
Design of a Virtual Component Neutral Network-on-Chip Transaction Layer

Philippe Martin
Arteris S.A.

6 Parc Ariane – 78284 Guyancourt - France
philippe.martin@arteris.com

Abstract

Research studies have demonstrated the
feasibility and advantages of Network-on-Chip (NoC)
over traditional bus-based architectures but have not
focused on compatibility communication standards. This
paper describes a number of issues faced when designing
a VC-neutral NoC, i.e. compatible with standards such
as AHB 2.0, AXI, VCI, OCP, and various other
proprietary protocols, and how a layered approach to
communication helps solve these issues.

1. NoC Layered Architecture

A true Network-On-Chip uses a layered
communication approach, similar to the OSI model which
is at the foundation of LANs and WAN, but simpler.
Arteris NoC defines transaction, transport, and physical
layers.

The NoC transaction layer defines communication
primitives available to IP blocks that are plugged into the
NoC. A Network Interface Unit (NIU) is responsible for
converting the foreign IP protocol to the NoC transaction
layer.

The transport layer defines information format and
transport rules between NIUs. Arteris NoC packet-based
transport layer defines how packets are routed, quality of
service used for prioritizing packets, etc. The transport
layer is completely transaction unaware, and conversely,
transaction level is transport unaware (for example,
wormhole or store-and-forward packet handling makes no
difference at the transaction level).

The physical layer defines how packets are physically
transmitted – much like the Ethernet defines the MII,
10Mb/s, 1Gb/s physical interfaces. Again, the physical
layer is independent from transaction and transport layers.

Layer independence enables a separate optimization of
NoC features: the transaction layer focuses on
compatibility with existing IP blocks and busses, transport

layer focuses on quality of service and scalability,
physical layers on implementation related features such as
achieving raw bandwidth, matching clocks, off-chip
communication, etc.

2. VC compatibility handling

To create System-On-Chip (SoC), VCs with mixed
sockets ideally plug into an interconnect according to Fig
1:

Fig 1: Ideal system with mixed VC protocols.
Interconnects use a multi-master and multi-slave

protocol and include bridges to the various VC socket
protocols.

In practice, the intertwining of transaction, transport
and physical levels within standard interconnects, and the
interconnect flexibility necessary to handle many
application designs makes this ideal approach very
difficult. Designs mixing different VC standards look
more like Fig 2, where the interconnect has its own
reference socket standard. Bridges to the reference
standard are used plug the IP blocks (an alternative is to
redesign the IP to support directly the interconnect
reference standard, but this is time-consuming and prone
to errors, and not possible for off-the-shelf IP).

VC

AHB

Internal, multi-master/slave protocol

bridge

VC

OCP

bridge

VC

AXI

bridge

bridge bridge bridge

VCI

VC

Proprietary

VC

other

VC

Point-to-point

VC socket
standard

1530-1591/05 $20.00 © 2005 IEEE

Fig 2: Usual system with mixed VC protocols
Bridges introduce area and latency penalties, but

worse, they also do not support the full set of VC
transactions because they are limited by the interconnect
protocol and physical design. Compared to this approach,
the layered architecture provides a strong advantage to
NoCs with respect to compatibility handling:

- The switching fabric managing transport being
transaction-unaware, transactions can be customized to
the actual set of VCs that plug into the NoC, without
altering the transport and physical layers.

- Adding a socket-specific feature to a NIU is easy
because the NoC protocol layering drives the process with
a simple set of questions:

1. Does the feature require some specific transaction
state to be stored in the NIU? If yes, add the state to the
standard NIU state lookup tables (which track for
example that a Load request is waiting for a response).

2. Does it require information to be exchanged
between NIUs? If yes, add it to the packet format.

Since neither adding bits to the packets nor state in the
NIUs impacts transaction or physical layers, supporting
VC-specific features in the NoC only impacts the
corresponding NIU. However, the various VC sockets
have many incompatibilities in their basic features that
need to be carefully addressed upfront in the NoC
transaction layer.

3. Incompatibility examples and solutions

Many VC compatibility issues must be carefully
analyzed and resolved to reach a truly VC neutral NoC.
Among these are: ordering model, exclusive accesses and
atomicity, bursts, endianness. We will discuss ordering
model and exclusive accesses below.

AHB, PVCI, BVCI VCs are fully-ordered between
requests and responses. OCP compatible VCs are fully

ordered within a thread, but may be multi-threaded with
no ordering constraint between threads. AXI and AVCI
provide transaction IDs with requests and response, also
allowing out-of-order responses. Some of these protocols
(such as OCP) support WRITEs without responses, and
others (such as AXI) have independent READ and
WRITE channels, further obscuring ordering constraints.

The various flavors of ordering models and pipelining
schemes between these protocols create a challenge to
define a transaction layer compatible with all
configurations, while keeping a low NIU gate count.

Arteris NoC protocol uses a packet destination field
(called SlvAddr), a packet source (called MstAddr), and a
Tag. The ordering model adapts to the fully-ordered
AHB, the multi-threaded OCP and the ID-based AXI
ordering models using a careful assignment policy of
these fields from the OCP or AXI ones such as ThreadID
and TID. Further, this policy is flexible and allows NIUs
to support one or many simultaneously outstanding
transactions and/or targets, scaling their gate count to
their expected performance within the system.

As outlined above, the NoC switch fabric itself is
unaware of actual NIU field assignment policies – it sees
uniform packets with SlvAddr, MstAddr, Tag
information, allowing the seamless plugging of OCP,
AXI, AHB, etc. IP blocks to the same NoC.

OCP and AXI have introduced new transactions called

« lazy synchronization » and « exclusive access »
respectively. They implement non-blocking
synchronization between several masters, contrary to the
older READEX and LOCK transactions. To implement
all these in the NoC, we found out that READEX/LOCK
transactions impact transport level (switches take specific
decisions when they see LOCK-related packets) but that
handling AXI and OCP exclusive access only requires
adding a single user-defined bit in the packets, and state
information in the NIU. This optional packet bit becomes
simply part of a family of similar “NoC services” that can
be activated in a particular NoC configuration.

4. Summary

Arteris NoC transaction layer is compatible with
AHB, VCI flavors, AXI, OCP transaction levels and thus
allows seamless mixing of IP blocks using these sockets.
The layered structure of NoCs allows IP compatibility to
be independent from transport and physical layer
specification, allowing easy plug-in of new socket
protocols to the NoC through appropriate NIUs, while at
the same time the transport and physical layers can be
adapted to specific QoS requirements or physical
environments.

VC

AHB

Internal, multi-master/slave protocol

bridge

VC

OCP

VC

AXI

bridge

bridge bridge bridge

VCI

VC

Proprietary

VC

VC

Interconnect socket
protocol

bridge bridge bridge

Point-to-point
VC socket
standard

bridge bridge

Custom-designed
bridge

bridge

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

