
TDMA Time Slot and Turn Optimization with
Evolutionary Search Techniques

Arne Hamann, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig / Germany

{hamann|ernst }@ida.ing.tu-bs.de

ABSTRACT

In this paper we present arithmetic real-coded variation
operators tailored for time slot and turn optimization on
TDMA-scheduled resources with evolutionary algorithms.
Our operators implement a heuristic strategy to converge
towards the solution space and are able to escape local
minima. Furthermore, we explicitly separate the variation
of the admitted loads and the turn-length in order to
give the designer increased control over the optimization
process. Experimental results show that our variation oper-
ators have advantages over string-coded binary variation
operators which are frequently used to solve continuous
optimization problems.

I. I NTRODUCTION

Design space exploration for heterogeneous MpSoC or
distributed systems is a tedious task due to many design
parameters with very different effects. Parameter selection
is difficult enough for discrete design parameters, such
as task priorities, but becomes even more challenging for
continuous parameters, such as TDMA timing.

One popular approach in walking through the search
space is the use of evolutionary search techniques. How-
ever, their effectiveness strongly depends on the coding of
the problem variables as well as the used crossover and
mutation operators.

While for discrete and permutation problems efficient
coding techniques and variation operators are known to
achieve good solutions, continuous optimization problems,
like TDMA time slot assignment, challenge the search-
power of string-coded binary evolutionary algorithms.

In this paper we propose arithmetic real-coded variation
operators tailored for time slot and turn optimization
on TDMA-scheduled resources. Thereby, our strategy of
walking through the search space is split into two aspects:
optimizing the admitted loads of the mapped tasks as well
as optimizing the TDMA turn-length. Both factors together
define the quality of a time slot assignment. According to
these two important factors we introduce four variation
operators. One crossover and one mutation operator that
vary the admitted loads of the mapped tasks while letting
the turn-length constant as well as one crossover and one
mutation operator that vary the turn-length and make sure
that the admitted loads of the tasks stay constant.

The crossover operators implement a heuristic strategy
of converging towards solutions lying ”between” individ-
uals currently considered by the evolutionary algorithm,

whereas the mutation operators serve to break out of local
minima by increasing or decreasing the admitted loads and
the turn-length, respectively, within certain limits.

For experiments, this approach is used for local opti-
mization of TDMA-scheduled resources within a design
space exploration framework for global optimization of
heterogeneous MpSoC and distributed systems [5].

II. D ESIGN SPACE EXPLORATION FRAMEWORK

Figure 1 shows the design space exploration loop
performed in our framework [5]. TheOptimization Con-
troller is the central element. It is connected to scheduling
analysis and to an evolutionary multi-objective optimizer.
Scheduling analysis checks the validity of a given system
parameter set, that is represented by an individual, in the
context of the overall heterogeneous system. The evo-
lutionary multi-objective optimizer is responsible for the
problem-independent part of the optimization problem, i.e.
elimination of individuals and selection of interesting indi-
viduals for variation. Currently, we use SPEA2 (Strength
Pareto Evolutionary Algorithm 2) [12] for this part, which
is coupled via PISA (Platform and Programming Language
Independent Interface for Search Algorithms) [1].

Fig. 1 - EXPLORATION FRAMEWORK

Different parameters of a system, such as time slots
or priorities, are encoded on separate chromosomes. The
user selects a subset of all parameters for optimization.
The chromosomes of these parameters form an individual
and are included in the evolutionary optimization while all
others are fixed and immutable. The variation operators
of the evolutionary algorithm are applied chromosome-
wise for these individuals. More details on the optimization
system can be found in [5].

In this paper we explain in detail one possible search
parameter in our exploration framework, the time slot

1530-1591/05 $20.00 © 2005 IEEE

assignment on TDMA-scheduled resources. The results
are, however, applicable beyond this exploration system.

The remainder of this paper is structured as follows.
After an overview of related work, we introduce the
proposed variation operators which are used within the
framework to optimize the time slot assignments of tasks
mapped on TDMA-scheduled resources. By means of
extensive experiments we then compare the new operators
with binary-coded single-point crossover and binary-coded
mutation.

III. R ELATED WORK

There is a large body of work in the area of design space
exploration and optimization of heterogeneous MpSoC and
distributed systems. In the following we give a small
overview of approaches for the optimization of different
system parameters as well as frameworks allowing to
explore given systems at different levels of abstraction.

The approach described in [11] introduces an analysis
technique to estimate end-to-end packet delays and queu-
ing memory in network processor architectures. Based on
this information a measure is defined to characterize the
performance of such architectures under different usage
scenarios. By means of design space exploration pareto-
optimal architectures are searched trading good perfor-
mance under several usage scenarios versus cost. In [7]
the authors treat the reverse problem. Instead of deter-
mining worst-case buffer requirements and output stream
properties for given input streams and scheduling policies,
the authors search for the input stream rates that can
be supported by a given stream processing architecture
without violating on-chip buffer constraints. The authors
propose the integration of this technique into a tool for
automated design space exploration for fast performance
evaluation of different stream processing architectures.

[3] presents a heuristic algorithm for priority assign-
ments in distributed hard real-time systems to optimize
end-to-end deadlines. The algorithm iteratively decom-
poses the global deadlines into artificial local deadlines
and then assigns deadline monotonic priorities on each
resource. This approach is thus not applicable to more
general priority assignments or other types of scheduling
policies.

The approach in [9] focuses on bus access optimization
(TDMA and static priority preemptive) in multi-cluster
embedded systems interconnected via gateways. Thereby,
the application structure is feed-forward. Optimization
objectives are end-to-end deadlines. The authors propose a
partitioning and mapping heuristic and a heuristic adjust-
ing TDMA slot sizes in time-triggered clusters. For the
priority assignments in event-triggered clusters a heuristic
presented in [3] is used.

[4] describes thePlatune framework allowing perfor-
mance and power tuning of a specific parameterized SoC
platform. For a given application to be mapped on the
target SoC,Platune determines all sets of architectural
parameter values representing pareto-optimal solutions re-
garding power and performance. The detection of all

pareto-optimal solutions is achieved effectively by clus-
tering the search space into independent parts, for which
pareto-optimal solutions can be determined separately.

The Spacewalker[10], part of thePICO project from
HP Labs, pursuits a similar approach. For given applica-
tions, it searches for pareto-optimal embedded systems.
The search space is explored using a divide-and-conquer
approach. In the first step different subsystem are explored
independently. From the sets of obtained pareto-optimal
subsystems, global systems are constructed and evaluated.
This hierarchical exploration approach seems to work well
for the architecture presented in the paper. However, for
performance dependent subsystems the combination of
local pareto-optima rarely leads to global pareto-optima.

TheSesameframework, part of theArtemis[8] project,
is used in [2] to tackle the mapping decision problem
of complex applications on heterogeneous embedded sys-
tems. The authors use evolutionary techniques to search
for solutions which are pareto-optimal regarding maximum
processing time, power consumption and total cost. These
solutions are then input to a simulation framework for
further evaluation. An interesting aspect in this approach
is the explicit distinction of pareto-optimal individuals and
pareto-optimal individuals fulfilling given constraints. By
this means a possible convergence of the evolutionary op-
timizer towards a set of pareto-optimal infeasible solutions
is prevented.

IV. TDMA T IME SLOT CHROMOSOME

The search space of all time slot assignments for the
tasks on a TDMA-scheduled resource is very large, even
if we fix the turn-length and the arithmetic precision.
Turn-length variation, which is often necessary to find
good solutions, adds another search dimension. Since it
is unrealistic to try all possible time slot assignments and
turn-lengths, a good strategy to walk through the search
space is indispensable. In this section we first motivate our
choice for the coding of the problem parameters. Then we
present the algorithms, i.e. creation of initial population
(section IV-B) and variation operators (section IV-C), of
the TDMA time slot chromosome used by our exploration
framework to walk through the search space of TDMA
time slot assignments.

A. Representation of the Chromosome

There are at least two basically different possibilities
for coding parameters in continuous optimization problems
for the use with an evolutionary algorithm: discretizing the
search space into a power of 2 and using a binary string
representation, or using a real number representation.

Encoding the problem parameters as real numbers
seems to be a suitable approach because of the value dy-
namic which is appropriate for a continuous optimization
problem. We decided to use arithmetic variation operators,
as mutation or crossover on the floating point representa-
tion has drastic effects even beyond the ”hamming cliff”
problem of binary encoding.

B. Initial population

For the creation of the initial population we specify
an initial TDMA turn-lengthturninit . Note that choosing
a sub-optimal initial turn-length for the initial popula-
tion does not lead to the incapability of the time slot
chromosome to find valid solutions because the variation
operators proposed in section IV-C are capable of adapting
the turn-length in the course of optimization. Nevertheless,
if the designer chooses a good initial turn-length the
chromosome converges faster towards the solution space.

Let R be a TDMA scheduled resource subjected to
optimization with the tasksT0, . . . ,Tk−1 mapped on it. The
worst-case execution time, i.e. assuming no interrupts, of
Ti is denoted byWCETi , its activating period byperiodi
and the length of its time slot bysloti . In the following we
refer to a specific time slot assignment asindividual and to
the set of individuals used by the evolutionary algorithm
aspopulation.

In order to create only valid (i.e. resource not over-
loaded, etc.) individuals for the initial population, we have
to ensure that for each taskTi its maximum loadloadmax;i
does not exceed its admitted loadloadadm;i .

loadadm;i ≥ loadmax;i ⇔ sloti
turninit

≥ WCETi
periodi

⇔ sloti ≥
WCETi
periodi

∗ turninit

This implies forTi a minimum time slot

slotmin;i =
WCETi
periodi

∗ turninit .

Algorithm 1 is used to create the initial population
which is uniformly distributed in the search space of all
valid time slot assignments with a turn-length ofturninit .
To do so, it randomly distributes the initial turn to the
tasksT0, . . . ,Tk−1. It respects above mentioned minimum
time slot length to prevent the creation of non-schedulable
individuals.

Algorithm 1 (Create valid initial individual) .
Input: initial turn-lengthturninit

minimum time slotsslotmin;0, . . . ,slotmin;k−1
Output: valid time slot assignment forT0, . . . ,Tk−1

1. f ree= turninit ;
2. set= {0,1, . . . ,k−1};
3. while (set 6= /0) {
4. choose randomr ∈ set;
5. set= set\ r;
6. if (set= /0) slotr = f ree;
7. else{
8. slotmax = f ree−∑x∈ setslotmin;x;
9. slotr = random(slotmin;r ,slotmax);

10. f ree= f ree−slotr ;
11. }
12. }

C. Variation Operators

The quality of a time slot assignment on a TDMA-
scheduled resource is determined by two factors: the
admitted loads of the mapped tasks and the turn-length.
According to these two problem parameters we introduce
in this section two real-coded crossover and two real-
coded mutation operators for the time slot optimization
on TDMA-scheduled resources. While one crossover and

mutation operator, respectively, varies the admitted loads
of the mapped task and holds the turn-length constant, the
other crossover and mutation operator, respectively, varies
the turn-length and leaves the admitted loads untouched.

Thereby, the two crossover operators implement a
heuristic strategy to converge towards the solution space,
whereas the mutation operators serve to break out of
local minima by decreasing or increasing the problem
parameters by up to a configurable maximum percentage.

The reason for separating these two problem parameters
is the increased control over the optimization process. By
configuring the probabilities for the use of the two different
operator types for crossover and mutation, the designer can
decide which of them is the preferred search parameter. In
the extreme case, she can, for example, hold the turn-length
constant and optimize only by varying the admitted loads.
Note that for the experiments performed in section V, both
types of operators are used with the same probability,
giving the evolutionary algorithm maximum freedom in
walking through the search space.

1) Crossover Operators:Algorithm 2 describes the
crossover operator varying the admitted loads while letting
the turn-length constant. As input it takes two parent
individuals from which it creates two offsprings. Its op-
timization strategy is related to a binary search method.

The admitted loads of the offsprings are placed evenly
(i.e. at 1

3 and 2
3) in the respective admitted load interval

defined by the two parents. The time slots of offsprings 1
and offspring 2, respectively, are then calculated according
to the turn-length given by parent 1 and parent 2, respec-
tively.

Figure 2(a) gives an example for this crossover operator.

Algorithm 2 (Crossover Admitted Load) .
Input: time slots of parentp1: [slotp1;0, . . . ,slotp1;k−1]

time slots of parentp2: [slotp2;0, . . . ,slotp2;k−1]
Output: time slots of offspringo1: [sloto1;0, . . . ,sloto1;k−1]

time slots of offspringo2: [sloto2;0, . . . ,sloto2;k−1]
1. turnp1 = 0;
2. turnp2 = 0;
3. for (i = 0; i <= k−1; i = i +1) {
4. turnp1 = turnp1 +slotp1;i ;
5. turnp2 = turnp2 +slotp2;i ;
6. }
7. for (i = 0; i <= k−1; i = i +1) {
8. loadadm;p1;i = slotp1;i/turnp1 ;
9. loadadm;p2;i = slotp2;i/turnp2 ;

10. di f f erence=| loadadm;p1;i − loadadm;p2;i |;
11. if (loadadm;p1;i < loadadm;p2;i) {
12. sloto1;i = (loadadm;p1;i +di f f erence/3)∗ turnp1 ;
13. sloto2;i = (loadadm;p2;i −di f f erence/3)∗ turnp2 ;
14. }
15. else{
16. sloto1;i = (loadadm;p1;i −di f f erence/3)∗ turnp1 ;
17. sloto2;i = (loadadm;p2;i +di f f erence/3)∗ turnp2 ;
18. }
19. }

The crossover operator varying the turn-length is de-
scribed by algorithm 3. It also pursuits a binary search
related strategy. Given the two parent individuals it cal-
culates their average turn-length (lines 1-7). Offspring 1
and offspring 2, respectively, is then created by adapting
the time slots of parent 1 and parent 2, respectively, to the
average turn-length letting the admitted loads untouched
(lines 8-11). Figure 2(b) visualizes the functionality of this
crossover operator by means of an example.

Algorithm 3 (Crossover Turn) .
Input: time slots of parentp1: [slotp1;0, . . . ,slotp1;k−1]

time slots of parentp2: [slotp2;0, . . . ,slotp2;k−1]
Output: time slots of offspringo1: [sloto1;0, . . . ,sloto1;k−1]

time slots of offspringo2: [sloto2;0, . . . ,sloto2;k−1]
1. turnp1 = 0;
2. turnp2 = 0;
3. for (i = 0; i <= k−1; i = i +1) {
4. turnp1 = turnp1 +slotp1;i ;
5. turnp2 = turnp2 +slotp2;i ;
6. }
7. turnnew = (turnp1 + turnp2)/2;
8. for (i = 0; i <= k−1; i = i +1) {
9. sloto1;i = slotp1;i/turnp1 ∗ turnnew;

10. sloto2;i = slotp2;i/turnp2 ∗ turnnew;
11. }

(a) Admitted Load Crossover (b) Turn Crossover

Fig. 2 - CROSSOVEROPERATORS

2) Mutation Operators: The crossover operators de-
scribed in section IV-C.1 lead to the convergence of the
obtained time slot assignments towards (locally) optimal
solutions contained ”between” individuals considered by
the evolutionary algorithm. Of course, it is possible that
the variety of the initial population is insufficient to find
good solutions only by using these crossover operators.
Additionally, the exploration may get stuck in a local
optimum, without the possibility to reach globally better
solutions.

In this section we introduce two mutation operators,
enabling the evolutionary algorithm to break out of local
optima and to reach parts of the search space not yet
considered.

The mutation operator varying the admitted load while
letting the turn-length constant is described by algorithm 4.
As input it takes one parent individual from which it
creates one offspring. After initialization,r2 pairs of tasks
are chosen (line 6-7). For each of these pairs the first
task gives a part of its disposable time slot (i.e. the time
slot it can dispense without overloading the resource) to
the second (lines 8-13). The percentage of the disposable
time slot dispensed is randomly chosen in the interval
]0,dmax], where dmax is configurable. Figure 3(a) shows
the functionality of this mutation operator by means of an
example.

Algorithm 4 (Mutate Admitted Load) .
Input: time slots of parentp: [slotp;0, . . . ,slotp;k−1]

max. % of disposable time slot dispensed:dmax
Output: time slots of offspringo: [sloto;0, . . . ,sloto;k−1]

1. turnp = 0;
2. for (i = 0; i <= k−1; i = i +1) {
3. sloto;i = slotp;i ;
4. turnp = turnp +slotp;i ;
5. }
6. choose pair randomr ∈ [2, . . . ,k];
7. chooser distinct integersq0, . . . ,qr−1 ∈ [0,k−1];
8. for (i = 0; i <= r−1; i = i +2) {
9. slotdisposable= slotp;qi − loadmax;qi ∗ turnp;

10. choose random doubledapplied ∈]0,dmax];
11. sloto;qi = sloto;qi −dapplied∗slotdisposable;
12. sloto;qi+1 = sloto;qi+1 +dapplied∗slotdisposable;
13. }

Algorithm 5 describes the mutation operator varying
the turn-length. First the target turn-length is chosen, by
increasing or decreasing the turn-length of the parent by a
percentage randomly chosen in the interval]0,dmax], where
dmax is configurable (lines 1-7). The offspring’s time slot
assignments are then calculated to sum up in the target
turn-length without altering the admitted loads given by
the parent’s time slot assignment (lines 8-9).

Figure 3(b) shows the functionality of this mutation
operator for a turn-length reduction of 20 %.

Algorithm 5 (Mutate Turn) .
Input: time slots of parentp: [slotp;0, . . . ,slotp;k−1]

max. % by which turn is cut or extended:dmax
Output: time slots of offspringo: [sloto;0, . . . ,sloto;k−1]

1. turnp = 0;
2. for (i = 0; i <= k−1; i = i +1)
3. turnp = turnp +slotp;i ;
4. choose random booleanb;
5. choose random doubledapplied ∈]0,dmax];
6. if (b = true) turnnew = turnp +dapplied∗ turnp;
7. elseturnnew = turnp−dapplied∗ turnp;
8. for (i = 0; i <= k−1; i = i +1)
9. sloto;i = slotp;i/turnp ∗ turnnew;

(a) Admitted Load Mutation (b) Turn Mutation

Fig. 3 - MUTATION OPERATORS

V. EXPERIMENTAL RESULTS

In this section we compare the variation operators
introduced in section IV-C with binary-coded single-point
crossover and binary-coded mutation operator.

The experiments are conducted with our exploration
framework [5] using SPEA2 (Strength Pareto Evolutionary
Algorithm 2) [12] as selector. The initial population is con-
structed according to algorithm 1 described in section IV-
B with an initial turn-lengthturninit = 10. The operators
varying the admitted loads and the operators varying the
turn-length are used with the same probability. For the
mutation operators we usedmax= 40%.

We conduct three different experiments. In the first
experiment we compare both approaches regarding the
time needed to find a solution for random task sets.
In the second and third experiment we investigate their
convergence in the search for valid solutions for systems
with global constraints.

A. Needed time to find a solution

In the first experiment we compare the binary-coded
operators with the proposed real-coded operators regarding
the time, expressed by the number of evaluated individuals,
they need to find a working time slot assignment. We use
random task sets containing 10 tasks with the following
attributes:

• Activating periodP between 200 and 600 time units
• Jitter J between 10 and 400 time units
• Minimum distance between successive events within

burstsd between 0 and 100 time units

• Core execution time between 5 and 15 time units
• Constraint 100+10∗ core execution time
Figure 4 shows the average results of 100 evaluated

random task sets. Compared to the binary-coded operators,
the proposed real-coded operators perform approximately
33,5% better in the average case.

Fig. 4 - AVERAGE NUMBER OF TESTED INDIVIDUALS TO FIND A

SOLUTION

B. Convergence towards the solution space

In the second experiment we take into account the 3
task sets described in table I. Each task in each system
is constrained by a hard deadline given in table II. We
assume that all tasks within a system are mapped on the
same TDMA-scheduled resource. Note that the systems
are chosen so that it is easiest to find a working time slot
assignment for system 1, whereas system 3 is the most
difficult to optimize.

We perform an optimization loop of 30 generation each
containing 100 individuals. Thereby we use the following
optimization objective:

minimize
9

∑
i=0

1.5Ri−Di ,

whereRi , resp.Di , denotes the response time, resp. the
deadline, of taskTi .

During optimization we are interested in the best indi-
vidual after each generation. This gives us an idea of how
fast the compared operators converge to working time slot
assignments. Figures 5(a), 5(b) and 5(c) give an overview
of the average results obtained by 50 optimization runs per
system.

We observe that the binary variation operators perform
well in the first few generations, whereas they stagnate
in later ones, leading to a slow convergence against the
solutions space. The new operators converge slower in
the beginning but sustain a steady improvement in later
generations.

The new operators perform much better for all 3
example systems. Particularly with regard to system 3
we see a big difference in the quality of the obtained
results. Where the binary-coded operators do not reach
an average fitness value below 108, the proposed real-
coded operators perform six orders of magnitude better
in the average case. We will see in section V-C that
the performance difference between the two operator sets
grows with increasing difficulty to optimize a given system
(which is e.g. caused by narrow deadlines).

C. Needed time to find a solution: narrow deadlines

In the last experiment we compare the binary-coded
operators with the proposed real-coded operators regarding
their performance in optimizing a system with narrow hard
deadlines.

System 1 System 2 System 3
CET P J d CET P J d CET P J d

T0 12 267 3 - 11 368 51 - 12 198 387 48
T1 11 350 45 - 13 261 198 82 7 102 70 45
T2 8 227 42 - 12 372 155 - 7 283 269 58
T3 12 206 33 - 7 110 197 87 11 354 387 17
T4 12 216 31 - 6 227 73 - 8 239 222 65
T5 9 190 14 - 5 189 47 - 5 194 260 32
T6 10 136 28 - 7 375 182 - 13 148 91 78
T7 13 322 26 - 13 109 20 - 14 114 13 -
T8 11 176 25 - 15 357 45 - 5 313 302 86
T9 9 212 50 - 12 390 50 - 6 119 187 89

TABLE I - EXAMPLE SYSTEMS WITH 10 TASKS

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

System 1 180 110 185 100 120 110 100 120 90 115
System 2 100 105 125 78 85 75 105 95 200 120
System 3 110 140 115 145 180 140 200 120 140 100

TABLE II - CONSTRAINTS OF EXAMPLE SYSTEMS

(a) System 1 - Low Jitter

(b) System 2 - Medium Jitter

(c) System 3 - High Jitter

Fig. 5 - EVOLUTION OF BEST SOLUTION

Therefore, we consider the task set described in ta-
ble III. We perform several optimization runs, whereas
we tighten the constraints of the tasks in each of them
(table IV). We measure the time, expressed as number of
evaluated individuals, until the first solution is obtained.

Figure 6 shows the average results obtained by 20
optimization runs per constraint set.

We observe that the binary-coded as well as the pro-
posed real-coded operators have more difficulties in finding
working individuals as the deadlines decrease, which is not
surprising. However, the binary-coded operators need com-
paratively more time to find working time slot assignments.
Thereby, the performance difference between the binary-
coded and the proposed real-coded operators is increasing
with decreasing deadlines.

CET P J d

T0 14 424 257 -
T1 9 287 38 -
T2 10 451 159 -
T3 6 539 11 -
T4 15 309 153 -
T5 9 506 250 -
T6 13 357 393 3
T7 8 304 278 40
T8 5 510 296 -
T9 5 298 184 -
T10 8 243 400 18
T11 9 457 300 -
T12 13 502 312 -
T13 9 247 365 83
T14 15 226 278 85

TABLE III - EXAMPLE SYSTEM WITH 15 TASKS

con. 1 con. 2 con. 3 con. 4 con. 5 con. 6 con. 7 con. 8

T0 315 303,75 292,5 281,25 270 258,75 247,5 225
T1 210 202,5 195 187,5 180 172,5 165 150
T2 245 236,25 227,5 218,75 210 201,25 192,5 175
T3 196 189 182 175 168 161 154 140
T4 413 398,25 383,5 368,75 354 339,25 324,5 295
T5 245 236,25 227,5 218,75 210 201,25 192,5 175
T6 336 324 312 300 288 276 264 240
T7 378 364,5 351 337,5 324 310,5 297 270
T8 126 121,5 117 112,5 108 103,5 99 90
T9 161 155,25 149,5 143,75 138 132,25 126,5 115
T10 469 452,25 435,5 418,75 402 385,25 368,5 335
T11 574 553,5 533 512,5 492 471,5 451 410
T12 560 540 520 500 480 460 440 400
T13 133 128,25 123,5 118,75 114 109,25 104,5 95
T14 301 290,25 279,5 268,75 258 247,25 236,5 215

TABLE IV - DECREASING DEADLINES

Fig. 6 - AVERAGE NUMBER OF TESTED INDIVIDUALS TO FIND A

SOLUTION - DECREASING DEADLINES

VI. CONCLUSION

In this paper we have presented arithmetic real-coded
variation operators, which can be used in conjunction with
an evolutionary algorithm to optimize time slot assign-
ments and turn-lengths on TDMA-scheduled resources.
Our operators implement a heuristic strategy to converge
towards the solution space and are able to escape local
minima. One special characteristic of our approach is the
separated variation of the turn-length and the admitted
loads of the mapped tasks, giving the designer increased
control over the optimization process.

Extensive experiments using synthetic applications have
shown that the proposed variation operators are superior to
standard binary-coded operators, in respect of time needed
to find valid time slot assignments for given systems.
Thereby, the performance difference is particularly notice-
able for systems with narrow deadlines.

The approach presented in this paper was recently
integrated in our exploration framework for global op-
timization of heterogeneous MpSoC and distributed sys-
tems [5]. In future we will further investigate its perfor-
mance in combination with other system parameters in the
optimization of large systems with complex performance
dependencies.

REFERENCES

[1] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zit-
zler. PISA — a platform and programming language independent
interface for search algorithms.http://www.tik.ee.ethz.ch/pisa/.

[2] C. Erbas, S.C. Erbas, and A.D. Pimentel. A Multiobjective Opti-
mization Model for Exploring Multiprocessor Mappings of Process
Networks. In Proc. of the International Conference on HW/SW
Codesign and System Synthesis (CODES-ISSS ’03), Newport Beach,
USA, October 2003.

[3] J.J.G. Garcia and M.G. Harbour. Optimized priority assignment
for tasks and messages in distributed real-time systems. InProc.
Workshop on Parallel and Distributed Real-Time Systems, 1995.

[4] T. Givargis and F. Vahid. Platune: A tuning framework for system-
on-a-chip platforms. InIEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v21, n11, 2002.

[5] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design Space
Exploration and System Optimization with SymTA/S - Symbolic
Timing Analysis for Systems. InProc. 25th International Real-
Time Systems Symposium (RTSS’04), Lisbon, Portugal, 2004.

[6] Arne Hamann, Rafik Henia, Marek Jersak, Razvan Racu, Kai
Richter, and Rolf Ernst. SymTA/S - Symbolic Timing Analysis
for Systems.http://www.symta.org/.

[7] A. Maxiaguine, S. K̈unzli, S. Chakraborty, and L. Thiele. Rate
analysis for streaming applications with on-chip buffer constraints.
In Proc. Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 131–136, Yokohama, Japan, January 2004.

[8] A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger, and
E.F. Deprettere. Exploring embedded-systems architectures with
Artemis. In IEEE Computer, November 2001.

[9] Paul Pop, Petru Eles, Zebo Peng, Viacheslav Izosimov, Magnus
Hellring, and Olof Bridal. Design optimization of multi-cluster
embedded systems for real-time applications. InProc. of Design,
Automation and Test in Europe (DATE’04), Paris, France, 2004.

[10] G. Snider. Automated design space exploration for embedded
computer systems. Technical Report HPL-2001-220, Hewlett-
Packard Laboratories, 2001.

[11] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework
for evaluating design tradeoffs in packet processing architectures. In
Proc. 39th Design Automation Conference (DAC), pages 880–885,
New Orleans, USA, 2002. ACM Press.

[12] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm. Technical
Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

