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ABSTRACT whereas the mutation operators serve to break out of local

In this paper we present arithmetic real-coded variation Minima by increasing or decreasing the admitted loads and
operators tailored for time slot and turn optimization on the turn-length, respectively, within certain limits. _
TDMA-scheduled resources with evolutionary algorithms, _For experiments, this approach is used for local opti-
Our operators implement a heuristic strategy to converge Mization of TDMA-scheduled resources within a design
towards the solution space and are able to escape localSPace exploration framework for global optimization of
minima. Furthermore, we explicitly separate the variation heterogeneous MpSoC and distributed systems [5].
of the admitted loads and the turn-length in order to II. DESIGN SPACE EXPLORATION FRAMEWORK
give the designer increased control over the optimization
process. Experimental results show that our variation oper-
ators have advantages over string-coded binary variation
operators which are frequently used to solve continuous
optimization problems.

Figure 1 shows the design space exploration loop
performed in our framework [5]. Th®ptimization Con-
troller is the central element. It is connected to scheduling
analysis and to an evolutionary multi-objective optimizer.
Scheduling analysis checks the validity of a given system
I. INTRODUCTION parameter set, that is represented by an individual, in the

Design space exploration for heterogeneous MpSoC orcontext of the overall heterogeneous system. The evo-
distributed systems is a tedious task due to many desigrfutionary multi-objective optimizer is responsible for the
parameters with very different effects. Parameter selectionProPlem-independent part of the optimization problem, i.e.
is difficult enough for discrete design parameters, such e_Ilmlnatlon ofmd_mduals and selection of interesting indi-
as task priorities, but becomes even more challenging forViduals for variation. Currently, we use SPEA2 (Strength
continuous parameters, such as TDMA timing. Pareto Evolutionary Algorithm 2) [12] for this part, which

One popular approach in walking through the search 'S coupled via PISA (Platform and Programming Language
space is the use of evolutionary search techniques. How-ndependent Interface for Search Algorithms) [1].
ever, their effectiveness strongly depends on the coding of . ....c cectonvi cu [ System Parameters
the problem variables as well as the used crossover and = —> upeae
mutation operators.

Immutable

While for discrete and permutation problems efficient EREA
coding techniques and variation operators are known to _ P————
achieve good solutions, continuous optimization problems, —> e (Population)
like TDMA time slot assignment, challenge the search- _— =
power of string-coded binary evolutionary algorithms. e [propenes, 7

In this paper we propose arithmetic real-coded variation optimization [N ontimizar 5'L“21§':::"S ”
operators tailored for time slot and turn optimization ——> i Controfler Optimizer
on TDMA-scheduled resources. Thereby, our strategy of exploration loop & ndvida

walking through the search space is split into two aspects:
optimizing the admitted loads of the mapped tasks as well Fig. 1 - EXPLORATION FRAMEWORK

as optimizing the TDMA turn-length. Both factors together Different parameters of a system, such as time slots
define the quality of a time slot assignment. According to or priorities, are encoded on separate chromosomes. The
these two important factors we introduce four variation user selects a subset of all parameters for optimization.
operators. One crossover and one mutation operator thafhe chromosomes of these parameters form an individual
vary the admitted loads of the mapped tasks while letting and are included in the evolutionary optimization while all
the turn-length constant as well as one crossover and onethers are fixed and immutable. The variation operators
mutation operator that vary the turn-length and make sureof the evolutionary algorithm are applied chromosome-

that the admitted loads of the tasks stay constant. wise for these individuals. More details on the optimization
The crossover operators implement a heuristic strategysystem can be found in [5].
of converging towards solutions lying "between” individ- In this paper we explain in detail one possible search

uals currently considered by the evolutionary algorithm, parameter in our exploration framework, the time slot
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assignment on TDMA-scheduled resources. The resultspareto-optimal solutions is achieved effectively by clus-
are, however, applicable beyond this exploration system. tering the search space into independent parts, for which
The remainder of this paper is structured as follows. pareto-optimal solutions can be determined separately.
After an overview of related work, we introduce the The Spacewalkef10], part of thePICO project from
proposed variation operators which are used within the HP Labs, pursuits a similar approach. For given applica-
framework to optimize the time slot assignments of tasks tions, it searches for pareto-optimal embedded systems.
mapped on TDMA-scheduled resources. By means of The search space is explored using a divide-and-conquer
extensive experiments we then compare the new operator@approach. In the first step different subsystem are explored
with binary-coded single-point crossover and binary-coded independently. From the sets of obtained pareto-optimal
mutation. subsystems, global systems are constructed and evaluated.
This hierarchical exploration approach seems to work well
I1l. RELATED WORK for the architecture presented in the paper. However, for

. . ) performance dependent subsystems the combination of
There is a large body of work in the area of design space|sca| pareto-optima rarely leads to global pareto-optima.
exploration and optimization of heterogeneous MpSoC and 114 Sesamdramework, part of theArtemis[8] project,

distributed systems. In the following we give a small s \;seq in [2] to tackle the mapping decision problem
overview of approaches for the optimization of dlffgarent of complex applications on heterogeneous embedded sys-
systlem p_arametetrs as t"‘:je.llclf as tfrlamtTwo][ksb atIIovxil_ng 0 tems. The authors use evolutionary techniques to search
explore given Systems at diiterent 1evels of abstraction. 4, so|ytions which are pareto-optimal regarding maximum

The approach described in [11] introduces an analysis ,cessing time, power consumption and total cost. These
technique to estimate end-to-end packet delays and queugg)tions are then input to a simulation framework for

ing memory in network processor architectures. Based ONg,ther evaluation. An interesting aspect in this approach
this information a measure 1S defined to characterlze thejs the explicit distinction of pareto-optimal individuals and
performance of such architectures under different usageyareto-optimal individuals fulfilling given constraints. By
scenarios. By means of design space exploration paretotnis means a possible convergence of the evolutionary op-

optimal architectures are searched trading good perfor-yimizer towards a set of pareto-optimal infeasible solutions
mance under several usage scenarios versus cost. In [7; prevented

the authors treat the reverse problem. Instead of deter-
mining worst-case buffer requirements and output stream
properties for given input streams and scheduling policies, IV. TDMA T IME SLOT CHROMOSOME

the authors search fpr the input stream rates that can  The search space of all time slot assignments for the
be supported by a given stream processing architecturgasks on a TDMA-scheduled resource is very large, even
without violating on-chip buffer constraints. The authors t e fix the turn-length and the arithmetic precision.
propose the integration of this technique into a tool for Tym_jength variation, which is often necessary to find
automated design space exploration for fast performanceyaoq solutions, adds another search dimension. Since it
evaluation of different stream processing architectures. s yprealistic to try all possible time slot assignments and

[3] presents a heuristic algorithm for priority assign- tyrn-lengths, a good strategy to walk through the search
ments in distributed hard real-time systems to optimize gpace s indispensable. In this section we first motivate our
end-to-end deadlines. The algorithm iteratively decom- choice for the coding of the problem parameters. Then we
poses the global deadlines into artificial local deadlines present the algorithms, i.e. creation of initial population
and then assigns deadline monotonic priorities on each(section 1V-B) and variation operators (section IV-C), of
resource. This approach is thus not applicable to morethe TDMA time slot chromosome used by our exploration
general priority assignments or other types of scheduling framework to walk through the search space of TDMA
policies. _ _ . time slot assignments.

The approach in [9] focuses on bus access optimization
(TDMA and static priority preemptive) in multi-cluster A. Representation of the Chromosome
embedded systems interconnected via gateways. Thereby, "
the application structure is feed-forward. Optimization  There are at least two basically different possibilities
objectives are end-to-end deadlines. The authors propose fr coding parameters in continuous optimization problems
partitioning and mapping heuristic and a heuristic adjust- for the use with an evolutionary algorithm: discretizing the
ing TDMA slot sizes in time-triggered clusters. For the search space into a power of 2 and using a binary string
priority assignments in event-triggered clusters a heuristic representation, or using a real number representation.
presented in [3] is used. Encoding the problem parameters as real numbers

[4] describes thePlatune framework allowing perfor-  seems to be a suitable approach because of the value dy-
mance and power tuning of a specific parameterized SoCnamic which is appropriate for a continuous optimization
platform. For a given application to be mapped on the problem. We decided to use arithmetic variation operators,
target SoC,Platune determines all sets of architectural as mutation or crossover on the floating point representa-
parameter values representing pareto-optimal solutions retion has drastic effects even beyond the "hamming cliff”
garding power and performance. The detection of all problem of binary encoding.



B. Initial population mutation operator, respectively, varies the admitted loads

For the creation of the initial population we specify of the mapped task and holds the turn-length constant, the
an initial TDMA turn-lengthturni,i. Note that choosing ~ Other crossover and mutation operator, respectively, varies
a sub-optimal initial turn-length for the initial popula- the turn-length and leaves the admitted loads untouched.
tion does not lead to the incapability of the time slot __ Thereby, the two crossover operators implement a
chromosome to find valid solutions because the variation NeUristic strategy to converge towards the solution space,
operators proposed in section IV-C are capable of adaptingVhereas the mutation operators serve to break out of
the turn-length in the course of optimization. Nevertheless, /0cal minima by decreasing or increasing the problem
if the designer chooses a good initial turn-length the Parameters by up to a configurable maximum percentage.
chromosome converges faster towards the solution space, | € réason for separating these two problem parameters

Let R be a TDMA scheduled resource subjected to 'S the increased control over the optimization process. By
optimization with the task3o, .. ., Te_1 mapped on it. The configuring the probabilities for the use of the two different
worst-case execution time, i.e. assuming no interrupts, ofOPerator types for crossover and mutation, the designer can
Ti is denoted byWCET, its activating period byperiod decide which of them is the preferred search parameter. In
and the length of its time slot bsfog. In the following we ~ the extreme case, she can, for example, hold the turn-length
refer to a specific time slot assignmentiadividualand to ~ constant and optimize only by varying the admitted loads.
the set of individuals used by the evolutionary algorithm Note that for the experiments performed in section V, both
as population types of operators are used with the same probability,

In ‘order to create only valid (i.e. resource not over- givin_g the evolutionary algorithm maximum freedom in
loaded, etc.) individuals for the initial population, we have walking through the search space.

to ensure that for each takits maximum loadoadnaxi 1) Crossover Operators:Algorithm 2 describes the

does not exceed its admitted lobmAGdm;- crossover operator varying the admitted loads while letting
slof WCET the turn-length constant. As input it takes two parent

loadhgmi > l0atmaxi < furnm = period individuals from which it creates two offsprings. Its op-

T timization strategy is related to a binary search method.
< slog > period * tUMMinit The admitted loads of the offsprings are placed evenly

S o . (i.e. at1 and 2) in the respective admitted load interval
This implies forT; a minimum time slot defined by the two parents. The time slots of offsprings 1
WCET and offspring 2, respectively, are then calculated according
SlOtmini = period *tUMMint - J‘Ei(\)/etlr;/e turn-length given by parent 1 and parent 2, respec-

Algorithm 1 is used to create the initial population Figure 2(a) gives an example for this crossover operator.

wh.|ch.|s un|formly.d|str|buted.|n the search space of all Algorithm 2 (Crossover Admitted Load) .
valid time slot assignments with a turn-lengthtef it Input: ~ time slots of parenpy: [sloty o, .. Sloty, 1]

To do so, it randomly distributes the initial turn to the ~ time slots of parenpy: [slotyy,. .. Sl0k, k1]
tasksTo,..., Tk_1. It respects above mentioned minimum  OUPU¢ e 5ol o SEePEneDL E:ggg:::;i}ggfﬂ
time slot length to prevent the creation of non-schedulable

1. turnp, =0;
indivi 2. turn,, =0
individuals. S o P ek 1i—i41) {
. . L. 4., turnp, = turnp, +sloty,;;
Algorithm 1 (Create valid initial individual) 5., turng, = turnp, +slotsy;
Input: initial turn-lengthturnic 6. ) i o
minimum time slotss|otnino, - - - » S|Otmink—1 7. for ﬁl =0;i<=k-1;i=i+1){
Output: valid time slot assignment fof, ..., Tx 1 8. 0adagmpy ;i = Sloty, i /turng, ;
1. free—turn..: 9. loadadmpy;i = Sl0ty,;i /turng, ;
> set— {0 1_"'?'f'k71 . 10. dif ference=| loadgmp,;i — 10aGadmpy;i |;
3. while (set#0) { 1. if (loadhdmpy;i < l0adkampyi) _
4. choose random ¢ set 12. sloty;i = (l0ackgmp, ;i +dif ference3) «turny, ;
5. SeE: set )r; ﬁ slot,;i = (loadhdmp,;i — dif ferencg3) xturnp,;
6. if (set=0) slot = freg .
7. else{ 15. else{ )
8. Sl0tnax= free— S, ¢ setSlOtminx; 16. slot, ;i = (loaddmp; ;i —d!f ferencg3) turnp, ;
9. slot = rando s%tfmsne;:.sloﬁ:x); 17. slol;jz;i = (Ioadadmpz;i +dif ferenceg3) *turnp, ;
10. free= free—slot; 18.
1.} 19. }
2. 3}

L The crossover operator varying the turn-length is de-
C. Variation Operators scribed by algorithm 3. It also pursuits a binary search
The quality of a time slot assignment on a TDMA- related strategy. Given the two parent individuals it cal-

scheduled resource is determined by two factors: theculates their average turn-length (lines 1-7). Offspring 1
admitted loads of the mapped tasks and the turn-length.and offspring 2, respectively, is then created by adapting
According to these two problem parameters we introduce the time slots of parent 1 and parent 2, respectively, to the
in this section two real-coded crossover and two real- average turn-length letting the admitted loads untouched
coded mutation operators for the time slot optimization (lines 8-11). Figure 2(b) visualizes the functionality of this

on TDMA-scheduled resources. While one crossover andcrossover operator by means of an example.



Algorithm 3 (Crossover Turn) . Algorithm 5 describes the mutation operator varying

Input: mg z:gg gi g:;ggg; E:gtt?:o ----- Z:gtl:ﬂ the turn-length. First the target turn-length is chosen, by
. 0500y k=1 . . .
Output: time slots of offspringoy: [S|S;01;0v,,,vs|ég,l;kfl] increasing or decreasing the 'gurn-le_ngth of the parent by a
time slots of offspringoz: [slot, 0, - -, SI0b,K-1] percentage randomly chosen in the inteft@atiyay, where
3 turng, =0, dmax is configurable (lines 1-7). The offspring’s time slot
3. for (F=0ii<=k-1ii=i+1){ assignments are then calculated to sum up in the target
= gg;ggzggggggg:gg;;; turn-length without altering the admitted loads given by
e73. N the parent’s time slot assignment (lines 8-9).
7 oo ey e 2 Figure 3(b) shows the functionality of this mutation
9. sl0to, ;i = SI0tp, ;i /turnp, +tUrMney; operator for a turn-length reduction of 20 %.
10. slou)z;i = slotpz;i/turnp2 *tUrMnew;
11. )
— Algorithm 5 (Mutate Turn)
P1 i o Input:  time slots of parenp: [slofy,. .., SlOtyk_1]
p2 aT2 loT2 max. % by which turn is cut or extendedax
Output: time slots of offspringo: [sloty, ... ,SlOtk-1]
o1 1. turn,=0;
o 2. for (=0 i<=k—Li=it1)
: time I S e time 3. turnp = turnp +sloty;;
o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10 4. choose random booledm
5. choose random doubtippiied € |0, dmay;
. 6. if (b=true) turnney=turny + dappiied* turnp;
(a) Admitted Load Crossover (b) Turn Crossover 7. elseturnyey = turng — dappiieg* turng;
8. for (i=0;i<=k-1;i=i+1)
. 9. sloty; = sloty; /turng * turnnew;
Fig. 2 - CROSSOVEROPERATORS
. | | mTo
2) Mutation Operators: The crossover operators de- * 50 Z'To on| U |20 ‘;;;
scribed in section IV-C.1 lead to the convergence of the o s P o 12 [
obtained time slot assignments towards (locally) optimal , |, , . . &« ¢« 7 & o 6" o 1 2 s 4 5 6 7 5 s 10
solutions contained "between” individuals considered by
the evolutionary algorithm. Of course, it is possible that  (a) Admitted Load Mutation (b) Turn Mutation
the variety of the initial population is insufficient to find
good solutions only by using these crossover operators. Fig. 3 - MUTATION OPERATORS
Additionally, the exploration may get stuck in a local
optimum, without the possibility to reach globally better V. EXPERIMENTAL RESULTS
solutions. In this section we compare the variation operators

In this section we introduce two mutation operators, introduced in section IV-C with binary-coded single-point
enabling the evolutionary algorithm to break out of local crossover and binary-coded mutation operator.
optima and to reach parts of the search space not yet The experiments are conducted with our exploration
considered. framework [5] using SPEA2 (Strength Pareto Evolutionary

The mutation operator varying the admitted load while Algorithm 2) [12] as selector. The initial population is con-
letting the turn-length constant is described by algorithm 4. structed according to algorithm 1 described in section IV-
As input it takes one parent individual from which it B with an initial turn-lengthturnin; = 10. The operators
creates one offspring. After initializatior, pairs of tasks  varying the admitted loads and the operators varying the
are chosen (line 6-7). For each of these pairs the firsttyrn-length are used with the same probability. For the
task gives a part of its disposable time slot (i.e. the time mutation operators we uskax= 40%.
slot it can dispense without overloading the resource) o \We conduct three different experiments. In the first
the second (lines 8-13). The percentage of the disposablexxperiment we compare both approaches regarding the
time slot dispensed is randomly chosen in the interval time needed to find a solution for random task sets.
]0,dmax, Where dmax is configurable. Figure 3(a) shows |n the second and third experiment we investigate their
the functionality of this mutation operator by means of an convergence in the search for valid solutions for systems

example. with global constraints.
Algorithm 4 (Mutate Admitted Load? . A. Needed time to find a solution
I s e ol S 1l In the first experiment we compare the binary-coded
r_nax. (Ne) Isposq e time slot aispensegax : - A
Output:  time slots of offspringd: [sl0ko, . Sl0ky1] operators with the proposed real-coded operators regarding
3 }g{“@igg ek Ticie1) { the time, expressed by the number of evaluated individuals,
3 tslljlr)r%);iftsd(r)rgp;ijrslotp--' they need to find a working time slot assignment. We use
5, PR random task sets containing 10 tasks with the following
6. choose pair random € [2,..., Kl; i .
7. choqse%istinct integergqo,“'.,],,l € [0,k—1]; attrIbUte's' ) . . .
g for (5'&0’ i TL—S&)’t; ='|+0§dn Lt « Activating period? between 200 and 600 time units
. isposable= Ao i ax0; ) . . .
10,  choose random doubliappiea & 10, Gmad; . Jitter 7 between 10 and 400 time units
11. slotyq = S10tq — Gappied* SI0kisposable « Minimum distance between successive events within
12. slotg; 1= slolyg; 1 + applied* SlOlisposala ; H
13. burstsd between 0 and 100 time units



. . . . System 1 System 2 System 3
« Core execution time between 5 and 15 time units 7 7 7

« Constraint 106- 10« core execution time TO[ 12 [267] 3 | - || 11 | 368] 51 | - || 12 | 198 387 48
. TI|[ 11 | 350 45| - || 13 | 261 198 82| 7 | 102] 70 |45
Figure 4 shows the average results of 100 evaluated—>{—5 22712212 (372155 - 283 1260 [ 58

o
J
o
[

random task sets. Compared to the binary-coded operators;?1 ﬁ gflﬂg gi - é %%(7) 17937 . ggg gg; ég
the proposed real-coded operators perform approximately—s+—s— o512 15 1891 a7 [~ {5 | 1941 2601 32
33,5% better in the average case. T6 ([ 10 | 13628 - || 7 [375|182[ - || 13 | 148 91 [ 78
T7 [ 13 | 32226 - || 13 [109] 20 | - || 14 | 114 13 | -
e 5960 WPMINIIUALS T8 1L | 176 25| - || 15 [ 357 45 | - || 5 | 313|302] 86
g TO[| 9 [212[50] - |[ 12 [390] 50 [ - || 6 | 119 187[89
BINARY BHS,UF TABLE | - EXAMPLE SYSTEMS WITH 10 TASKS
0 200 400 600 800 T000 TO[TLI[T2]T3[TA]T5[T6 [ T/ ] T8 ] T9
Fio. 4- A System 1]] 180 [ 110 ] 185] 100 ] 120] 110 100] 120] 90 [ 115
1. 4 - AVERAGE NUMBER OF TESTED INDIVIDUALS TO FIND A System 2| 100 | 105 | 125 | 78 85 75 1 1051 95 | 200 | 120
SOLUTION System 3|[ 110 | 140 | 115 145 180 | 140 200 | 120 | 140 100
TABLE Il - CONSTRAINTS OF EXAMPLE SYSTEMS

€023

B. Convergence towards the solution space
. . 1E+22 [—+—BINARY
In the second experiment we take into account the 3 e Lerew

\
task sets described in table I. Each task in each system o \‘\
is constrained by a hard deadline given in table Il. We ey
assume that all tasks within a system are mapped on the e —
same TDMA-scheduled resource. Note that the systems -
are chosen so that it is easiest to find a working time slot o —~C

assignment for system 1, whereas system 3 is the most o - ==

100 e,

difficult to optimize. H

We perform an optimization loop of 30 generation each ST N e BB MmN B0
containing 100 individuals. Thereby we use the following
optimization objective:

(a) System 1 - Low Jitter

1En4s

——BINARY

1Ea5
|m—new

9
minimize Z)l.SR’Di ,
i&

where R, resp.D;, denotes the response time, resp. the e
deadline, of taski. en

During optimization we are interested in the best indi- o
vidual after each generation. This gives us an idea of how BRI

1E+15

fast the compared operators converge to working time slot .

assignments. Figures 5(a), 5(b) and 5(c) give an overview -

of the average results obtained by 50 optimization runs per |

system. O TR R ten, BB Rm BRI
We observe that the binary variation operators perform

well in the first few generations, whereas they stagnate (b) System 2 - Medium Jitter

in later ones, leading to a slow convergence against the

solutions space. The new operators converge slower in

b =y

the beginning but sustain a steady improvement in later e

a2

. ¥
generations. s \\

1E+36

The new operators perform much better for all 3 L ——

16430

example systems. Particularly with regard to system 3 g —

Z e

we see a big difference in the quality of the obtained b =

results. Where the binary-coded operators do not reach e E———

an average fitness value below®l@he proposed real- e B S b
coded operators perform six orders of magnitude better b2 ]
in the average case. We will see in section V-C that
the performance difference between the two operator sets S

grows with increasing difficulty to optimize a given system (c) System 3 - High Jitter

(which is e.g. caused by narrow deadlines).

BT

Fig. 5 - EVOLUTION OF BEST SOLUTION

C. Needed time to find a solution: narrow deadlines Therefore, we consider the task set described in ta-
In the last experiment we compare the binary-coded ble Ill. We perform several optimization runs, whereas
operators with the proposed real-coded operators regardingve tighten the constraints of the tasks in each of them
their performance in optimizing a system with narrow hard (table IV). We measure the time, expressed as number of
deadlines. evaluated individuals, until the first solution is obtained.



Figure 6 shows the average results obtained by 20 VI. CONCLUSION
optimization runs per constraint set. In this paper we have presented arithmetic real-coded

We observe that the binary-coded as well as the prc)_variation operators, which can be used in conjunction with
posed real-coded operators have more difficulties in finding @ €volutionary algorithm to_optimize time slot assign-
working individuals as the deadlines decrease, which is notMents and turn-lengths on TDMA-scheduled resources.
surprising. However, the binary-coded operators need com-OUr operators implement a heuristic strategy to converge
paratively more time to find working time slot assignments. towards the solution space and are able to escape local
Thereby, the performance difference between the binary-minima. One special characteristic of our approach is the

coded and the proposed real-coded operators is increasingeParated variation of the turn-length and the admitted
with decreasing deadlines. oads of the mapped tasks, giving the designer increased

control over the optimization process.
Extensive experiments using synthetic applications have

T CETT? [ 7 [d] shown that the proposed variation operators are superior to
T0 T 14 12241 2571 - stan_dard bi_nary-coded operators, in respect of time needed
% 190 igz 13&;39 - to find valid time slot assignments for given systems.
=6 s30T Thereby, the performance difference is particularly notice-
T4 || 15 | 309 153] - able for systems with narrow deadlines.

L BT [ The approach presented in this paper was recently
T7 [ 8 | 304[ 278 40 integrated in our exploration framework for global op-
g g gég igg - timization of heterogeneous MpSoC and distributed sys-
TI0 T8 24340018 tems [5_]. In futgre we vx_/iII further investigate its penfor—
Eg 193 gg; ggg - mance in combination with other system parameters in the
T30 T2a71 36583 optimization of large systems with complex performance
TI4 || 15 | 226 278 85 dependencies.
TABLE Il - EXAMPLE SYSTEM WITH 15 TASKS
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