
A Public-Key Watermarking Technique for IP
Designs

Amr T. Abdel-Hamid∗, Sofiène Tahar∗ and El Mostapha Aboulhamid§
∗Electrical and Computer Engineering Department, Concordia University, Montréal, Canada

Email: {at abdel, tahar}@ece.concordia.ca
§Dep. d’informatique et de recherche operationnelle, Université de Montréal, Montréal, Canada

Email: aboulham@iro.umontreal.ca

Abstract— Sharing IP blocks in today’s competitive market
poses significant high security risks. Creators and owners of IP
designs want assurances that their content will not be illegally
redistributed by consumers, and consumers want assurances that
the content they buy is legitimate. Recently, digital watermarking
emerged as a candidate solution for copyright protection of IP
blocks. In this paper, we propose a new approach for water-
marking IP designs based on the embedding of the ownership
proof as part of the IP design’s FSM. The approach utilizes
coinciding as well as, un-used transitions in the state transition
graph of the design. Our approach increases the robustness
of the watermark and allows a secure implementation, hence
enabling the development of the first public-key IP watermarking
scheme at the FSM level. We also defin evaluation criteria for our
approach, and us experimental measures to prove its robustness.

I. INTRODUCTION

Fast advancing IC (integrated circuit) processing technolo-
gies have enabled the integration of full systems an a single
chip forming the new paradigm of the “System-on-a-Chip”
(SOC) technology. Reusable virtual components or Intellectual
Property blocks (IPs) are most effective when it comes to
reducing cost and development time of SOC designs. IP
designs are a big investment for companies, on the other hand,
sharing IP designs pose significant high security risks. Most
of these IPs need time and effort to be designed and verified,
but they can be copied, or modified to cover the authorship
proof. Creators and owners of IP designs want assurances that
their content will not be illegally redistributed by consumers,
and consumers want assurance that the content they buy is
legitimate.

The VSI Alliance IP protection development working group
[7] identifies three main approaches to secure IPs: deterrent,
protection, and detection. The first uses legal means, such as
patents, copyrights or trade secrets to stop attempts for illegal
distribution. The second prevents the unauthorized usage of
the IP physically by license agreements and encryption. The
third detects and traces both legal and illegal usages by using
watermarking and fingerprinting. Protection techniques do not
track the design in order so check if the buyer resold it,
or even reused it without permission. They also cannot stop
local leakage, such as employees or sub-contractors. Like
digital media, watermarking IPs emerged as the most effective
solution for tracking IP designs after sales, where the owner
has a strong enough evidence to be used in front of court.

In this paper, we propose an IP watermarking approach that
can be used early in the design cycle, and which is based
on the finite state machine (FSM) of the IP. FSMs model the
transformation between inputs and outputs of the IP design and
can be represented in different forms, such as state transition
graphs (STG). FSM watermarking enables the detection of
inserted watermark at lower implementation levels.

We propose a watermarking approach in which both existing
and unused transitions in the FSM are used to embed the
signature. In case no free transitions are available (completely
specified FSM, CSFSM), we add extra input bits to insert the
watermark. Using existing transitions provides a supraliminal
channel 1 as it would give more strength to the system against
different attacks. It also helps balancing between adding
enough data to identify the owner and the design overhead
(area, power, delay) this data may introduce.

The rest of the paper is organized as follows: Section II
gives a brief description of related work on IP watermarking.
Section III presents our IP watermarking and extraction
techniques. Section IV provides measures used to evaluate
the performance of our approach, and to analyze the attacks.
Section V presents a prototype implementation of the algo-
rithm, including different experimental results. Finally, Section
VI concludes the paper.

II. RELATED WORK

There are many IP watermarking or fingerprinting tech-
niques available in the open literature. They fall into two
classes [1]. Dynamic watermarking, where the watermark
is detected by running the watermarked IP and detect the
generated signal. Static watermarking, where the watermark
is considered as a property of the design, and can only be
detected by different static techniques.

Kahng el al. [8] proposed and experimented a constraint-
based IP watermarking as one of the leading static approaches.
The approach is a generic algorithm that can be used at
different levels of the design flow. It is based on available
tools used mainly to solve NP-hard problems. This was done
by adding a set of well defined extra constraints that generate
a watermarked solution for the problem. The approach was

1a low bandwidth channel that the intruder cannot afford to modify as it
uses the most significant components of the object as a means of transition
[5]

1530-1591/05 $20.00 © 2005 IEEE

2

tested and applied to different levels of the IP design. At the
system level for instance, it was used for the watermarking of
memory graph coloring solutions by Hong et al. [6]. At lower
design levels, the approach was used even more effectively in
routing [11], placement, and floor planning [8].

The main advantage of the approach is its real low overhead
on the design cycle, as the NP-hard problem will be solved
anyway. The approach however, has two main drawbacks.
First, tracking the watermark is not that easy if the design
is resold at other abstraction levels. Also, imposing extra-
constraints on a design procedure might not be as successful
as thought by the authors. Finally, Le et al. [9] showed that
several constraint-based watermarking schemes can be broken
easier than previously thought.

At the behavioral level, Oliveira [12], and Torunoglu et al.
[16] introduced two different techniques used in the water-
marking of sequential parts of the design. Both algorithms
are based on adding new input/output sequences to the FSM
representation of the design. The main advantage of both ap-
proaches is the ability to detect the presence of the watermark
at lower design levels.

The algorithm in [16] is mainly based on extracting the
unused transitions in a STG of the behavioral model. These
unused transitions are inserted in the STG associated with
a new defined input/output sequence which will act as the
watermark.

The approach in [12] tries to manipulate implicitly the STG,
where the user changes the design to include the watermark
as a specific property, which is rare in non-modified STGs.
The extra states added can be removed using a state reduction
approaches. The author in [12] proposed to solve this problem
by slightly changing the functionality of the STG. This also
cannot be done mechanically as it might affect the design
functionality.

III. WATERMARKING FSMS USING COINCIDING

TRANSITIONS

As a passive technique, one of the main challenges of
watermarking schemes is the authenticity of the watermark. In
the scheme we propose in this paper, this problem is solved
by using a secure third party, e.g., a watermarking governing
body. This governing body will be responsible for generating
and distributing time-stamped authenticated signatures, as well
as keeping a record for such signatures for the extraction
phase.

The proposed watermarking scheme is composed of three
main parts: Signature generation, watermark insertion (embed-
ding), and watermark detection (extraction). The watermark
embedding phase is done by the designer, where he/she uses
the authentic signature to embed the watermark using the
embedding algorithm proposed below. Finally, in the manu-
facturing facilities and afterwards, the designer introduces the
key needed to detect the watermark, in order to prove the
authenticity of the design.

A. Signature Generation

The signature generation is done by the watermarking
authority (third party which will prevent intruders from search-

ing for ghost watermark and consider it as their watermark
(known as ghost attacks). The generated signature will be also
time-stamped to prevent intruders from re-embedding their
watermark in the system.

The secure third part will use the ownership informa-
tion provided by the IP designer and encrypts it using any
public/private-key encryption algorithm after time-stamping it.
The encrypted information is then hashed giving a short digest
to decrease the watermark embedding overhead. This digest is
computationally infeasible to find another message hashes the
same value.

In our proposed model, the owner chooses any arbitrary
length message that will prove his/her ownership and encrypts
it using his own private key of any encryption algorithm. The
encrypted message is then hashed to shorten it to a certain
length using a one-way hash function, MD5 [14] in our case,
to generate a constant length bit sequence (128 bits) as a proof
of ownership, if using MD5.

B. Coinciding Transitions Approach: Output Mapping

The watermark insertion algorithm attempts to coincide a
part of the watermark on the STG transitions to increase the
watermark robustness. This is done by searching different
outputs of each visited state in the STG, and comparing it to a
part of the generated signature in order to map this signature
on the system outputs. Starting form any randomly chosen
state (Sx), the watermark will be added to the STG according
to the following steps:

1) Compare the outputs of the state Sx to the generated
signature to check if they coincide.

2) In case one of the outputs is equal to the watermark bits,
this transition will be considered part of our watermark.

3) If the signature sequence is not equal to any of the
outputs, then the inputs of Sx will be checked to
determine if there is any free input that can be used to
add an extra transition. The next state in this case will
be chosen randomly, with preference given to states with
free transitions.

4) In case all the inputs are already being used, an extra
input bit ei

wm is added to the system to extend the
FSM. This input bit will have the same logic value
for all already existing transitions. For instance, a logic
value ’0’ assigned to the already existing transitions and
logic value ’1’ will be used for the watermark transition
added. The next state will be chosen randomly.

5) The algorithm will loop until embedding all the signa-
ture bits is done.

Figure 1 illustrates an example for the above algorithm using
the signature in the bottom of the figure. Starting from state
(S0), the tool finds a coinciding output (00) and moves to S3.
In S3 no putput 11 exists but input 00 is free. The next state in
this case will be decided randomly and the algorithm advances
to state (S2). In S2, all inputs are being used, hence an extra
input bit is added to extend the whole STG. This bit will be
forced to be equal to “0” for existing transitions out of S2 and
“1” for added ones. This extra transition will drive the STG
to state (S0) randomly as well.

3

01/11

11/10

S1

S2S3

01/11

10/11

01/11

11/00
0-/10

0-/10

S0

01/11

01/11

11/00

1-/01

01/11

S1

S2S3

S0

10/11

01/11

01/11

11/00

1-/01

1-/01

0-0/10

001/01

(a) (b)

1-0/01

0-/10

0-/10

(c) (d)

Signature Sequence = [(10/00),(10/11),(00/01)]

Signature Sequence Actually Added = [(110/00),(00-/11),(001/01)]

S0 S0

1-/01

11/10

S1

S2S3
10/11

11/00

01/11

11/00
11/10

11/10

S3 S2
10/11

00/11 00/11

01/11

S1

01/11

Fig. 1. Output Search Watermarking Algorithm: Example

The algorithm does not search the system states of the
STG to insert the watermark, it simply inserts the watermark
directly on a randomly chosen state. This makes it fast and
would not cause high overhead on the design flow. It was noted
that the number of coinciding transitions will decrease as the
number of outputs increases. This happen as the probability to
find a number of outputs equals coincide with the watermark
decreases as the number of output increases. To solve such
problem, the algorithm works into iterations. Each iteration
works with different number of outputs, and tries to coincide
more transitions. Afterwards, the tool decides between the
generated solutions based on the robustness, as well as lower
design overhead introduced, as discussed in the next section.

C. Watermark Extraction

The third phase of the watermarking process is tracking the
watermarked design. In the proposed watermarking technique,
direct detection can be used through the previously generated
input in the watermarking process to generate the output
signature. Using direct detection, as proposed in [16], will
not enable the owner to detect the output in the correct form
[1] in case of masking attacks, discussed in details in the next
section. Traces of the watermark still exist and it is enough to
be considered as an evidence in front of a court. In such case,
rebuilding the whole FSM is the ultimate solution to extract
all the traces left from the watermark, but this is an expensive
and complicated task.

In our approach, coinciding transitions cannot be deleted.
This will give the system extra robustness as the attacker will
have to decide between used and unused transitions. To solve
masking attacks, we propose an extraction algorithm making
use of coinciding transitions as marks, or semaphores, to detect
if the watermark traces exist. The extraction algorithm is as
following:

1) During the embedding of the watermark, the tool builds
an extra file containing different input/outputs pairs

(different sequence paths) that lead to the coinciding
transitions.

2) During the extraction, if direct detection fails. The
extraction tool will start by checking the previously
defined paths and check the availability of coinciding
transitions.

3) To find a coinciding transition, the tool will search for
all the extra added transitions that might exist around
this state.

4) The extraction tool searches all the coinciding transitions
and extracts all non-deleted extra transitions in the
system.

This algorithm will force the attacker to delete all extra
added transitions in the system. A very hard process with a
very low probability, defined as a measure of robustness in the
next section. The algorithm still needs to be optimized in order
to decrease the search time. Yet, it shows an extra advantage
of using coinciding transitions.

IV. EVALUATING WATERMARK PERFORMANCE

Petitcolas [13] identified a set of measures for watermark
evaluation. These measures were developed mainly for mul-
timedia applications but still some of them are essential for
the evaluation of IP watermarking techniques. These measures
are described briefly in the next subsections. For further
information about attack analysis and other measures the
reader can refer to [1].

A. Impact on Design Functionality

Perceptibility [13] is a measure of how much the hidden
mark has deteriorated the perceived quality of the system. In
hardware design, designers cannot accept behavior changes
in a system due to watermark insertion, i.e., watermarking
technique should not interfere with the original system op-
eration. The following theorem proves the soundness of the
watermarked design automaton Mwm with respect to the
original behavior M .

Theorem 1: The watermarked design Mwm behaves exactly
as the original design M for any set of arbitrary inputs,
under the condition that all extra added bits ewm, used for
watermarking, are set to the same secure logical level defined
at the watermarking insertion stage.

Let ã be any arbitrary input sequence composed of m
elements, such that ã = (a0, a1, ...am−1). ãwm is the same
input sequence for the watermarked design, where ãwm =
〈ã, ewm〉, then:

∀ ã ewm. ewm = C → (λ(q0, ã) = λwm(q0
wm, ãwm))

where C is a secure constant logical value for all extra added
bits pre-defined at the time of inserting the watermark, q0

wm

is the initial state of the watermarked design. The theorem
is proved mathematically in [1]. It is proved that under the
above conditions, the initial state in both designs will behave
identically. And then proved that the output functions (λ and
λwm) will produce the same values for any given set of input
sequence.

4

B. Reliability and Attack Analysis

The level of reliability [13] is divided into two main aspects.
Robustness, which measures the strength of the hidden mark
against attacks, and false positive, which defines the proba-
bility a watermark detector can find an ownership mark in a
non-watermarked design. In the case of public-key operation,
the level of reliability should include more measures for
asymmetry robustness [13].

1) Attack Analysis: Digital watermarking attacks are cat-
egorized in four main classes [4]: unauthorized removal,
unauthorized embedding, unauthorized detection, and system
attacks. The same categorization applies for IP watermarking
schemes. System attacks aim at attacking the concept of wa-
termarking itself, as an example, attacking the cryptographic
base of the watermarking, or removing the chip that checks the
watermark physically in case of video for instance. This kind
of attacks cannot to be avoided by the watermarking schemes.
Yet, the VISA IP protection group solves this by protecting
the design through different transactions.

Embedding attacks, aim at embedding another watermark
in the design (watermark re-embedding) or try to find a ghost
watermark that can be considered an intruder watermark (ghost
searching). As for most of the well known watermarking
schemes, we are proposing a third entity (a secure third
party) that is responsible for granting and authorizing an em-
bedded time-stamped signature (ownership certificate). These
two measures will prevent both embedding attacks, because
the intruder will be forced to extract a 128 pre-defined bits
(if using MD5) from the system, that totaly coincide with
his signature. The probability of finding ghost signatures is
directly related to the probability of finding false positives as
it will be discussed in the next subsection, and is extremely
small. On the other hand time-stamping will stop the intruder
from re-embedding his/her watermark in a previously licensed
system, because the database of the third entity will directly
reveal the real owner.

Removal attacks, [4] aim at the removal of the watermark
information. This is attempted without breaking the security
of the watermark. Removal attacks are divided into either
elimination attacks or masking attacks. Coinciding transitions
are considered as supraliminal channels. The probability of
watermark deletion is defined as following “probability that
an attack changes or deletes extra added transitions without
deleting at least one original transition”.

This probability will differ depending on both detection
and operation modes. In the symmetric (secret) mode, this
probability will be related to the total number of design
transitions (n), in the case of asymmetric mode, the probability
will be related to the number of the watermark transitions, as
the intruder will be able to know these transitions.

To Remove the watermark, the intruder need to delete
most of the extra transitions (m2) without deleting any of
the originally existing transitions (n) to delete the watermark.
Thus, the removal probability of the watermark (Pr) defined as
“ probability that any attack would change or delete all extra
added transitions (m2) without deleting at least one original
transition”. As discussed above this probability depends on
the mode of operation (symmetric or asymmetric). In the

symmetric mode, the intruder needs to choose from n existing
transitions, so that P s

r is defined as:

P s
r =

1
Cm2

n+m2

where, Ck
j is the combination of k and j, such that Ck

j =
j!/(k! × (j − k)!).

On the other hand, in the public-key organization, the in-
truder does not need to choose from the n originally available
transitions, but from m watermarking transitions. This means
that the removal probability (P a

r) here will be calculated as:

P a
r =

1
Cm2

m

Asymmetric techniques in general are not considered as
robust as symmetric ones [13]. The main measure of our
approach capability to work in an asymmetric (public-key)
mode is P a

r . Depending on such measure, the system cannot
work in the public mode unless this probability is smaller
than a certain value defined by the designer. This is done,
by choosing between different iterations that will satisfy the
probability condition and has the minimal design overhead. It
is worth to be mentioned that a second secret watermark can
be added to the system in case the intruder could break the
public one. This will add extra overhead to the system, but
will be rewarded by a higher level of security.

2) Detecting False Positives: The probability of coinci-
dence, is defined as a main measure of the authenticity of
the watermark. This probability is considered as a measure
for detecting the watermark in a design by accident in a non-
watermark design (false positives). In [16], the probability of
coincidence (Pu) for an FSM was defined as “the odds that
an unintended watermark is detected in a design”. It is also
considered a measure for the ghost attacks discussed above.
This probability was calculated under the approximation that
all the transitions have the same probability of occurrence as:

Pu =
1

[2|∆|]x − 1
n ≥ 1

where x is the number of extra added transitions and | ∆ |
is the total number of possible outputs. In our system, we are
only adding m2 extra transitions, but the owner still needs a
sequence of length m to detect the watermark.

Using the MD5 hash function, a constant number of bits
for the watermarking sequence (128 bits) is introduced. m is
calculated as the upper limit of the division of the number of
added bits by the number of outputs, i.e., m = � 128

|∆| �. We can
then calculate the lower bound of the coinciding probability,
the worst achievable case, (P̄u) as:

P̄u =
1

[2|∆|]�
128
|∆| � − 1

Hence,

Pu � P̄u =
1

2128 − 1
= 2.938 × 10−39

This means that we can safely state, that our probability
of coincidence is nearly constant and is larger than the above

5

value for the 128 bits signature used. If the designer needs a
lower value for Pu, he/she can either change the hash function
used, or re-watermark the design using the same technique
again with a second signature.

C. Watermarking Overhead

Watermark approaches rely on embedding signatures gener-
ated from hash functions in order to decrease the watermarking
process overhead. In our particular case, the number of bits
added by using MD5 hash function is equal to 128 bits. This
amount can be increased at the expense of the number of
input bits as well as the area and extra logic added to the
system. Mapping more coinciding transitions directly means
that we will have less overhead. The watermarking overhead
is divided into three different issues: area, delay, and power.
We have measured the percentage of increase on a number of
benchmark designs before and after watermarking. The results
are shown and discussed in the experimental results to follow.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. IP Watermarking Tool

A Prototype for the algorithm was built to test its per-
formance. The tool [3] was implemented using C++ under
Unix environment. The design accepts FSMs in kiss2 format
[15], which can be generated by many tools such as SIS
[15]. Figure 2 shows the different implementation blocks.
The tool is composed of four main blocks. We started by
building a tree for the FSM representation using the FSM
builder block. The signature generation block provides the
signature to the watermarker block after hashing it, while the
random input and next states needed are provided using a
random generator built in our tool. In the watermarker block,
the user can choose the number of iteration the algorithms
can run to watermark his/her design. The watermarker block
also includes a decision block that chooses between iteration
results using the highest probability P a

r that is smaller than
a certain value defined by the user (10−6 in our case). The
choice takes into consideration the lowest overhead possible
(least added transitions, and lowest number of added bits).
Finally, using the Kiss-to-HDL block [2], a synthesizeable
watermarked VHDL code is generated.

B. Experimental Results and Comparison

To evaluate our approach, the algorithm was applied on the
IWLS93 [10] benchmark set using the FSMs generated by
the available SIS tool. Table I describes the result obtained
on a Sun Sparc Ultra 5 machine with a 256 MHz Processor
and 512 MB of memory. All the circuits were synthesized
using Synopsys Design Analyzer on the same machine. It
shows for each design, the number of states, inputs/outputs,
transitions. The total number of added transitions (m), coin-
ciding transition (m1), extra added transitions (m2), and extra
inputs needed to add the watermark (ewm) are also shown.
C/NC defines if the design under investigation is completely
specified, so at least 1 input is needed, or not. N represents
the number of iterations. Finally, the time (t) needed to insert

FSM Builder

Watermarker

Generator
Random

HDL Code

Watermarking Tool WM Design.kiss2

Kiss2 Format

Random I/P & Next State

WM HDL Code

Kiss2 Buider

Signature
Generator

HDL to Kiss2

Kiss2 to HDL

Fig. 2. Watermarking Prototype Structure

the watermark in each design is given in ms. The algorithm
adds the transitions without building the whole design tree, to
decrease the time needed to watermark a design. On the other
hand, the random generator favors states with free transitions,
higher seeds for such states, but this did not prevent uin adding
an input although the design is NCFSM, such as in the case
of EX1. The time for inserting the watermark is extremely
short, hardly exceeded 8 seconds in the case of scf with 54
iterations involved, which gives a good indication about the
low overhead the algorithm can introduce in the design cycle.

Table I evaluates the performance of the algorithm. This is
done by calculating the different probabilities shown before in
section IV. The removal probabilities (P s

r and P a
r) are shown.

Table I shows the area, power, and delay overhead compared
to the synthesized original circuit. The experimental results
demonstrate that the table that our approach has a very low
effect on the delay and power, especially when the design tend
to get larger. On the other hand, the area has high overhead for
small designs, then decreases as the designs get larger. This
is due to the large signature size compared to the original
circuit. As for the robustness of the system, the algorithm
failed to watermark some designs efficiently, either it could not
coincide transitions, such as for S1488, which cannot operate
in public-mode. This can be solved by changing the signature
generated or re-watermark the design, but this will result on
higher design overhead.

It is worth mentioning that, the probability of coincidence
Pu is nearly constant and less than 2×10−39. Also, increasing
the coinciding transitions (m2) will directly increase the ro-
bustness of the system in the public-key case, yet it lowers the
robustness of the system in the secret-key mode. Obviously,
the overheads decreases, as the design size increases.

VI. CONCLUSIONS

Sharing IP blocks in such a competitive market poses sig-
nificant high security risks. Digital watermarking has emerged
as a candidate solution at the detection phase of copyright
protection for IP blocks. In this paper, we proposed, analyzed,

6

and implemented a novel approach for watermarking sequen-
tial IP designs. The approach was based on the utilization of
coinciding transitions as well as the unused transitions of the
design FSM in order to give higher robustness. The approach
works in a public-key organization, where the detection key
can be shared with non-trusted parties.

We also defined different parameters needed to evaluate
the approach and tested it using experimental results with the
IWLS93 benchmark. The implemented algorithms are fast and
have a comparatively low overhead on the design, which would
help it to be integrated easily in the design cycle.

The main drawback of our approach is that it works on flat
FSMs, which is not the case when it comes to real designs.
We are in the course of extending the approach to handle
hierarchal designs, in order to ease its integration.

REFERENCES

[1] A. T. Abdel-Hamid, S. Tahar and E. M. Aboulhamid, “Hardware IP Watermarking
for Copyright Protection”, Technical Report, Electrical and Computer Engineering
Department, Concordia University, Montreal, Canada, June 2004.

[2] A. T. Abdel-Hamid, M. Zaki, and S. Tahar, “A tool for Converting Finite State
Machine to VHDL”, Proc. of IEEE Canadian Conference on Electrical & Computer
Engineering (CCECE’04), Niagara Falls, Ontario, Canada, Vol. 4, May 2004, pp.
1907-1910.

[3] A. T. Abdel-Hamid, S. Tahar and E.M. Aboulhamid: A Tool for Automatic
Watermarking of IP Designs; Proc. IEEE Northeast Workshop on Circuits and
Systems (NEWCAS’04), Montreal, Quebec, Canada, June 2004, pp. 381-384.

[4] I. J. Cox, M. L. Miller, and J. A. Bloom, “Digital Watermarking”, Morgan Kaufmann
Publishers, 1998.

[5] S. Cravar, “On Public-key Steganography in the Presence of an Active Warden”,
Technical Report RC20931. IBM Research Division, T. J. Watson Research Center,
July 1997.

[6] I. Hong and M. Potkonjak, “Techniques for intellectual property protection of DSP
designs”, Proc. of IEEE International Conference on Acoustics, Speech, and Signal
Processing, Munich, Germany, April 1997, pp. 3133-3136.

[7] Intellectual Property Protection Development Working Group, “Intellectual Property
Protection: Schemes, Alternatives and Discussion”, VSI Alliance, White Paper,
Version 1.1, August 2001.

[8] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M.
Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Constraint-Based Watermarking
Techniques for Design IP Protection”, Proc. of IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 20, No. 10, October 2001,
pp. 1236-1252.

[9] T. V. Le, and Y. Desmedt, “Cryptanalysis of UCLA Watermarking Schemes
for Intellectual Property Protection”, Lecture Notes In Computer Science, 5th
International Workshop on Information Hiding, Noordwijkerhout, The Netherlands,
October 2002, pp. 213 - 225.

[10] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0”,
Http://www.cbl.ncsu.edu/pub/Benchmark dirs/LGSynth93/, 1993.

[11] N. Narayan, R. D. Newbould, J. D. Carothers, J. J. Rodrguez, and W. Timothy
Holman, “IP Protection for VLSI Designs Via Watermarking of Routes”, Proc.
14th Annual IEEE International ASIC/SOC Conference, Washington DC, USA,
September 2001, pp. 406-410.

[12] A. L. Oliveira, “Techniques for the Creation of Digital Watermarks in Sequential
Circuit Designs”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 20, No. 9, September 2001, pp. 1101-1117.

[13] F. A. P. Petitcolas,“Watermarking Schemes Evaluation”, IEEE Magazine of Signal
Processing, Vol. 17, No. 5, September 2000, pp. 58-64.

[14] R. Rivest, “RFC 1321: The MD5 Message-Digest Algorithm”, Network Working
Group, 1992.

[15] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A System for Sequential Circuit Synthesis”, Technical Report 94720, Dept. of
Electrical Engineering and Computer Science, University of California, Berkeley,
USA, 1992.

[16] I. Torunoglu, and E. Charbon, “Watermarking-Based Copyright Protection of
Sequential Functions”, IEEE Journal of Solid-State Circuits, Vol. 35, No. 3, February
2000, pp.434-440.

TABLE I

IWLS93 BENCHMARK RESULTS USING OUTPUT MAPPING ALGORITHM

Circuit �I[O] �T[S] ewm m m1 m2 C/NC N t P s
r P a

r Area% Power% Delay%

MC 3[5] 10[4] 2 33 17 16 C 3 455 3.770e-12 8.570e-10 323 28.6 2.4

LION 2[1] 11[4] 1 128 116 12 C 1 35 1.500e-17 4.214e-17 240 17.307 0

DK27 1[2] 14[7] 2 64 48 16 C 1 85 5.814e-17 2.046e-15 153.2 19 3.6

EX4 6[9] 21[14] 0 26 13 13 NC 6 416 E7.1084e-12 9.614e-8 29.3 23.4 5.8

OPUS 5[6] 22[10] 0 22 9 13 NC 4 149 1.926e-11 2.010e-6 34.9 13.2 6.3

DK15 3[5] 32[4] 1 34 21 13 C 3 146 4.890e-14 1.077e-9 92.8 17.2 1.8

S27 4[1] 34[6] 1 128 125 3 C 1 133 1.4377e-6 2.929e-6 36.2 3.7 0

SSE 7[7] 56[16] 1 19 6 13 C 5 214 1.268e-24 5.918e-15 29.2 14.2 2

BBARA 4[2] 60[10] 1 64 42 22 C 1 27 7.1750e-25 1.244e-17 72.3 17.3 -1.1

S510 19[7] 77[47] 1 22 8 14 NC 4 286 2.631e-17 3.127e-6 34.2 8.9 3.2

S1 8[6] 107[20] 1 28 13 15 C 4 485 3.251e-20 2.671e-8 31.7 14.8 3.4

PLANET 7[19] 115[48] 1 9 4 5 C 17 829 4.441e-9 0.0079 36.2 12.4 0.9

EX1 9[19] 138[20] 1 8 3 5 NC 17 1001 1.938e-9 0.0178 17.391 14.516 3.5

STYR 9[10] 166[30] 1 15 7 8 C 8 566 4.094e-14 1.554e-4 13.4 15.4 1.8

S832 18[19] 245[25] 1 7 0 7 C 17 743 1.236e-13 1 6.8 6.4 0

S1494 8[19] 250[48] 1 8 7 1 C 17 646 8.494e-14 0.125 11.6 3.2 1.8

S1488 8[19] 251[48] 1 7 0 7 C 17 1407 0.0038 1 14.6 3.2 0

SCF 27[56] 166[121] 0 3 0 3 NC 51 8021 1.265e-6 1 3.5 9.8 1.4

KIRKMAN 12[6] 370[16] 0 22 11 11 NC 10 201 1.369e-21 1.417e-6 2.1 1.6 0.5

S298 3[6] 1096[218] 1 22 3 19 C 4 154 1.436e-41 6.493e-4 5.4 5.8 0.7

TBK 6[3] 1569[32] 1 43 18 25 C 1 144 1.223e-55 1.643e-12 1.7 3.2 0.2

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

