The delay of the added circuit (ns)

# entries for set-indices
4 8 16 32

# entries for 1 1.00 1.00 1.08 1.14
set-indices 2 1.02 1.02 1.08 1.16

To evaluate the power, area, and delay overhead of
our method, we implemented the MAB circuits in Ver-
ilog and synthesized them using SYNOSPSYS Design-
Compiler. Table 1 shows the area overhead for different
number of entries of the MAB. The tag and the set-index
are (18+2)-bit and 9-bit, respectively. Based on our exper-
iments with different benchmark programs, a MAB with
two entries for tag and 8 entries for set-index is optimal
from the power consumption viewpoint for all application
programs we studied. The area overhead of this configu-
ration when used for a D-cache is around 3%. For I-cache
depending on the application program, one of �� ��-entry
or �� ��-entry configurations is optimal; since the former
has a smaller area overhead than the latter (7.5% compared
to 27.5%), we used the � � ��-entry configuration for our
processor.

The critical path delay of the MAB is the sum of the de-
lay of the 14-bit adder and the delay of the 9-bit set-index
comparator as shown in Figure 3. Table 2 shows the de-
lay for different configurations. Since the maximum clock
frequency of our target processor is 400MHz [21], CPU
cycle time of the processor is 2,500ps. Therefore, the de-
lay of the MAB is much smaller than the CPU cycle time.
Since the MAB is accessed in parallel with the 32-bit adder
for address generation, our approach does not increase the
CPU cycle time. Table 3 shows the power consumption
of different MAB configurations. We used SYNOPSYS
NanoSim for power estimation. Since we used clock gating
in our circuits, the power consumptions were very small
when the circuits were not used. We used NanoSim and
Softune Ver.6 [22] (the instruction-set simulator of FR-V
processor) to estimate the power consumption of caches
after modification. The power consumption results include
the leakage power. We used seven benchmark programs,
DCT, FFT, whetstone, dhrystone, compress, jpeg encoder,
and mpeg2 encoder.

Table 3: Power consumption (mW)

# entries for set-indices
4 8 16 32

# of active 1.95 2.37 3.39 6.25
entries

1
sleep 0.24 0.40 0.76 1.37

for set- active 2.34 3.07 4.56 7.93
indices

2
sleep 0.40 0.68 1.28 2.26
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Figure 4 shows the average number of tag and way ac-
cesses per D-cache access. The processor uses a write-back
buffer which makes it possible to access only a single way
for store instructions. As a result the number of ways ac-
cessed per D-cache access is less than 2 in all cases. Since
in our approach at least one way is accessed per cache ac-
cess, the number of ways accessed per D-cache access is
more than 1. On the other hand, the number of tag ac-
cesses is reduced by 90% compared to the original cache
architecture. Figure 5 shows the power consumption of the
D-cache calculated using the following formula,


������ � ���� ����� ����� ����� � 
	
� (1)

where����, ����, ���� , ����, and 
	
� are the energy
consumption per cache-way access, the number of ways
accessed per second, the energy consumption per tag mem-
ory access, the number of tags accessed per second, and the
power consumption of the MAB, respectively. ���� and
���� were estimated using SPICE. ���� and ���� were
measured using an instruction-set simulator [22]. 
	
�

was the power consumption of a � � �-entry MAB from
Table 3. ���� is equal to ��
�� � ���
��, where ��
��

and���
�� denote the number of ways accessed per second
for load and store operations, respectively. Our approach
for D-cache does not change ���
��, but it reduces ��
��

and ����. The results in Figure 5 show that our approach
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reduces the power consumption in D-cache by 35% on an
average.

Figure 6 shows the average number of tags and ways
accessed per I-cache access. In the case of intra-cache-
line sequential flow, no tag access is required [3, 4, 10], as
the current address is guaranteed to be found in the same
cache line as the previous address. The left-most bar for
each benchmark program represents the result when this
optimization is performed. This optimization reduces the
number of tag accesses by 60% on an average. Our ap-
proach with a ����-entry MAB reduces the average num-
ber of tag accesses to 80% of the approach [4].

Figure 7 shows the power consumption results for I-
cache. Our approach with a � � ��-entry MAB can re-
duce the power consumption by 25% on an average. Fi-
nally, Figure 8 shows the total power consumption of I-
cache and D-cache. We used a � � ��-entry MAB and a
� � �-entry MAB for I-cache and D-cache, respectively.
The total power consumption was reduced on an average
by 30%. The maximum saving was 40% achieved for the
mpeg2enc program.

5 Conclusion
We proposed a technique to eliminate redundant cache-

tag and cache-way accesses to reduce power consumption.
We applied the proposed technique to FR-V processor and
estimated its power saving using NanoSim and ISS (Soft-
une Ver.6) [22]. Our experiments for 32kB 2-way set asso-
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ciative caches show the power consumption can be reduced
by up to 40% (30% on an average) without any perfor-
mance penalty. We are currently extending our approach
by combining it with the line buffer technique to achieve
more saving.
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