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Abstract 
 

Nanometer circuits are becoming increasingly 
susceptible to soft-errors due to alpha-particle and 
atmospheric neutron strikes as device scaling reduces 
node capacitances and supply/threshold voltage scaling 
reduces noise margins. It is becoming crucial to add soft-
error tolerance estimation and optimization to the design 
flow to handle the increasing susceptibility. The first part 
of this paper presents a tool for accurate soft-error 
tolerance analysis of nanometer circuits (ASERTA) that 
can be used to estimate the soft-error tolerance of 
nanometer circuits consisting of millions of gates. The 
tolerance estimates generated by the tool match SPICE 
generated estimates closely while taking orders of 
magnitude less computation time. The second part of the 
paper presents a tool for soft-error tolerance optimization 
of nanometer circuits (SERTOPT) using the tolerance 
estimates generated by ASERTA. The tool finds optimal 
sizes, channel lengths, supply voltages and threshold 
voltages to be assigned to gates in a combinational circuit 
such that the soft-error tolerance is increased while 
meeting the timing constraint. Experiments on ISCAS’85 
benchmark circuits showed that soft-error rate of the 
optimized circuit decreased by as much as 47% with 
marginal increase in circuit delay. 

 

1 Introduction 

Technology scaling has been the major factor behind 
the increasing computing power of microprocessors. 
Technology scaling roughly leads to a doubling of clock 
frequencies every generation, a 30% decrease in node 
capacitances every generation and a 30% reduction in 
supply voltages to reduce power consumption. All these 
factors are leading to a drastic increase in soft-error 
susceptibility of combinational and memory circuits to 
alpha-particle and neutron strikes. Because of the reduced 
node capacitances, a smaller injected charge is needed to 
induce a glitch at a circuit node. Thus, low-energy particle 
strikes that earlier had no effect on a circuit can now cause 

soft-errors. Because of the reduced supply voltages, noise 
margins are reduced, which also increases the 
susceptibility to particle strikes. Increasing clock 
frequencies increase the probability of a soft-error getting 
latched. Furthermore, due to super-pipelining, the number 
of gates in pipeline stages have been reducing, which in 
turn reduces the electrical attenuation of glitches as they 
propagate to the latches.  

Although these factors affect both memory and 
combinational elements, the overall soft-error rate of 
memories is not increased as much as combinational logic 
because memories are protected by techniques such as 
error-correcting codes (ECC). There has not been a need 
to protect combinational circuits because combinational 
circuits have a natural tendency to mask glitches due to 
three phenomena [1]. First, due to logical masking, a 
glitch might not propagate to a latch because of a gate on 
the path not being sensitized to facilitate glitch 
propagation. Second, due to electrical masking, a 
generated glitch might get attenuated because of the 
delays of the gates on the path to the output. Third, due to 
latching-window masking, a glitch that reaches the 
primary output might not still cause an error because of 
the latch not being open. The factors mentioned in the 
previous paragraph adversely affect all the above three 
factors in terms of soft-error tolerance. Due to decreasing 
number of gates in a pipeline stage, logical masking as 
well as electrical masking has been decreasing for new 
technology generations. Electrical masking has also been 
decreasing due to the reduction in node capacitances and 
supply voltages every generation. Furthermore, increasing 
clock frequencies have reduced the time window in which 
latches are not accepting data, thereby reducing latching-
window masking also. Because of these factors, the soft-
error rate (SER) of combinational logic is expected to rise 
9 orders of magnitude from 1992 to 2011, when it will 
equal the SER of unprotected memory elements [2]. 

Generally, in mission-critical space applications 
combinational circuits are protected by using 
duplication/triplication and concurrent-error detection 
(CED) [3]. However, these methods have too high delay, 
area and power overheads to be used in commercial 
applications. Recently, low-cost methods for increasing 
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soft-error tolerance of commodity applications using time-
redundancy [4] and partial duplication [5] have been 
proposed. However, these methods still add additional 
delay overhead to the original circuit due to the presence 
of the checker circuit. Also, these methods have system 
level overheads (such as pipeline flushes) when an error is 
detected, either to correct the error or to do the 
computation again.  

This paper proposes a novel, zero delay-overhead 
method for increasing the soft-error tolerance of 
nanometer CMOS combinational logic circuits. Using an 
optimal assignment of supply voltages, threshold voltages, 
sizes and channel lengths to gates in ultra-deep sub-
micron circuits, the electrical attenuation characteristics 
of the gates in the circuits are enhanced without incurring 
any delay overhead. Multi-supply voltage and multi-
threshold voltage designs are becoming increasingly 
common for low-power applications, however if these are 
infeasible, the method can still be used to just find optimal 
gate sizings for increased soft-error tolerance. This 
method can be used along with any of the traditional 
methods described above to greatly decrease the overhead 
of error detection and correction. 

The paper is organized as follows. Section 2 describes 
characteristics of gates that affect the strike-induced 
glitches. Section 3 describes ASERTA, a tool for fast and 
accurate analysis of the soft-error tolerance of a circuit. 
Section 4 describes SERTOPT, a circuit optimization tool 
for enhancing the soft-error tolerance of circuits while 
meeting timing constraints. Section 5 gives experimental 
results. Section 6 concludes. 

2 Glitch tolerance characteristics of 
individual gates 

There are two characteristics of interest for a single 
gate in terms of soft error tolerance: glitch generation and 
glitch propagation. The glitch generation characteristics 
of a logic gate determine the shape and magnitude of the 
voltage glitch generated at the output of the gate due to a 
particle strike on the gate. The glitch propagation 
characteristics of a logic gate determine how the gate 
attenuates a glitch that is generated at some prior circuit 
node as it passes through the logic gate. 

When a particle strikes a circuit node, the voltage 
magnitude of the corresponding glitch is dependent on the 
total capacitance of the node. The duration of the 
generated glitch is dependent on the delay of the gate that 
is driving the node. If the gate driving the node is fast, it 
will quickly discharge (or charge) the node back to its 
original value. Therefore, faster gates have better glitch 
generation characteristics in terms of the generated glitch 
width. 

However, the behaviour is opposite for glitch 
propagation. Assuming a linear ramp at the output of the 

gate, for a gate propagation delay of d and glitch duration 
of wi at the gate input, glitch duration at the output of the 
gate, wo, can be approximated as follows: 
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This model is similar to the glitch amplitude attenuation 
model used in [6]. As seen from Equation 1, a slow gate 
will attenuate a glitch at its output more compared to a 
fast gate. Therefore, slow gates have better glitch 
attenuation characteristics. 

Figures 1 and 2 show SPICE simulation results for 
generated glitch width and propagated glitch width, 
respectively, for an inverter for different values of gate 
size, gate channel length, gate supply voltage (VDD) and 

 
Fig 2. Glitch propagation characteristics of an 
inverter for an input glitch of duration 50ps. 

 
Fig 1. Glitch generation characteristics for an 

inverter for an injected charge of 16fC. 



gate threshold voltage (Vth). The SPICE models are for 
70nm technology node [7]. The minimum and maximum 
values of the variables are indicated on the x-axis. Size of 
1 means a gate width of 100nm. It is clear that factors that 
slow down a gate (decrease in size, increase in channel 
length, reduction in VDD, and increase in Vth) increase 
generated glitch width but also increase the attenuation of 
propagating glitches. 

The insight gained from the SPICE simulation data is 
that only generated glitch width or propagated glitch 
width are not enough to characterize the “softness” of a 
gate as this might lead to erroneous conclusions. If only 
glitch propagation characteristics are considered as a 
measure of the “softness” of a gate (as in [8]), slowing 
down a gate would apparently always reduce the softness 
of the circuit; however, a slower gate will produce a 
bigger glitch at its output when it is subjected to a particle 
strike. Such a glitch can easily propagate to the output and 
cause an error. Slowing down all the gates at the primary 
outputs (POs) to attenuate all previous glitches (and hence 
to increase the soft-error tolerance of a circuit) is also not 
a viable solution as: (i) it is too expensive in terms of 
delay overhead, and (ii) it leads to very wide glitches 
being generated right at the latch inputs in the event of 
strikes at POs. Similarly, just speeding up all gates to 
“kill” the glitches generated at their outputs is also not 
viable as: (i) it would be too expensive in terms of area 
and power overheads, and (ii) a wide glitch generated due 
to a high energy strike would definitely propagate to the 
output because of little attenuation offered by the fast 
gates. 

The conclusion drawn from the above discussion is 
that it is not possible to increase the soft-error tolerance of 
a circuit by just focussing on a few “soft” gates and trying 
to make them “hard”. Gates hardened to resist glitch 
propagation cause generation of big glitches at their 
outputs and gates hardened to reduce generated glitch 
widths propagate glitches very easily. It is necessary to 
estimate the change in soft-error tolerance of the whole 
circuit after any optimization, as a “local” improvement of 
the softness of a gate might not lead to a “global” 
improvement in soft-error tolerance. The next section 
describes ASERTA, a tool for accurate estimation of the 
soft-error tolerance of a circuit. 

3 Circuit soft-error tolerance analysis 

ASERTA models a particle strike at a node as a 
current source injecting (or removing) a fixed amount of 
charge into (or from) that node. If the node is at low 
voltage, charge is injected into the node and if the node is 
at high voltage, charge is removed by the current source. 
The opposites of these two cases do can not cause a 
voltage glitch to be generated and are neglected. A SPICE 
look-up table is constructed for generated glitch width 

(due to charge injected at gate output) for different types 
of gates, fan-ins, sizes, channel lengths, VDDs, Vths and 
load capacitances. Although in reality the amount of 
charge injected (or removed) depends on the energy of the 
strike, for simplicity ASERTA assumes a fixed amount of 
injected charge. Future versions of ASERTA will have 
look-up tables for different amounts of injected charge. 

SPICE look-up tables are also constructed for delays, 
static energies, dynamic energies, output ramp and gate 
input capacitances for different types of gates, fan-ins, 
sizes, channel lengths, VDDs, Vths, input ramps and load 
capacitances. ASERTA uses linear-interpolation inside 
the look-up tables to compute output values for arbitrary 
values of input parameters. Using look-up tables allows 
ASERTA to have better accuracy than analytical models 
while still being much faster than SPICE. To estimate the 
soft-error tolerance of a circuit, ASERTA injects charge 
into every gate output, looks-up the generated glitch width 
from the table and then propagates the generated glitch to 
the primary outputs  (POs) taking into account the effects 
of logical and electrical masking. The sum total of the 
widths of the glitches reaching the POs is taken as a 
measure of the “Unreliability” of the circuit. The 
following sub-sections describe how ASERTA models 
logical, electrical and latching-window masking.  

3.1 Logical masking 

Since actual signal values are not known, for every 
node ASERTA calculates the probability that there is at 
least one sensitized path from that node to a primary 
output. Calculation of the sensitization probability values 
from the input signal statistics is easy for circuits which 
do not have reconvergent fan-out. Sensitization 
probabilities for such circuits can be calculated as in [8]. 
However, finding the values for circuits with reconvergent 
fan-out is an NP-complete problem [9]. ASERTA uses 
zero delay simulation of the circuit with 10000 random 
inputs applied (as in [5]) to compute the probability, Pij, 
that there is at least one path sensitized from output of 
gate i to primary output j. For primary output j, Pjj is 1. 
The static probability, pi, of a node i being at logic 1 is 
obtained for all nodes using a commercially available tool, 
Synopsys Design Compiler, given a static probability of 
0.5 at the primary inputs. 

For all successor gates s of gate i, the probability that a 
glitch at i will be able to propagate through gate s to 
primary output j is calculated as follows: 
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where � is the set of successors of gate i and Sis is the 
probability that gate s is sensitized to gate i (i.e. all other 



inputs of gate s have non-controlling values). Sis can be 
obtained by multiplying together the static probabilities of 
the other inputs being 1/0 for a AND/OR gate. Note that 
�isj is not taken to be just Sis

.Psj since �isj should have the 
property that 
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an approximation to the actual probability value since in 
circuits with reconvergent fan-out, the probability that 
gate s is sensitized to gate i conditions the probability of 
gate s having a path sensitized to a primary output. 

The next sub-section describes the procedure used in 
ASERTA for computing the glitch widths at POs for 
charge injected at every gate output. 

3.2 Electrical masking 

As mentioned before, ASERTA computes the 
expected output glitch width, Wij, at primary output j for 
generated glitch width, wi, at gate i. To do this efficiently 
in one pass over the circuit, for every gate, the expected 
output glitch widths, WSijk, for 10 sample glitch widths, 
wsk (k between 1 and 10) are computed. 

The output glitch widths are computed for all gates in 
reverse topological order (i.e. from POs to PIs) as follows:  
 
(i) Let current gate be i. 
(ii) If gate i is a primary output, set WSiik=wsk for all k. 

Set WSijk=0 for all other primary outputs j. 
Also, since gate is primary output, it will propagate 
generate glitch width, wi, directly. Hence, set Wii=wi 
and Wij=0 for all other primary outputs j. 

(iii) If gate i is not a primary output, for all sample glitch 
widths, wsk: 

For all successors s of gate i: 
Let ds be the delay of gate s looked up from the 
SPICE tables. 
Calculate the glitch width, wosk, propagated to 
the output of gate s for input width of wsk using 
Equation 1.  
For each primary output j, look up the expected 
output glitch width, WEsjk, for generated glitch 
width of wosk from the table of expected output 
glitch widths for gate s, linearly interpolating if 
necessary. 

Finally, Let ijk isj sjk
s

W S W Eπ
∈ Ψ

= ⋅�  

(iv) Compute Wij by looking up the table of expected 
output glitch widths, WSijk, computed in step (iii), for 
a generated glitch width of wi, again linearly 
interpolating if necessary. Now process the next gate. 

  
At the end of this procedure, expected output glitch 

widths, Wij, at primary output j for generated glitch width, 
wi, for every gate i are known. The complexity of the 

procedure is O(V+E), where V is the number of gates and 
E is the number of circuit edges. 
 
Lemma 1: For a very wide glitch wwi generated at output 
of gate i, the above procedure correctly computes the 
expected output glitch width at primary output j as 

ij i ijWW  = ww P⋅ , if it is assumed that wwi is one of the 

sample glitch widths used above (say sample 1). 
Proof: Since the generated glitch is very wide, it will pass 
through all gates on any path from i to j without 
attenuation. WSjj1 is correctly computed as wwi at primary 
output j. Assume that WSrj1 is correctly computed for all 
successor gates r of a gate p between i and j as wwi

.Prj. 
Then, the expected width WSpj1 will be computed as: 
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where WSrj1 can be used instead of WErj1 because wwi is 
wide enough to propagate through gate r without 
attenuation. By induction, WSij1 is also computed as 

i ijww P⋅ . Since wwi is the first sample glitch width, 

WSij1 is WWij. � 

3.3 Latching-window masking 

A glitch must arrive within the setup and hold times of 
the latch at the primary output to be captured. Since the 
exact time of the particle strike is unknown, it can be 
assumed to be uniformly distributed within the clock 
cycle. The probability of a glitch being captured by a latch 
is directly proportional to its duration. Hence, by 
summing up the expected output glitch widths, Wij, for all 
primary outputs j, the total contribution of gate i to the 
circuit unreliability is obtained. However, this ignores the 
fact that the size, Zi of a gate plays an important role in 
determining the particle flux incident on the gate. Hence, 
the actual contribution of gate i to circuit unreliability is: 
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j
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The total unreliability of the circuit is: 
 

�=
i
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Figure 3 shows the unreliability numbers, Ui, for the 
gates in ISCAS’85 benchmark circuit “ c432”  calculated 
by ASERTA plotted along with values calculated by 
SPICE for 70nm technology node. In SPICE, the 
unreliability was computed by applying 50 random input 
vectors, injecting charge at every gate output i and using 
the width of the glitch at primary output j as Wij in 



Equation 3. Only the nodes that were at most five levels 
deep from the POs are plotted. It is seen that there is close 
matching. The correlation between the two series was 
computed to be 0.96. For the ISCAS’85 benchmark 
circuits, an average correlation of 0.9 was obtained. 

The next section describes SERTOPT, a tool that uses 
the unreliability estimates generated by ASERTA to 
optimize nanometer circuits for increased soft-error 
tolerance by enhancing the electrical masking 
characteristics of gates in the circuits. 

4 Circuit soft-error tolerance optimization 

SERTOPT uses a delay assignment variation method 
to minimize a cost function that is a weighted sum of 
circuit unreliability, circuit power consumption and circuit 
size. A designer can easily change the optimization 
constraints by changing the ratio of the weights. 

The delay assignment variation method is based on the 
technique in [10][11]. The circuit topology for a circuit 
with N gates and P paths from PIs to POs is represented 
with a binary topology matrix, T, defined as follows: 

 

ijT =1 if gate i lies on path j

= 0  otherwise 
 

If the delays of the gates are represented by 

[ ]1 2
T

Nd d d d= � , then TD d= ⋅  is the vector 

of path delays. The delay assignments of the gates are 

varied in an optimization iteration by adding ∆  such that 

T 0⋅ ∆ = . This choice of ∆  lets the delays be varied 
without varying the path delay vector as shown below: 
 

 ( )T T Td d D⋅ + ∆ = ⋅ + ⋅ ∆ =  

In other words, ∆  has to lie in the nullspace of T to 
guarantee that the timing constraints are met in every 
iteration. 

To find the circuit parameters (gate sizes, lengths, 
VDDs, Vths) that are needed to match a delay assignment, 
SERTOPT traverses the circuit from POs to PIs in reverse 
topological order. The capacitive loads of the gates at the 
POs are known since these loads do not change. From 
these loads and the delay assignments for the PO gates, 
the best matching sizes, lengths, VDDs, Vths available in 
the SPICE library that yield delays closest to the assigned 
delays are found and assigned to the PO gates. Once the 
parameters of these gates have been set, the capacitive 
loads offered by these gates to their predecessors can be 
found. The whole process is then repeated till the PIs are 
reached. The only constraint during the matching process 
is that only VDD values greater than or equal to successor 
VDD values are allowed to be used for a gate. This ensures 
that there is no low VDD gate driving a high VDD gate and 
eliminates the need for level-shifters. 

Once the circuit parameters have been determined, 
SERTOPT calculates the circuit unreliability (U) using 
ASERTA and the circuit delay (T), total energy (E = 
dynamic energy + static energy) and area (A) using 

SPICE libraries. Note that although ∆  has been chosen 
from the nullspace of T, the timing constraint might still 
be exceeded slightly because of the finite size library used 
for matching the delays. Hence, timing can also be 
included in the cost. The cost is computed as: 
 

1 2 3 4
init init init init
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where Uinit, Tinit, Einit and Ainit are the unreliability, delay, 
energy and area of the initial circuit. 
 The cost is minimized by using Sequential Quadratic 
Programming (SQP) to search for the optimal delay 
assignment giving lowest cost. However, simulated 
annealing, genetic algorithms or some other optimization 
algorithm can also be used. 

5 Experimental results 

First, gate sizes were obtained for ISCAS’85 
benchmark circuits by optimizing for speed using 
Synopsys Design Compiler. The gate sizes were then used 
with SPICE 70nm models [7] to compute the delays of the 
circuits for the 70nm technology. All the gates had a 
transistor channel length of 70nm, VDD of 1V and Vth of 
0.2V. The unreliability of the baseline circuits was 
estimated using ASERTA. 

Then, SERTOPT was used to determine new gate 
sizes, channel lengths, VDDs and Vths for the circuits that 

 
Fig 3. Unreliability values obtained by SPICE and 

ASERTA for nodes in c432. 



Table 1. Optimization Results 

 
would minimize unreliability while meeting the delay 
constraint of the baseline circuits. The results of the 
optimization are reported in Table 1. The second and third 
columns give the VDD and Vth values used in the 
optimized circuits. Note that the values and numbers of 
VDDs and Vths to be used is a design variable. We report 
results for values that gave fair reduction in unreliability 
without compromising too much on power consumption. 
The maximum gate size used was the same as that for the 
baseline circuits. The gate channel lengths that SERTOPT 
was allowed to use for the optimization were 70nm, 
100nm, 150nm, 250nm and 300nm. The fourth, fifth and 
sixth columns give the ratio of the area, energy 
consumption and delay of the optimized circuits to the 
corresponding values for the baseline circuits. As 
mentioned before, the delay constraint can sometimes be 
exceeded due to the finite sized library used. The seventh 
column gives the decrease in unreliability (as defined by 
Equation 4) of the optimized circuits. The first sub-
column gives the decrease calculated by ASERTA. The 
second and third sub-columns give the decrease in 
unreliability calculated by applying 50 random input 
vectors to the baseline and optimized circuits and 
measuring the average glitch width at the outputs using 
ASERTA and SPICE. They indicate the matching 
between ASERTA and SPICE for a small set of input 
vectors. Note that these numbers are different from the 
number in the previous column because 50 inputs do not 
capture the input statistics very well. The last 2 circuits 
were too big to be simulated by SPICE so we just report 
the unreliability reduction calculated by ASERTA. 

The unreliability of “ c499”  could not be reduced. The 
reason is that “ c499”  is an error-correcting circuit for 
single-bit errors and ASERTA also models unreliability 
by injecting single-bit errors. A modelling scheme that 
takes into account simultaneous multiple-error injections 
could still be used with SERTOPT to reduce unreliability 
in the face of such errors. 
 ASERTA and SERTOPT have been implemented in 
MATLAB. They take 15 second and 20 minutes to run on 
“ c432”  and 200 seconds and 27 hrs to run on “ c7552”  
respectively†. 

6 Conclusion 

This paper presented tools for the analysis and 
optimization of the soft-error tolerance of nanometer 
combinational circuits. The analysis tool, ASERTA, is 
able to accurately calculate (with average correlation of 
0.9 with SPICE) the “ unreliability”  of circuits in orders of 
magnitude less computation time than SPICE. The 
optimization tool, SERTOPT, is able to reduce the 
unreliability of circuits by up to 47% by using a library 
with multiple VDDs, Vths, gate sizes and gate lengths. 
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Decrease in Unreliability Circuit VDDs 
used Vths used Area Energy Delay ASERTA ASERTA/SPICE (50 Random Inputs) 

c432 0.8, 1 0.2, 0.3 2X 2.2X 1.23X 40% 44% 54% 
c499 - - - - - 0% 0%  0% 

c1908 0.8, 1, 1.2 0.1 ,0.2, 0.3 1.2X 1.8X 0.98X 18% 6%  12% 
c2670 0.8, 1, 1.2 0.1, 0.2, 0.3 1.05X 1.3X 0.98X 21% 42%  38% 
c3540 0.8, 1 0.2, 0.3 1.5X 1.6X 1.03X 47% 35% 34% 
c5315 0.8, 1, 1.2 0.1, 0.2, 0.3 1.2X 1.9X 0.98X 26% - - 
c7552 0.8, 1 0.2, 0.3 1.6X 1.6X 1.07X 18% - - 

†MATLAB is an interpreted language, hence slow. There is a 10X 
speed-up expected by migrating to C. 
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