
Soft-Error Tolerance Analysis and Optimization of Nanometer Circuits

Yuvraj Singh Dhillon, Abdulkadir Utku Diril, Abhijit Chatterjee
Georgia Institute of Technology, Atlanta, GA 30332, USA

{yuvrajsd, utku, chat}@ece.gatech.edu

Abstract

Nanometer circuits are becoming increasingly
susceptible to soft-errors due to alpha-particle and
atmospheric neutron strikes as device scaling reduces
node capacitances and supply/threshold voltage scaling
reduces noise margins. It is becoming crucial to add soft-
error tolerance estimation and optimization to the design
flow to handle the increasing susceptibility. The first part
of this paper presents a tool for accurate soft-error
tolerance analysis of nanometer circuits (ASERTA) that
can be used to estimate the soft-error tolerance of
nanometer circuits consisting of millions of gates. The
tolerance estimates generated by the tool match SPICE
generated estimates closely while taking orders of
magnitude less computation time. The second part of the
paper presents a tool for soft-error tolerance optimization
of nanometer circuits (SERTOPT) using the tolerance
estimates generated by ASERTA. The tool finds optimal
sizes, channel lengths, supply voltages and threshold
voltages to be assigned to gates in a combinational circuit
such that the soft-error tolerance is increased while
meeting the timing constraint. Experiments on ISCAS’85
benchmark circuits showed that soft-error rate of the
optimized circuit decreased by as much as 47% with
marginal increase in circuit delay.

1 Introduction

Technology scaling has been the major factor behind
the increasing computing power of microprocessors.
Technology scaling roughly leads to a doubling of clock
frequencies every generation, a 30% decrease in node
capacitances every generation and a 30% reduction in
supply voltages to reduce power consumption. All these
factors are leading to a drastic increase in soft-error
susceptibility of combinational and memory circuits to
alpha-particle and neutron strikes. Because of the reduced
node capacitances, a smaller injected charge is needed to
induce a glitch at a circuit node. Thus, low-energy particle
strikes that earlier had no effect on a circuit can now cause

soft-errors. Because of the reduced supply voltages, noise
margins are reduced, which also increases the
susceptibility to particle strikes. Increasing clock
frequencies increase the probability of a soft-error getting
latched. Furthermore, due to super-pipelining, the number
of gates in pipeline stages have been reducing, which in
turn reduces the electrical attenuation of glitches as they
propagate to the latches.

Although these factors affect both memory and
combinational elements, the overall soft-error rate of
memories is not increased as much as combinational logic
because memories are protected by techniques such as
error-correcting codes (ECC). There has not been a need
to protect combinational circuits because combinational
circuits have a natural tendency to mask glitches due to
three phenomena [1]. First, due to logical masking, a
glitch might not propagate to a latch because of a gate on
the path not being sensitized to facilitate glitch
propagation. Second, due to electrical masking, a
generated glitch might get attenuated because of the
delays of the gates on the path to the output. Third, due to
latching-window masking, a glitch that reaches the
primary output might not still cause an error because of
the latch not being open. The factors mentioned in the
previous paragraph adversely affect all the above three
factors in terms of soft-error tolerance. Due to decreasing
number of gates in a pipeline stage, logical masking as
well as electrical masking has been decreasing for new
technology generations. Electrical masking has also been
decreasing due to the reduction in node capacitances and
supply voltages every generation. Furthermore, increasing
clock frequencies have reduced the time window in which
latches are not accepting data, thereby reducing latching-
window masking also. Because of these factors, the soft-
error rate (SER) of combinational logic is expected to rise
9 orders of magnitude from 1992 to 2011, when it will
equal the SER of unprotected memory elements [2].

Generally, in mission-critical space applications
combinational circuits are protected by using
duplication/triplication and concurrent-error detection
(CED) [3]. However, these methods have too high delay,
area and power overheads to be used in commercial
applications. Recently, low-cost methods for increasing

This research was supported by NSF Information Technology
Research Contract CCR 022-0259.

1530-1591/05 $20.00 © 2005 IEEE

soft-error tolerance of commodity applications using time-
redundancy [4] and partial duplication [5] have been
proposed. However, these methods still add additional
delay overhead to the original circuit due to the presence
of the checker circuit. Also, these methods have system
level overheads (such as pipeline flushes) when an error is
detected, either to correct the error or to do the
computation again.

This paper proposes a novel, zero delay-overhead
method for increasing the soft-error tolerance of
nanometer CMOS combinational logic circuits. Using an
optimal assignment of supply voltages, threshold voltages,
sizes and channel lengths to gates in ultra-deep sub-
micron circuits, the electrical attenuation characteristics
of the gates in the circuits are enhanced without incurring
any delay overhead. Multi-supply voltage and multi-
threshold voltage designs are becoming increasingly
common for low-power applications, however if these are
infeasible, the method can still be used to just find optimal
gate sizings for increased soft-error tolerance. This
method can be used along with any of the traditional
methods described above to greatly decrease the overhead
of error detection and correction.

The paper is organized as follows. Section 2 describes
characteristics of gates that affect the strike-induced
glitches. Section 3 describes ASERTA, a tool for fast and
accurate analysis of the soft-error tolerance of a circuit.
Section 4 describes SERTOPT, a circuit optimization tool
for enhancing the soft-error tolerance of circuits while
meeting timing constraints. Section 5 gives experimental
results. Section 6 concludes.

2 Glitch tolerance characteristics of
individual gates

There are two characteristics of interest for a single
gate in terms of soft error tolerance: glitch generation and
glitch propagation. The glitch generation characteristics
of a logic gate determine the shape and magnitude of the
voltage glitch generated at the output of the gate due to a
particle strike on the gate. The glitch propagation
characteristics of a logic gate determine how the gate
attenuates a glitch that is generated at some prior circuit
node as it passes through the logic gate.

When a particle strikes a circuit node, the voltage
magnitude of the corresponding glitch is dependent on the
total capacitance of the node. The duration of the
generated glitch is dependent on the delay of the gate that
is driving the node. If the gate driving the node is fast, it
will quickly discharge (or charge) the node back to its
original value. Therefore, faster gates have better glitch
generation characteristics in terms of the generated glitch
width.

However, the behaviour is opposite for glitch
propagation. Assuming a linear ramp at the output of the

gate, for a gate propagation delay of d and glitch duration
of wi at the gate input, glitch duration at the output of the
gate, wo, can be approximated as follows:

()
0

2 2

2

o i

o i i

o i i

w if w d

w w d if d w d

w w if w d

= <
= ⋅ − < < ⋅
= > ⋅

 (1)

This model is similar to the glitch amplitude attenuation
model used in [6]. As seen from Equation 1, a slow gate
will attenuate a glitch at its output more compared to a
fast gate. Therefore, slow gates have better glitch
attenuation characteristics.

Figures 1 and 2 show SPICE simulation results for
generated glitch width and propagated glitch width,
respectively, for an inverter for different values of gate
size, gate channel length, gate supply voltage (VDD) and

Fig 2. Glitch propagation characteristics of an
inverter for an input glitch of duration 50ps.

Fig 1. Glitch generation characteristics for an

inverter for an injected charge of 16fC.

gate threshold voltage (Vth). The SPICE models are for
70nm technology node [7]. The minimum and maximum
values of the variables are indicated on the x-axis. Size of
1 means a gate width of 100nm. It is clear that factors that
slow down a gate (decrease in size, increase in channel
length, reduction in VDD, and increase in Vth) increase
generated glitch width but also increase the attenuation of
propagating glitches.

The insight gained from the SPICE simulation data is
that only generated glitch width or propagated glitch
width are not enough to characterize the “softness” of a
gate as this might lead to erroneous conclusions. If only
glitch propagation characteristics are considered as a
measure of the “softness” of a gate (as in [8]), slowing
down a gate would apparently always reduce the softness
of the circuit; however, a slower gate will produce a
bigger glitch at its output when it is subjected to a particle
strike. Such a glitch can easily propagate to the output and
cause an error. Slowing down all the gates at the primary
outputs (POs) to attenuate all previous glitches (and hence
to increase the soft-error tolerance of a circuit) is also not
a viable solution as: (i) it is too expensive in terms of
delay overhead, and (ii) it leads to very wide glitches
being generated right at the latch inputs in the event of
strikes at POs. Similarly, just speeding up all gates to
“kill” the glitches generated at their outputs is also not
viable as: (i) it would be too expensive in terms of area
and power overheads, and (ii) a wide glitch generated due
to a high energy strike would definitely propagate to the
output because of little attenuation offered by the fast
gates.

The conclusion drawn from the above discussion is
that it is not possible to increase the soft-error tolerance of
a circuit by just focussing on a few “soft” gates and trying
to make them “hard”. Gates hardened to resist glitch
propagation cause generation of big glitches at their
outputs and gates hardened to reduce generated glitch
widths propagate glitches very easily. It is necessary to
estimate the change in soft-error tolerance of the whole
circuit after any optimization, as a “local” improvement of
the softness of a gate might not lead to a “global”
improvement in soft-error tolerance. The next section
describes ASERTA, a tool for accurate estimation of the
soft-error tolerance of a circuit.

3 Circuit soft-error tolerance analysis

ASERTA models a particle strike at a node as a
current source injecting (or removing) a fixed amount of
charge into (or from) that node. If the node is at low
voltage, charge is injected into the node and if the node is
at high voltage, charge is removed by the current source.
The opposites of these two cases do can not cause a
voltage glitch to be generated and are neglected. A SPICE
look-up table is constructed for generated glitch width

(due to charge injected at gate output) for different types
of gates, fan-ins, sizes, channel lengths, VDDs, Vths and
load capacitances. Although in reality the amount of
charge injected (or removed) depends on the energy of the
strike, for simplicity ASERTA assumes a fixed amount of
injected charge. Future versions of ASERTA will have
look-up tables for different amounts of injected charge.

SPICE look-up tables are also constructed for delays,
static energies, dynamic energies, output ramp and gate
input capacitances for different types of gates, fan-ins,
sizes, channel lengths, VDDs, Vths, input ramps and load
capacitances. ASERTA uses linear-interpolation inside
the look-up tables to compute output values for arbitrary
values of input parameters. Using look-up tables allows
ASERTA to have better accuracy than analytical models
while still being much faster than SPICE. To estimate the
soft-error tolerance of a circuit, ASERTA injects charge
into every gate output, looks-up the generated glitch width
from the table and then propagates the generated glitch to
the primary outputs (POs) taking into account the effects
of logical and electrical masking. The sum total of the
widths of the glitches reaching the POs is taken as a
measure of the “Unreliability” of the circuit. The
following sub-sections describe how ASERTA models
logical, electrical and latching-window masking.

3.1 Logical masking

Since actual signal values are not known, for every
node ASERTA calculates the probability that there is at
least one sensitized path from that node to a primary
output. Calculation of the sensitization probability values
from the input signal statistics is easy for circuits which
do not have reconvergent fan-out. Sensitization
probabilities for such circuits can be calculated as in [8].
However, finding the values for circuits with reconvergent
fan-out is an NP-complete problem [9]. ASERTA uses
zero delay simulation of the circuit with 10000 random
inputs applied (as in [5]) to compute the probability, Pij,
that there is at least one path sensitized from output of
gate i to primary output j. For primary output j, Pjj is 1.
The static probability, pi, of a node i being at logic 1 is
obtained for all nodes using a commercially available tool,
Synopsys Design Compiler, given a static probability of
0.5 at the primary inputs.

For all successor gates s of gate i, the probability that a
glitch at i will be able to propagate through gate s to
primary output j is calculated as follows:

�
Ψ∈

⋅
⋅

=

k
kjik

ijis
isj PS

PS
π (2)

where � is the set of successors of gate i and Sis is the
probability that gate s is sensitized to gate i (i.e. all other

inputs of gate s have non-controlling values). Sis can be
obtained by multiplying together the static probabilities of
the other inputs being 1/0 for a AND/OR gate. Note that
�isj is not taken to be just Sis

.Psj since �isj should have the
property that

ij
k

kjikj PP =⋅�
Ψ∈

π . Also note that �isj is

an approximation to the actual probability value since in
circuits with reconvergent fan-out, the probability that
gate s is sensitized to gate i conditions the probability of
gate s having a path sensitized to a primary output.

The next sub-section describes the procedure used in
ASERTA for computing the glitch widths at POs for
charge injected at every gate output.

3.2 Electrical masking

As mentioned before, ASERTA computes the
expected output glitch width, Wij, at primary output j for
generated glitch width, wi, at gate i. To do this efficiently
in one pass over the circuit, for every gate, the expected
output glitch widths, WSijk, for 10 sample glitch widths,
wsk (k between 1 and 10) are computed.

The output glitch widths are computed for all gates in
reverse topological order (i.e. from POs to PIs) as follows:

(i) Let current gate be i.
(ii) If gate i is a primary output, set WSiik=wsk for all k.

Set WSijk=0 for all other primary outputs j.
Also, since gate is primary output, it will propagate
generate glitch width, wi, directly. Hence, set Wii=wi
and Wij=0 for all other primary outputs j.

(iii) If gate i is not a primary output, for all sample glitch
widths, wsk:

For all successors s of gate i:
Let ds be the delay of gate s looked up from the
SPICE tables.
Calculate the glitch width, wosk, propagated to
the output of gate s for input width of wsk using
Equation 1.
For each primary output j, look up the expected
output glitch width, WEsjk, for generated glitch
width of wosk from the table of expected output
glitch widths for gate s, linearly interpolating if
necessary.

Finally, Let ijk isj sjk
s

W S W Eπ
∈ Ψ

= ⋅�

(iv) Compute Wij by looking up the table of expected
output glitch widths, WSijk, computed in step (iii), for
a generated glitch width of wi, again linearly
interpolating if necessary. Now process the next gate.

At the end of this procedure, expected output glitch

widths, Wij, at primary output j for generated glitch width,
wi, for every gate i are known. The complexity of the

procedure is O(V+E), where V is the number of gates and
E is the number of circuit edges.

Lemma 1: For a very wide glitch wwi generated at output
of gate i, the above procedure correctly computes the
expected output glitch width at primary output j as

ij i ijWW = ww P⋅ , if it is assumed that wwi is one of the

sample glitch widths used above (say sample 1).
Proof: Since the generated glitch is very wide, it will pass
through all gates on any path from i to j without
attenuation. WSjj1 is correctly computed as wwi at primary
output j. Assume that WSrj1 is correctly computed for all
successor gates r of a gate p between i and j as wwi

.Prj.
Then, the expected width WSpj1 will be computed as:

1 1pj prj rj prj i rj
r r

i prj rj i pj
r

W S WS ww P

ww P ww P

π π

π
∈Ψ ∈Ψ

∈Ψ

= ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅

� �

�

where WSrj1 can be used instead of WErj1 because wwi is
wide enough to propagate through gate r without
attenuation. By induction, WSij1 is also computed as

i ijww P⋅ . Since wwi is the first sample glitch width,

WSij1 is WWij. �

3.3 Latching-window masking

A glitch must arrive within the setup and hold times of
the latch at the primary output to be captured. Since the
exact time of the particle strike is unknown, it can be
assumed to be uniformly distributed within the clock
cycle. The probability of a glitch being captured by a latch
is directly proportional to its duration. Hence, by
summing up the expected output glitch widths, Wij, for all
primary outputs j, the total contribution of gate i to the
circuit unreliability is obtained. However, this ignores the
fact that the size, Zi of a gate plays an important role in
determining the particle flux incident on the gate. Hence,
the actual contribution of gate i to circuit unreliability is:

�⋅=
j

ijii WZU (3)

The total unreliability of the circuit is:

�=
i

iUU (4)

Figure 3 shows the unreliability numbers, Ui, for the
gates in ISCAS’85 benchmark circuit “ c432” calculated
by ASERTA plotted along with values calculated by
SPICE for 70nm technology node. In SPICE, the
unreliability was computed by applying 50 random input
vectors, injecting charge at every gate output i and using
the width of the glitch at primary output j as Wij in

Equation 3. Only the nodes that were at most five levels
deep from the POs are plotted. It is seen that there is close
matching. The correlation between the two series was
computed to be 0.96. For the ISCAS’85 benchmark
circuits, an average correlation of 0.9 was obtained.

The next section describes SERTOPT, a tool that uses
the unreliability estimates generated by ASERTA to
optimize nanometer circuits for increased soft-error
tolerance by enhancing the electrical masking
characteristics of gates in the circuits.

4 Circuit soft-error tolerance optimization

SERTOPT uses a delay assignment variation method
to minimize a cost function that is a weighted sum of
circuit unreliability, circuit power consumption and circuit
size. A designer can easily change the optimization
constraints by changing the ratio of the weights.

The delay assignment variation method is based on the
technique in [10][11]. The circuit topology for a circuit
with N gates and P paths from PIs to POs is represented
with a binary topology matrix, T, defined as follows:

ijT =1 if gate i lies on path j

= 0 otherwise

If the delays of the gates are represented by

[]1 2
T

Nd d d d= � , then TD d= ⋅ is the vector

of path delays. The delay assignments of the gates are

varied in an optimization iteration by adding ∆ such that

T 0⋅ ∆ = . This choice of ∆ lets the delays be varied
without varying the path delay vector as shown below:

 ()T T Td d D⋅ + ∆ = ⋅ + ⋅ ∆ =

In other words, ∆ has to lie in the nullspace of T to
guarantee that the timing constraints are met in every
iteration.

To find the circuit parameters (gate sizes, lengths,
VDDs, Vths) that are needed to match a delay assignment,
SERTOPT traverses the circuit from POs to PIs in reverse
topological order. The capacitive loads of the gates at the
POs are known since these loads do not change. From
these loads and the delay assignments for the PO gates,
the best matching sizes, lengths, VDDs, Vths available in
the SPICE library that yield delays closest to the assigned
delays are found and assigned to the PO gates. Once the
parameters of these gates have been set, the capacitive
loads offered by these gates to their predecessors can be
found. The whole process is then repeated till the PIs are
reached. The only constraint during the matching process
is that only VDD values greater than or equal to successor
VDD values are allowed to be used for a gate. This ensures
that there is no low VDD gate driving a high VDD gate and
eliminates the need for level-shifters.

Once the circuit parameters have been determined,
SERTOPT calculates the circuit unreliability (U) using
ASERTA and the circuit delay (T), total energy (E =
dynamic energy + static energy) and area (A) using

SPICE libraries. Note that although ∆ has been chosen
from the nullspace of T, the timing constraint might still
be exceeded slightly because of the finite size library used
for matching the delays. Hence, timing can also be
included in the cost. The cost is computed as:

1 2 3 4
init init init init

U T E A
C = W + W + W + W

U T E A
⋅ ⋅ ⋅ ⋅ (5)

where Uinit, Tinit, Einit and Ainit are the unreliability, delay,
energy and area of the initial circuit.
 The cost is minimized by using Sequential Quadratic
Programming (SQP) to search for the optimal delay
assignment giving lowest cost. However, simulated
annealing, genetic algorithms or some other optimization
algorithm can also be used.

5 Experimental results

First, gate sizes were obtained for ISCAS’85
benchmark circuits by optimizing for speed using
Synopsys Design Compiler. The gate sizes were then used
with SPICE 70nm models [7] to compute the delays of the
circuits for the 70nm technology. All the gates had a
transistor channel length of 70nm, VDD of 1V and Vth of
0.2V. The unreliability of the baseline circuits was
estimated using ASERTA.

Then, SERTOPT was used to determine new gate
sizes, channel lengths, VDDs and Vths for the circuits that

Fig 3. Unreliability values obtained by SPICE and

ASERTA for nodes in c432.

Table 1. Optimization Results

would minimize unreliability while meeting the delay
constraint of the baseline circuits. The results of the
optimization are reported in Table 1. The second and third
columns give the VDD and Vth values used in the
optimized circuits. Note that the values and numbers of
VDDs and Vths to be used is a design variable. We report
results for values that gave fair reduction in unreliability
without compromising too much on power consumption.
The maximum gate size used was the same as that for the
baseline circuits. The gate channel lengths that SERTOPT
was allowed to use for the optimization were 70nm,
100nm, 150nm, 250nm and 300nm. The fourth, fifth and
sixth columns give the ratio of the area, energy
consumption and delay of the optimized circuits to the
corresponding values for the baseline circuits. As
mentioned before, the delay constraint can sometimes be
exceeded due to the finite sized library used. The seventh
column gives the decrease in unreliability (as defined by
Equation 4) of the optimized circuits. The first sub-
column gives the decrease calculated by ASERTA. The
second and third sub-columns give the decrease in
unreliability calculated by applying 50 random input
vectors to the baseline and optimized circuits and
measuring the average glitch width at the outputs using
ASERTA and SPICE. They indicate the matching
between ASERTA and SPICE for a small set of input
vectors. Note that these numbers are different from the
number in the previous column because 50 inputs do not
capture the input statistics very well. The last 2 circuits
were too big to be simulated by SPICE so we just report
the unreliability reduction calculated by ASERTA.

The unreliability of “ c499” could not be reduced. The
reason is that “ c499” is an error-correcting circuit for
single-bit errors and ASERTA also models unreliability
by injecting single-bit errors. A modelling scheme that
takes into account simultaneous multiple-error injections
could still be used with SERTOPT to reduce unreliability
in the face of such errors.
 ASERTA and SERTOPT have been implemented in
MATLAB. They take 15 second and 20 minutes to run on
“ c432” and 200 seconds and 27 hrs to run on “ c7552”
respectively†.

6 Conclusion

This paper presented tools for the analysis and
optimization of the soft-error tolerance of nanometer
combinational circuits. The analysis tool, ASERTA, is
able to accurately calculate (with average correlation of
0.9 with SPICE) the “ unreliability” of circuits in orders of
magnitude less computation time than SPICE. The
optimization tool, SERTOPT, is able to reduce the
unreliability of circuits by up to 47% by using a library
with multiple VDDs, Vths, gate sizes and gate lengths.

REFERENCES

[1] P. E. Dodd and L. W. Massengill, "Basic mechanisms and
modeling of single-event upset in digital microelectronics,"
IEEE Trans. on Nuclear Science, vol. 50, pp. 583-602, 2003.
[2] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, L.
Alvisi, "Modeling the effect of technology trends on the soft
error rate of combinational logic," ICDSN, pp. 389-98, 2002.
[3] M. Nicolaidis and Y. Zorian, "On-line testing for VLSI - a
compendium of approaches," JETTA, vol. 12, pp. 7-20, 1998.
[4] M. Nicolaidis, "Time redundancy based soft-error tolerance
to rescue nanometer technologies," VTS, pp. 86-94, 1999.
[5] K. Mohanram and N. A. Touba, "Cost-effective approach
for reducing soft error failure rate in logic circuits," ITC, pp.
893-901, 2003.
[6] M. Oman, G. Papasso, D. Rossi, C. Metra, "A model for
transient fault propagation in combinatorial logic," IOLTS, pp.
111-15, 2003.
[7] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, C. Hu, "New
paradigm of predictive MOSFET and interconnect modeling for
early circuit simulation," CICC, pp. 201-204, 2000.
[8] C. Zhao, X. Bai, S. Dey, "A scalable soft spot analysis
methodology for compound noise effects in nano-meter
circuits," DAC, pp. 894-899, 2004.
[9] F. N. Najm and I. N. Hajj, "The complexity of fault
detection in MOS VLSI circuits," IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 9, pp.
995-1001, 1990.
[10] Y. S. Dhillon, A. U. Diril, A. Chatterjee, A. D. Singh,
"Sizing CMOS circuits for increased transient error tolerance,"
IOLTS, pp. 11-16, 2004.
[11] Y. S. Dhillon, A. U. Diril, A. Chatterjee, H.H. S. Lee,
"Algorithm for achieving minimum energy consumption in cmos
circuits using multiple supply and threshold voltages at the
module level," ICCAD, pp. 693-700, 2003.

Decrease in Unreliability Circuit VDDs
used Vths used Area Energy Delay ASERTA ASERTA/SPICE (50 Random Inputs)

c432 0.8, 1 0.2, 0.3 2X 2.2X 1.23X 40% 44% 54%
c499 - - - - - 0% 0% 0%

c1908 0.8, 1, 1.2 0.1 ,0.2, 0.3 1.2X 1.8X 0.98X 18% 6% 12%
c2670 0.8, 1, 1.2 0.1, 0.2, 0.3 1.05X 1.3X 0.98X 21% 42% 38%
c3540 0.8, 1 0.2, 0.3 1.5X 1.6X 1.03X 47% 35% 34%
c5315 0.8, 1, 1.2 0.1, 0.2, 0.3 1.2X 1.9X 0.98X 26% - -
c7552 0.8, 1 0.2, 0.3 1.6X 1.6X 1.07X 18% - -

†MATLAB is an interpreted language, hence slow. There is a 10X
speed-up expected by migrating to C.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

