Scheduling of Soft Real-time Systems for Context-aware Applications

Jennifer L. Wong*, Weiping Liao', Fei Li", Lei He', Miodrag Potkonjak*
 Computer Science Department, University of California, Los Angeles
T Electrical Engineering Department, University of California, Los Angeles

Abstract

Context-aware applications pose new challenges, in-
cluding a need for new computational models, uncertainty
management, and efficient optimization under uncertainty.
Uncertainty can arise at two levels: multiple and single
tasks. When a mobile user changes environments, the con-
text changes resulting in the possibility of the user request-
ing tasks which are specific for the new environment. How-
ever, as the user moves these requested tasks may no longer
be context relevant. Additionally, the runtime of each task is
often highly dependent on the input data.

We introduce a hierarchical multi-resolution statistical
task model that captures relevant aspects at the task and in-
tertask levels, and captures not only uncertainty, but also in-
troduces the notion of utility for the user. We have developed
a system of non-parametric statistical techniques for model-
ing the runtime of a specific task. This model is a framework
where we define problems of design and optimization of sta-
tistical soft real-time systems (SSRTS). The main algorith-
mic novelty is a cumulative potential-based task schedul-
ing heuristic for maximizing utility. The heuristic conducts
global optimization and induces low runtime overhead. We
demonstrate the effectiveness of the scheduling heuristic us-
ing a Trimaran-based evaluation platform.

1. Introduction

Application domains often imply a need for unique com-
putational models and unique optimization goals. Recently,
a new domain of context-sensitive mobile wireless applica-
tions emerged. Context can be defined as the set of envi-
ronmental states and settings that either determine an ap-
plication’s behavior or in which an application event occurs
and is interesting to the user [1]. Context-sensitive appli-
cations include mobile applications, sensor networks, per-
vasive and ubiquitous computing, Internet browsing, video
games, and virtual reality. In all these applications, the next
set of computational tasks which might be executed statisti-
cally depend on the current context of the user and the cur-
rent executed tasks. Additionally, there is intrinsic uncer-
tainty about which context direction the user will follow.

1530-1591/05 $20.00 © 2005 IEEE

We have developed a new computational model, statisti-
cal soft real-time systems (SSRTS). We represent the work-
load of a user as a system of tasks with execution depen-
dencies. At each moment of time, the scheduler has infor-
mation about the tasks in the current context of the user and
statistical information about the likelihood of future pend-
ing tasks to be executed by the user. For all tasks, we have
statistical information about the likelihood that they will be
completed in a given amount of time on a given processor.
Therefore, SSRTS considers uncertainty at two levels: the
execution time for a single task and the user invoked sub-
set of tasks. What is unique for SSRTS is that uncertainties
are addressed using statistical techniques.

The SSRTS model is related to both hard and soft real
time systems. The main difference from hard real-time sys-
tems and the SSRTS model is that the only a subset of the
tasks needs to be executed and therefore their exists uncer-
tainty. In comparison to classical soft real time systems, SS-
RTS differs in the presence of statistical information about
tasks and requirements which one has to complete the task
in order to achieve a measure of benefit. Note that one can
interpret traditional soft real-time systems (SRTS) as a spe-
cial case of SSRTS, by partitioning each task in the SRTS
into a series of smaller tasks.

2. Related Work

In this section, we briefly survey the related work in sev-
eral directly related fields. The pervasive computing com-
munity and many others have contributed a number of no-
table efforts in this area, including [13]. Models of compu-
tation have been recognized as the first building block for
the development of formally sound systems [3]. Shin et al.
discuss the task-level computational models for real-time
applications [11]. Scheduling of hard, soft, and a combina-
tion of hard and soft real-time systems has been also ad-
dressed in CAD literature [10]. While hard real-time sys-
tems [9] ask for an absolute guarantee that all deadlines are
satisfied, there is no such requirement for soft real-time sys-
tems. Soft real-time systems has been mainly motivated by
applications from two domains: databases [5], and multi-
media [4]. An important characteristic of real-time systems
is the timing constraints of each task. Determining an esti-

OFF-LINE

Possible Tasks

| [vean Numerical sensor
| Bench Recipes Networks

S Trimaran
imulation Workstation
Platform

TPAQ

SDFs for
Tasks

ON-LINE

Models of
Context

EVALUATION

Known Solution
Generator

v
A

N
[l Soft Realtime
Scheduling

/L
0

¢ Comparison with
Satistical Non-Parametrical Experimental [l Lower Bound
Runtime Data Statistical Model Builder Data/Benefit

Figure 1. Global Flow for Scheduling SSRTS.

mate of the worst case execution time (WCET) for tasks is
often crucial for making judgments concerning timing prop-
erties in real-time systems [7]. We use non-parametric sta-
tistical techniques for the development of the task model
due to their application to data which has arbitrary distribu-
tions and without any assumptions on the data [12].

3. Preliminaries and Global Flow

A task is a single program which can be invoked and ex-
ecuted. For example, a task may be a single execution of a
jpeg decoder, audio decompression, or audio player. Each
task has a set of attributes including its name, type, util-
ity (benefit), arrival time, deadline, and a statistical distribu-
tion function that characterizes its execution time. The util-
ity of the task is the benefit gained by the user for complete
execution of the task. The utility or benefit is proportional
to the value of the programs that are executed within time
intervals specified by the user. The point in time at which
the task must be completed in order to receive benefit for
the task is the deadline. The utility and the deadline can be
statistically determined based on the users previous behav-
ior i.e. according to their profile. The statistical distribu-
tion function (SDF) for execution time provides informa-
tion about the statistical likelihood of specific runtimes for
a task. The runtime of the task is plotted versus the likeli-
hood of the task completing execution at each runtime. Be-
tween two tasks there can be two types of relationships: de-
pendency and weighted likelihood. If the results of one task
is needed for the execution of another task, we specify this
relationship as a dependency. A weighted likelihood rela-
tionship reflects the user’s likelihood to request the execu-
tion of a task after the completion of another task.

The system, shown in Figure 1 consists of three stages:
off-line, on-line, and evaluation. The goal of the off-line
stage is to statistically characterize each of the tasks in terms
of their runtime and to determine the user profiles. In the
on-line stage, the information learned in the off-line stage is
used to guide the real-time scheduler. Lastly, the evaluation
stage evaluates and validates the performance of the sched-
uler against lower bound estimates. The off-line stage starts
with an analysis of the possible tasks that the user can in-
voke. Analysis of each of the tasks on different simulation

platforms is performed in order to gather statistical runtime
data for each of the tasks. Non-parametric statistical tech-
niques are use to model the runtime of each task. The re-
sulting output is the statistical distribution function (SDF)
of execution times for each task. We discuss the technical
details concerning this process in Section 4. Additionally, in
this stage, information from the user concerning the user’s
task preferences is gathered.

Once the user profile and the task profiles have been es-
tablished, the user can start to use the system. As the user
changes contexts (e.g. moves from a particular place to a
new place), different tasks can be invoked. The possible
tasks in the user’s context are contained in an instance of
the task model which we discuss in Section 4, i.e. window
of consideration. It is often beneficial to invoke a subset
of pending tasks in order to maximize the overall benefit.
The real-time scheduler schedules the possible tasks with
the goal of providing the user with the maximal amount
of benefit. When the user invokes a task, one of two sit-
uations may occur. In the first situation, the scheduler had
pre-fetched the invoked task and the data is available. In this
case, the scheduler has provided benefit to the user. How-
ever, if the scheduler had not pre-fetched the task, the task
may still be finished by the tasks deadline. If so, and the
task has exceeded its deadline the task finishes execution
prior to the deadline placed according to the user’s profile,
benefit is gained. Otherwise, the task is dropped from con-
sideration and the user gains no benefit. The purpose of the
final stage, evaluation, is to determine the effectiveness of
the modeling software and scheduling heuristic. Evaluation
is done through a comparison with lower bound estimates.

4. Statistical Model of Task

The purpose of the task model is to provide a compact
and accurate representation of soft real-time tasks with re-
spect to their execution time. The task model has three hier-
archical layers: window of consideration, intertask, and in-
tratask. At the top is the window of consideration, which de-
termines the current prospective of the model. The middle
layer, intertask, encompasses the interaction between differ-
ent tasks. Finally, the lowest level models each task in de-
tail. Figure 2 illustrates these layers.

The intratask layer defines a single task according to its
process requirements and statistical information. Each task
is represented by four components: name or type of task,
utility, deadline, and a statistical distribution function (SDF)
for the task’s runtime. The utility of the task measures the
benefit that is gained by the application or user if the task is
completed. The utility can be defined by the user in terms
of application preferences, or can be determined based on
the profile of the user. The profile can be statistical infor-
mation gathered from the user’s hard real-time requests or
feedback from the user. The deadline of the task can be rep-
resented as absolute time or relative to the arrival time of

the task. The deadline is based on the requirements placed
by the user on the latency of the task. There is intrinsic un-
certainty associated with the runtime of the task. In order to
represent this uncertainty, a statistical distribution function
(SDF) for the runtime of the task is used. The statistics for
creation of the SDF can be gathered through off-line evalu-
ation of the task under various conditions, as shown in the
off-line stage of Figure 1.

In order to create a runtime model, in the form of an
SDF, for each task, we use the non-parametrical statistical
resubstitution technique and a greedy provably optimal al-
gorithm. Before we discuss the iterative creation process for
an SDF, we first introduce the notion of a cumulative statis-
tical distribution function (CSDF) and a measure for differ-
ences between CSDFs. The CSDF is the likelihood that the
runtime of task is less than or equal to the current time unit.
The cumulative likelihood at time unit x of the CSDF as the

Z SDF (i) where SDF (i) is the value of the SDF at time

i The difference between two CDFs can be calculated by
comparing the difference between the likelihoods at each
time unit. We deﬁne the difference between a CSDF § and

k other CSDFs as 2 2 |S(i) — CSDF;(i)| where m is the
0=

length of the longest jCSDF. This definition naturally cap-

tures the impact of differences on applications.

When creating a SDF to capture the statistical informa-
tion about runtime of a task, the goal is to create an SDF
which “best” represents the likelihood of the task’s runtime.
We define “best” as the SDF which has the smallest CSDF
difference between itself and all other SDFs. The process
of creating a representative SDF begins with the runtime
data for each task which is collected from the simulation
platforms. The initial collected data should be a representa-
tive set. Resubstitution is applied to the data for each task to
form a large number of subset SDFs, at least a thousand sub-
sets to be statistically sound. Each of the subset SDFs are
then converted into CSDFs. A representative CSDF is first
created that will later be converted to a representative SDF
for the task. The representative CSDF is created by consid-
ering the values of each subset CSDF for each time unit. If
there are an odd number of CSDF subsets, the median value
is selected as the representative value for that time slot. In
the case of an even number, the midpoint value between the
two median defining values is selected. The selected values
for each time slot are optimal. This is due to the fact that if
any value selected which is between the CSDF value to the
right or the left of the median value, then more than half of
the other CSDF values will be at an increased distance from
the representative value. Therefore, no other CSDF assign-
ments for each value will result in a smaller difference.

The main purpose of the intertask layer is to represent the
relationships between tasks. We introduce two types of di-
rected relationships between tasks: dependencies and like-

Window of Consideration

.|
I~

EH Ekl

=g
el
CEal - rrrrr -2a

Intratask

C Name/Type

Utmty | I
Deadllne

Figure 2. Task Model hierarchy: Window of Con-
sideration, Intertask, Intratask levels.

lihood. Dependency relationships imply that data from the
initial task is needed in order for the second task to perform
its function. For example, if the user requested a sound file
to be played, the file must first be decompressed, then it can
be played. In Figure 2 we represent dependency edges us-
ing solid arrows. The weighted likelihood edges, drawn as
dotted arrows, represent the likelihood of the second task
to be requested by the user after the execution of the ini-
tial task. Note that the resultant intertask model forms a di-
rected acyclic graph (DAG).

The highest layer in the hierarchy is the window of
consideration. The window of consideration determines the
portion of the model which is currently considered accord-
ing to the user’s context. The size of this window is de-
pendent on the amount of available memory, the processing
utility, and the requirements of the application.

5. Problem Formulation

In this section, we introduce the benefit maximiza-
tion under uncertainty scheduling optimization problem.
We also establish the computational complexity of the prob-
lem. For a context-sensitive computing application, the
user has the opportunity to execute a variety of tasks de-
pendent upon the users current context. Each task has
uncertainty in terms of its execution time. It is also un-
certain which of the tasks will be eventually request for
execution. The goal is to pre-fetch, schedule, and exe-
cute tasks to achieve the highest overall utility.

A single directed acyclic graph, such as the subgraph de-
fined by the window of consideration presented in the task
model, is composed of task vertices and dependencies (par-
tial order) and weighted likelihood edges. Each task in the
graph corresponds to a single task to possibly be scheduled,

and is composed of the four components as shown in Fig-
ure 2: name or type of task, utility of the task, deadline,
and SDF. The goal is to maximize the total benefit achieved
by scheduling tasks and completing each of these tasks be-
fore their deadline under the condition that benefit is only
received if the task was requested (subset of tasks).

We proved that the Maximum Benefit under Uncertainty
Scheduling problem is computationally intractable since it
is a special case of the Sequencing with Release Times and
Deadlines Problem [2] which is NP-complete. This special
case occurs when the benefit for each task is 1, all tasks have
a probability of execution equal to 1, the SDF of each task
is replaced with a known static execution time, and all de-
pendency and likelihood edges are removed.

6. Scheduling

The goal of the scheduling approach is to determine
which tasks from the current window of consideration, or
current context of the user, should be scheduled based on
the user’s likelihood to request the task to be executed and
the benefit the user receives if the task is completed. The
intuition behind the heuristic is to select tasks according
to the following three criteria: (i) high likelihood of exe-
cution (likelihood edges), (ii) high user benefit, and (iii)
SDF which show high likelihood to finish the task within its
deadline. We assume that at periodic intervals of time, the
current context of the user is provided to the algorithm, i.e.
the window of consideration is refreshed. In our experimen-
tation, the window of consideration is always two period
lengths. The second assumption is that only single depen-
dencies exist between two tasks, meaning a task can only
be dependent on the output of one task. Note that this con-
dition is often true in context-sensitive applications and in
other situations one can reduce more complex situations to
this one by introducing dummy tasks with runtime and ben-
efit equal to zero. Using the three stated criteria, we have
developed the following heuristic approach. For each pe-
riod, we consider all tasks which have arrived and have not
exceeded their deadline. All tasks which have dependency
edges are merged into a single representative task, which
we discuss later in this section. For each task, we consider
its maximum potential and average potential according to
the above mentioned three criteria. According to these two
measures, we select the order of tasks to be executed in this
period. If the task which is being executed exceeds it’s dead-
line, the task is dropped and the next task executed. A spe-
cial condition exists if the task is part of the dependency
tree. In this case, if the task has exceeded its deadline, it
should not necessarily be dropped due to the fact that its out-
put maybe necessary to execute other task(s). In this case,
we calculate the tasks maximum potential to finish within
k additional units of time using the task’s SDF. At the end
of the period, each task which has not exceeded its dead-
line is kept to consider in the next period.

Algorlthm

Let b(¢) be the benefit value for finishing task 7;

Let SDF () be the probability distribution function for
task #;

Let D(t) be the deadline for task 7;

Let p(t) be the probability of executing task 7,
i.e. sum of all incoming probabilities;

Let R be the set of tasks that arrived before the current
period;

Let MaxB be the maximum benefit density for task #;

Let AvgB be the average benefit density for task ¢;
but have not been finished;

Let W (z) be the weight of task ¢ in our scheduling;

R — .

VX Ny o Rw D=

10. Foreach period P;{

11. LetS=RUT;

12. Substitue the tasks in one dependency tree with a
single task by combining SDF of tasks in the
dependency tree;

13. Foreach task t € S{

14. Calculate MaxB(t,SDF (t),D(t), p(

15. Calculate AvgB(t, SDF (t),D(t), p(t

16. Calculate MLEB(t,SDF(t),D(t),

17. if(ave runtime/period length >.5)

=
A~
~
N
-

18. W (1) = MaxB + MLEB;
19. else
20. W(t) = AveB+MLEB; }

21. Sort the tasks in S in non-increasing order by W(t);

22. Schedule the tasks in S according to W (¢) until period
P; is finished;

23. Drop task 7 in S only if it has passed its deadline D(t)
and it is not a combined task from a dependency tree;

24. Truncate and re-scale the SDF (¢) if task 7 in S is
executed but not finished;

25. R=S5;S=¢;}

Figure 3. Pseudo-code for scheduling.

The pseudo-code for the approach is presented in Figure
3. Lines 1-9 define the notation used to represent the task
model. The processing for each period begins on line 10.
Essentially, at the beginning of period i, 7; tasks arrive and
are considered in conjunction with the tasks from the pre-
vious periods which have not passed their deadline. If there
are any dependencies between the tasks, we combine then
into a single tasks. Since only single dependencies exist, ei-
ther a dependency chain or tree can be constructed. In the
case of a tree, we simplify the situation, in order to make the
algorithm efficient by converting the tree into a chain. It is
done by performing depth-first search on the tree and plac-
ing the tasks in a chain according to order.

In order to represent the chain of dependency tasks as a
single “combination” task, we must combine the SDFs to
form a representative SDF. The method used to construct
the combined SPDF is, for any given amount of time, we
try all possible time allocation schemes to individual tasks
in the dependency chain and use the best finishing probabil-
ity, ie. achievable benefit, as the value for the combined SDF
at that given time. For any given amount of time, there is an
exponential number of possible allocation schemes for a de-
pendency chain. We use a heuristic algorithm to create the
combined SDF. First, for each task’s SDF, we allocate time
to that task such that the task may achieve the largest fin-
ishing probability in its SDF. Next, we sum all the best allo-
cated times for all the tasks in the chain resulting in the total

Location Discovery SDF
0.05 0.08

2-22 5 006 |
| g
S 0.02 % 004

0 0

Time units Time units

g721encode SDF

lihood

Like

Figure 4. SDFs of Benchmarks: location discov-
ery and g721encode tasks.

allocated time A for the dependency chain. To construct the
combined SDF, we use a dynamic programming method.
Suppose the given time for the combined SDF is A — 1, we
then examine the sensitivity of each task’s PDF, i.e., if the
allocated time to that task is reduced by one, how much ben-
efit will be lost. We choose the task with the lowest sensi-
tivity and reduce the time allocated to that task by one. This
is the value of the combined SDF for A — 1. Through this
method, we can re-construct the combined SDF (combined
benefit delivery function) by computing in both directions
from A.

Once all tasks have been represented as independent
tasks, we determine the suitability of each task for schedul-
ing. The suitability is the task’s potential according to the
three criteria. Measures can be defined to summarize the
potential benefit of a task. For example, we can define
two measures: MaxB and AveB. Let I(x) be the likeli-
hood of the SDF at time unit x. We define MaxB as the
maximum(w), over all x in a domain where /(x)
is defined. This measure essentially indicates the maxi-
mal potential benefit for a task normalized with respect
to consumed time. The higher the MaxB, the more bene-
fit this task delivers in the same amount of execution time
in the best case scenario. The average expected benefit
for a task with a given SDF is denoted by AvgB and de-

fined as w. Obviously, neither the maximum nor
ength(SDF)
the average metric alone is enough to guide the schedul-
ing approach, because both abstract only some aspects of
each SDF. Following, the maximum likelihood principle,
for summarizing the SDF information, we use most likely
expected benefit, MLEB, defined as), w In or-
der to prevent often selection of tasks with benefit variance
too high or too low, we combine the MLEB with two other
measures. If the ratio of the average runtime to the avail-
able time is low, we use MLEB and AveB and if high, we
use MLEB and MaxB. The weight factor for MLEB is pro-
portional to the square of the inverse of the ratio. The result-
ing weight is assigned to each task, and the tasks are sorted
according to the highest weight value (line 21). Each task
is scheduled in this order until the end of the period. If at
any point in time a task exceeds it’s deadline, the task is
dropped, unless it is part of a dependency tree. For any task

which has begun execution, and has not finished or passed
its deadline, we shorten the task’s SDF and rescale the SDF
according to the amount of processing already completed.
The tasks which still remain as possible executable tasks,
are passed on to the next period, and the process is repeated.

7. Experimental Results

In this section, we present experimental evaluation of the
developed techniques and algorithms. We have two goals.
First, to demonstrate the relevancy and accuracy of the
SDF in the task model. The second is to demonstrate the
effectiveness of the benefit under optimization scheduling
heuristic. In order to accomplish these goals, we compare
the results with a lower bound which is also presented.

In order to evaluate the effectiveness of our approach, we
introduce a lower bound technique. The approach is based
on a relaxation of the benefits under uncertainty problem
which replaces SDFs with static execution times, dependen-
cies between tasks are removed, and preemption is allowed.
For each fraction of a task that is executed, partial benefit
is included into the overall benefit. The lower bound algo-
rithm is applied on a period-by-period basis. For each time
period, the algorithm runs the task with the highest bene-
fit to runtime ratio, and preempts the task when a task with
a higher ratio arrives or the task’s deadline is reached.

In order to establish the effectiveness of both the SDF
and the new approach for scheduling, we selected a va-
riety of multimedia, statistical tasks, and sensor network
tasks. The multimedia tasks (e.g. g721encode, gsmencode)
were taken from the MediaBench test suite [6]. For statis-
tical and computation tasks, we used programs (xfit, ksone,
twofft) from the Numerical Recipes software [8]. The sen-
sor network tasks, location discovery and exposure were
used. SDFs from two benchmarks are shown in Figure 4.

In order to demonstrate the relevance and effectiveness
of the SDFs as a measure of runtime over the average or
worst case expected runtime in the model, we experimented
using the heuristic algorithm. Fifty different real-time in-
stances were created using the task model with the SDF,
with the SDF replaced by average runtime, and with the
SDF replaced by worst case runtime. Additionally, the in-
stances varied in period length and amount of dependen-
cies between tasks. Each of the instances were tested using
the lower bound and heuristic approach. Table 1 provides
the statistics for all of the examples. The use of the SDF
in the task model proved to be more effective in all cases.
The accuracy of the SDF to represent the expected runtime
of a task was determined using the resubstitution and con-
fidence calculation procedure presented in Section 4. For
each of the SDFs created for the benchmark tasks, we vali-
dated using a 90% confidence interval of the SDF values at
four likelihood intervals, 90%, 60%, 30%, and 10%. For a
subset of the instances we present the true maximum trial
runtime (in cycles) for each benchmark and the true confi-

[[[Max Value] 10% [30% [60% [90% J
721encode 2.63E7 (3.6-11.4)-10° | (2.4-3.3)-10° (4.5-6.2)-10° (1.0-1.5)-107
\ [[SDF [Ave. [WorstCase | ormalized 0.01-0.04 0.09-0.13 0.17-0.24 0.40-0.59
MinB |[33% | 5% 9% gsmencode 3.81E8 (.90-1.4)-10° | (2.2-2.9)-107 (3.8-5.1)-10 (1.5-1.9)-10%
MaxB || 71% | 57% 55% Normalized 0.02-0.04 0.06-0.08 0.10-0.14 0.40-0.51
AveB 53% | 39% 37% xfit 2300 (1-1)-10° (1-1)-10° (1-1)-10° (1-1)-10°
Var 0.010 | 0.025 0.0242 Normalized 0.0478-0.0478 | 0.0478-0.0478 | 0.0478-0.0478 | 0.0478-0.0478
‘Loc.Discovery H 46200 ‘ (1.1-1.3)-10% ‘ (1.3-1.7)-10* ‘ (1.7-2.0)-10* (2.2-2.9)-10* ‘
Normalized 0.025-0.3 0.3-0.37 0.37-0.46 0.48-0.65

Table 1. (Left) Normalized benefit statistics for different runtime mechanisms used in task model. (Right)

Confidence Intervals for SDFs of benchmarks.

Normailzed Benefit

7 06
Utilization

Figure 5. Algorithm benefit normalized vs. ben-
efit of lower bound for varying utility.

dence interval for each interval in Table 1. Additionally, we
present the normalized confidence range.

We now present analysis of our heuristic schedul-
ing approach. Comparison is performed against the lower
bound. Additionally, we test the performance of the ap-
proach with varying processing utilization. The purpose of
the utilization is to determine the effectiveness of the ap-
proach with respect to systems with varying resource limi-
tations, such as laptops or portable devices such as PDAs.
Figures 5 presents the performance results for twenty dif-
ferent scheduling instances, shown on the y-axis. The bene-
fit achieved by the heuristic is normalized against the lower
bound benefit (z-axis). The third dimension is the proces-
sor utilization factor. In Figure 5 the period length is 300
units. Similar results were obtained for a period of 200
units. In both cases with 100% utilization of the proces-
sor, we are able to achieve between 50-70% of the lower
bound. With between 30-40% utilization, we can pro-
cess all tasks.

8. Conclusion

We have developed a multi-resolution statistical soft
real-time task model of computations that addresses the
needs of context aware applications. We also have imple-
mented a system of non-parametric statistical techniques for
modeling the runtime of a specific task. Furthermore, we

have proposed and tested a new cumulative potential-based
task scheduling heuristic for maximizing utility.

References

[1] G. Chen and D. Kotz. A survey of context-aware mobile
computing research. Technical Report TR2000-381, Dept.
of Computer Science, Dartmouth College, November 2000.

[2] M. R. Garey and D. S. Johnson. Computers and intractabil-
ity: a guide to the theory of NP-completeness. W. H. Free-
man, 1979.

[3] A. Jantsch. Modeling Embedded Systems and SoC’s: Con-
currency and Time in Models of Computation. Morgan Kauf-
mann, 2003.

[4] M. B. Jones, D. Rosu, and M. Rosu. CPU reservations
and time constraints: Efficient, predictable scheduling of in-
dependent activities. In Symposium on Operating Systems
Principles, pages 198-211, 1997.

[5] B. Kao and H. Garcia-Molina. Deadline assignment in a dis-
tributed soft real-time system. IEEE Transactions on Paral-
lel and Distributed Systems, 8(12):1268-1274, 1997.

[6] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
abench: A tool for evaluating and synthesizing multimedia
and communicatons systems. In International Symposium
on Microarchitecture, pages 330-335, 1997.

[7]1 Y. T. Li, S. Malik, and A. Wolfe. Efficient microarchitecture
modeling and path analysis for real-time software. In /IEEE
Real-Time Systems Symposium, pages 298-307, 1995.

[8] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical recipes in C : the art of scientific comput-
ing. Cambridge University Press, 1997.

[9] K. Ramamritham and J. Stankovic. Scheduling algorithms
and operating systems support for real-time systems. Pro-
ceedings of the IEEE, 82(1):55-67, 1994.

[10] K. Richter and et al. Model composition for scheduling anal-
ysis in platform design. In Design Automation Conference,
pages 287-292, 2002.

[11] K. Shin and P. Ramanathan. Real-time computing: a new dis-
cipline of computer science and engineering. In Proceedings
of the IEEE, volume 82, pages 624, 1994.

[12] R. Thisted. Elements of statistical computing. Chapman and
Hall, 1988.

[13] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active
badge location system. ACM Transactions on Information
Systems, 10(1):91-102, January 1992.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

