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Abstract

Soft errors are an increasingly serious problem for logic
circuits. To estimate the effects of soft errors on such cir-
cuits, we develop a general computational framework based
on probabilistic transfer matrices (PTMs). In particular, we
apply them to evaluate circuit reliability in the presence of
soft errors, which involves combining the PTMs of gates
to form an overall circuit PTM. Information such as out-
put probabilities, the overall probability of error, and signal
observability can then be extracted from the circuit PTM.
We employ algebraic decision diagrams (ADDs) to improve
the efficiency of PTM operations. A particularly challeng-
ing technical problem, solved in our work, is to simultane-
ously extend tensor products and matrix multiplication in
terms of ADDs to non-square matrices. Our PTM-based
method enables accurate evaluation of reliability for mod-
erately large circuits and can be extended by circuit parti-
tioning. To demonstrate the power of the PTM approach,
we apply it to several problems in fault-tolerant design and
reliability improvement.

1 Introduction

Transient (probabilistic) errors have been a major source of
system crashes for years. Traditional sources of transient
errors include power supply instability and mismatches be-
tween components. As transistor sizes decrease, it becomes
important to consider transient errors in logic circuits caused
by cosmic rays [10]. When a primary particle strikes the
atmosphere, neutrons and other secondary particles can be
emitted. Neutrons can strike a critical node in a circuit, leav-
ing behind an ionized track in silicon possibly causing a bit
flip error to be latched. This necessitates methods to model
and analyze circuits with probabilistic errors.

We model circuits at the logic level using a matrix repre-
sentation for gates, an idea that goes back to [7]. We use the
form given in [9] known as the probabilistic transfer matrix
(PTM) formulation which represents parallel composition of
gates with tensor products. Matrix representations of gates
are illustrated in Figure 1, where the probability of each out-
put value is explicit for each input combination.

Given individual gate error probabilities, we can com-
pute output probabilities for the entire circuit and the overall
probability of correctness, i.e., reliability of the circuit. This
requires calculating the PTM for the whole circuit by com-
bining gate PTMs. The process of combining gate PTMs
implicitly takes into account signal dependencies between
gates by considering the underlying joint and conditional
probabilities within the circuit. Once the circuit PTM is cal-
culated, accurate information about output probabilities, re-
liability and signal observabilities can be extracted from it.

Specific applications of interest include comparing the
reliability of various circuits for a Boolean function and
choosing critical components for partial duplication [8]. The
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Figure 1: PTM (left) and ADD (right) representations of a
NAND gate that produces an incorrect output with probabil-
ity p for any given input. The labels r0, r1, and c1 in the
ADD diagram represent row and column index variables.

exactness of the calculations can be used to make small, in-
cremental enhancements to a circuit. While approximate
methods exist, higher precision may be required to eval-
uate sensitivities to changes in the circuit structure. Ex-
act techniques are also needed to automate the evaluation
of fault-tolerant constructs such as NAND-multiplexing and
cascaded triple modular redundancy (TMR) [13].

The PTM evaluation method has several advantages over
existing methods of soft error modeling. It performs simul-
taneous computation over all possible input combinations. It
calculates the exact probabilities of errors, so no input vec-
tor sampling is involved. Also we do not have to explicitly
map out signal dependencies in the network beyond spec-
ifying the gate PTMs. Larger circuits can be analyzed by
applying this technique to sub-circuits in conjunction with
event-driven simulations or path tracing. Having subcircuits
precomputed as PTMs can speed up these algorithms.

A potential memory bottleneck in the PTM approach is
alleviated through the use of ADDs (algebraic decision di-
agrams) [3] to compress PTMs (see Figure 1). The ADD
is reduced in that identical nodes are not represented twice.
Unnecessary decisions are always skipped, and the variable
ordering interleaves row and column variables. For a gate
with n inputs and m outputs, the straightforward represen-
tation of its PTM requires space O(2n+m). For a computer
with 2GB memory, this limits the size of the circuit to 16
input/output signals in practice. However, the use of the
ADD compression method significantly decreases the mem-
ory requirements in practice. PTM operations including in-
formation extraction are performed on the compressed form.
Therefore, this method has complexity polynomial in the
size of the ADD of a circuit and empirically scales to a
width of 40+ signals. This facilitates exact analysis of circuit
blocks used in regular circuit fabrics such as PLAs, FPGAs,
memories and structured ASICs.

A major technical challenge in using ADDs for PTM
representation is the lack of ADD algorithms for non-square
matrices. Existing algorithms use zero-padding to make a
matrix square. However, as we show, zero-padding gener-
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ally produces incorrect results for a key operation needed
in PTM evaluation. We circumvent this difficulty by using
permutation matrices and fanin gates.

The remainder of this paper is organized as follows.
Section 2 outlines related work. Section 3 introduces the
PTM framework and operations required to calculate circuit
PTMs. Section 4 explains how ADDs are used to compress
PTMs, outlines our PTM evaluation algorithm and presents
empirical results. Section 5 examines several applications,
while Section 6 discusses conclusions and future work.

2 Previous Work

Prior research on probabilistic analysis of logic circuits can
be broadly classified into these areas: probabilistic behav-
ior modeling, circuit simulation, fault-tolerant architectures
and reliability improvement by adding redundancy. Work
has been done in modeling dependencies between signals in
the form of a Bayesian network. The relation between cir-
cuit signals and Markov random fields (undirected Bayesian
networks) is described by [2] in the context of probabilistic
computation using neural networks. The conditional prob-
ability of outputs given input signals determines how errors
are propagated through a circuit. Using this type of theoret-
ical model it is possible to predict the probability of output
error given the gate errors. However empirical results in [2]
are not presented for any significant circuits .

The work in [1] describes a model for simulating the
physical effects of soft errors on VLSI circuits. It uses
an event-driven simulator with timing information to inject
faults into individual gates. A transient error is latched de-
pending on factors such as electrical, latching-window and
logical masking. The functionality and connectivity of gates
can make errors unobservable or influence the output error
in various ways. The simulator injects faults for each test
vector and determines whether the fault is latched despite
the three basic sources of errors.

In [8] the soft error or single event upset (SEU) sus-
ceptibility of gates is estimated. The soft error suscepti-
bility of a gate g with respect to a latch l, is calculated by
perror(g, l) = RSEU ∗Psense(g, l)∗Platched(g, l). Here RSEU is
the probability that an incident neutron can produce an SEU.
Psense(g, l) is the probability that an input sensitizes a partic-
ular gate. Platched(g, l) is the probability that the error occurs
during the latching window of the clock cycle. In order to
assign an error susceptibility to an individual gate, a set of
input vectors (selected from sampling runs of a circuit) are
tested along with a fault at the particular gate. Each fault is
propagated through critical path tracing to assess its affect
on the output. This gives the approximate probability that
an error appearing at a particular gate is latched.

The work in [2] models probabilistic behavior of logic
circuits by Bayesian networks, while our work relies on sim-
pler modelling with matrices [7, 9]. Our data structures en-
able further scalability than was shown in [2].

Developments in nanotechnology have led to recent in-
terest in fault-tolerant architectures [6]. In order to shrink
devices reliably, techniques such as NAND multiplexing
have been proposed. This technique involves analyzing the
fault-tolerance of NAND multiplexing with Markov chains
[6]. The analysis indicates that a low degree of redundancy
may be sufficient for unreliable nanodevices. In our work,
we wish to automate the analysis of fault-tolerant architec-
tures using PTM evaluation. We do not require most of
the assumptions used in analytical models and therefore can
consider a wider range of probabilistic error patterns.

3 PTM Theory

We utilize the PTM model proposed in [9] which uses ten-
sor products as well as matrix multiplication for notational
convenience. In [7, 9] there was little discussion of imple-
mentation or applications of matrix based models of gate
behavior. In this paper, we develop compuatational support
for the PTM model and demonstrate practical results in ap-
plications.

The probabilistic behavior of a circuit can be described
by a matrix A where the ( j,k)th entry represents the proba-
bility of output signals O = o0,o1, . . .on having value k given
that input signals I = i0, i1 . . . im have value j. This is denoted
p(O = k|I = j). Here the row and column indices j and k are
thought of as bit vectors whose entries represent the values
of the signals that form the input and output. For conve-
nience we omit the signal names and write this as p(k| j).
For instance p(1,1|1,0) represents the probability that the
two output variables (O0,O1) have value (1,1) given that
the two input variables (Io, I1) have value (1,0). Probability
p(1,1|1,0) can be alternately written as p(3|2).

Definition 1 A matrix M where the ( j,k)th entry represents
the probability of output value k given input value j, i.e.,
p(k| j), is called a probabilistic transfer matrix (PTM). A
fault-free circuit has an ideal transfer matrix (ITM), i.e., the
correct value of the output occurs with probability 1.

Circuit PTMs are calculated from gate PTMs by com-
bining gate PTMs in a manner dictated by their connectivity.
We now describe the matrix operations needed to construct
a circuit PTM from the PTMs of its components.

For two gates g1 and g2 with PTMs M1 and M2 that are
connected in series, the entry p(k| j) in the combined matrix
represents the probability that g2 produces output k in case
g1 is given input j. Therefore

p(k| j) = ∑
all l

p(k|l)p(l| j)

This operation corresponds to the matrix product of the two
component PTMs denoted M1M2.

Now consider two gates g1 and g2 with PTMs M1 and
M2 that are connected in parallel. We view indices k and j
of the entry p(k| j) in the combined matrix as concatenated
in binary from indices k1,k2 and j1, j2 of the two original
PTMs. The value of p(k| j) is the joint probability that the
input j1 of gate g1 causes value k1 at the output and, at the
same time, the input j2 of gate g2 causes k2 at the output of
g2. Therefore p(k| j) = p(k1,k2| j1, j2) = p(k1| j1)p(k2| j2).
This operation is commonly known as the tensor product.

Definition 2 Given two matrices M1 and M2 with dimen-
sions m×n and o× p respectively, the tensor product of M1
and M2, denoted M1 ⊗M2 is an mo× np matrix whose en-
tries are given by p(k| j) = p(k1| j1)p(k2| j2).

We represent fanout behavior by explicit fanout gates.
A n-output fanout gate, denoted Fn, copies an input signal to
its n outputs. The ITM of a 2-output fanout gate is therefore

given by

[

1 0 0 0
0 0 0 1

]

.

To calculate the PTM of an acyclic combinational cir-
cuit with known gate PTMs, we combine PTMs of smaller
components into larger PTMs using matrix products and ten-
sor products. Additionally, explicit fanout gates and identity
gates (buffers) may be required to reconcile dimensions be-
fore applying matrix products. This bottom-up evaluation
procedure is illustrated next.



Figure 2: Circuit to illustrate the calculation of a PTM from
gate PTMs. The junction dots represent fanout gates. The
dotted lines separate levels of the circuit.

Example 1 For the circuit shown in Figure 2, the 2-input
NAND gates have the PTM NAND2p given in Figure 1, and
the PTM NAND3p for the 3-input NAND gate is similar.
An inverter with uniform error probability p has the PTM

NOTp =

[

1− p p
p 1− p

]

. The circuit PTM is expressed by:

(F2⊗F2⊗ I)(I⊗ I⊗ I⊗NOTp⊗ I)(NAND2p⊗NAND2p⊗ I)(NAND3p) (1)

where I refers to a 2× 2 identity PTM. Each parenthesized
term in Equation 1 corresponds to a circuit level in Figure 2.

While other models for representing circuit errors exist,
we use the PTM framework because of its generality and
versatility. The PTM model can represent a wide variety of
gate behavior including stuck-at faults and transient errors.
The fact that there are separate probabilities for each input
and output and the fact that they are propagated simultane-
ously enable this generality. Also the PTM model can be
easily extended in various ways.

4 PTM Representation and Evaluation

The size of a gate PTM with n inputs and m outputs is 2n ×
2m. The memory needed to store PTMs can be reduced by
compressing them and operating on the compressed forms.
This section discusses compression by encoding the matrix
into an algebraic decision diagram (ADD) and develops an
efficient procedure for evaluating circuit PTMs.

4.1 Compressing Matrices with ADDs

In general, all entries of a 2n × 2m matrix can be distinct.
However, matrices that represent circuits often have many
identical rows. For example, in the PTM of an ideal n-input
NAND gate all but one of the rows are identical (set p =
0 in Figure 1). This suggests that circuit matrices can be
significantly compressed.

In [3] the authors describe the encoding of a matrix using
ADDs. Recall that a BDD is a directed acyclic graph repre-
senting f (x0,x1,x2, . . .xn) with root node x0. The subtree
formed by the outgoing edge labeled 0 represents the co-
factor fx′0

(x1 . . .xn), and the subtree formed by the outgoing
edge labeled 1 represents the cofactor fx0(x1 . . .xn). Boolean
constants are represented by terminal nodes. ADDs are vari-
ants of BDDs where terminal nodes can take on any real
value. ADDs can also have multiple terminals.

In the ADD encoding of a matrix, the nodes represent
decisions on row and column variables, and terminals rep-
resent values in matrix entries. The entries themselves are
represented by paths starting from the root node and end-
ing in a terminal. The same path can encode several entries
if variables are skipped in a path. The input variables are
queried in a pre-defined order, and this facilitates reductions
by using the same node for identical sub-matrices. We use

the QuIDDPro library [12] to encode PTMs into ADDs and
also to perform operations on PTMs. QuIDDPro includes
the CUDD library and uses interleaved row and column vari-
able ordering. This ordering facilitates fast tensor products
and matrix multiplications — key operations in quantum-
mechanical simulations for which QuIDDPro was designed.

4.2 Handling Non-Square Matrices

All matrix algorithms for ADDs that we are aware of assume
square matrices, but can represent non-square matrices using
zero padding [3, 4, 12]. A non-square matrix has fewer row
variables than column variables or vice versa. However, any
missing variable in a standard ADD is interpreted as mark-
ing replicated matrix entries. In other words, the entries of
the matrix for both values of the variable are identical. To
prevent this effect, missing rows or columns can be explic-
itly padded with zeros.

Matrix multiplication and addition are compatible with
zero padding [3], however the tensor product is not. When
two padded matrices A and B are tensored together, the result
will have spurious rows of zeros which are carried over from
the zero-padding of B.

Example 2 The equation below is an example of an ideal
NOT gate tensored with an ideal zero-padded NAND gate.
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(NOT) (NAND2)

This illustrates the incorrect results obtained from tensoring
padded matrices. Columns 3 and 4 erroneously consist en-
tirely of zeros which are carried over from the zero-padding
of the NAND matrix.

We develop two approaches to reconcile tensor products
with zero-padding: dummy outputs and the permutation ma-
trices. In the first approach, we add dummy outputs to a gate
so as to equalize the number of inputs and outputs. This
makes the gate PTM square thereby eliminating the prob-
lem with tensor products.
Dummy outputs can be subsequently re-
moved by multiplying the result by a fanin-
gate PTM, such as the one on the right for
a 2-input 1-output fanin gate. In general, a
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fanin gate is the transpose of the fanout gate introduced in
Section 3. The fanin gate shown here is itself zero-padded
and so in essence it moves desired outputs to the left corner
of the matrix and the all-zero columns to the right. ITMs
for fanin gates can be directly constructed as ADDs by first
creating an appropriately-sized identity matrix and then ab-
stracting column variables corresponding to the outputs we
wish to retain, as explained below.

Definition 3 The abstraction of signals s and t from ma-
trix M is matrix M0 with entries p(k| j) = ∑all x ∑all y p(s =
k,x|t = j,y). Here the p(k| j) is the sum over all possible
values of the remaining input and output variables of M.

This operation generalizes the well-known existential
abstraction of a single or multiple Boolean variables, but
relies on arithmetic addition of matrix entries instead of



the Boolean disjunction of cofactors. Its implementation in
terms of ADDs is similar.

The alternative, permutation matrix method shifts spuri-
ous columns of zeros to the end of the tensor-product matrix.
This can be expressed as multiplication by a permutation
matrix acting as a column permutation, but such permuta-
tions have size up to 2n (for n inputs) and are impractical
if specified explicitly. Fortunately, we discovered a decom-
position of zero-tracking permutation matrices into products
and tensors of smaller matrices, which dramatically reduces
the runtime.

Suppose we are calculating A⊗B for two matrices A and
B with dimensions 2p × 2p and 2q × 2q after zero-padding.
Spurious rows or columns of zeros will appear only if the
actual dimensions of B are smaller. To this end, suppose
that B has actual dimensions 2n ×2q, n < q. Then the zero-
tracking row permutation R is defined as R = r⊗ In where In
is a 2n×2n identity and r is a 2p+q−n×2p+q−n matrix where
i-th row has a 1 in entry (i, i2q−n mod 2p+q−n) and zeros
elsewhere. The zero-tracking column permutation matrix is
defined similarly; see matrix R in Example 3.

We now decompose zero-tracking row and column per-
mutation matrices into products of permutation matrices of
a special form. This special form is induced by permut-
ing bits of row indices and column indices (these bits are
known as row variables and column variables). Since there
are exponentially fewer bits than rows and columns, these
special-form matrices can be encoded much more com-
pactly. Namely, for a matrix A consider a permutation σ( )
on the row variables. A row of A with index i0i1 . . . in in bi-
nary is mapped to the row with index σ(i0)σ(i1) . . .σ(in) in
binary. This defines a row variable permutation of A with
respect to σ, which we denote as rperm(A,σ).

A key observation is that R can be decomposed into a
product of row variable permutations tensored with identity
matrices according to

R = Πq−1
k=nrperm(Ip+q−k,σk)⊗ Ik (2)

where σk(i) = (i−1) mod (p+q− k)

Example 3 To address the problem noted in Example 2 we
need the zero-tracking permutation matrix R, shown below.
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1 0
0 1

]

(R) (rperm) (I1)

Here, matrix rperm is a 4×4 identity (I2) with its 1-bit col-
umn variables swapped (columns 01 and 10 are swapped).

Intuitively, for a circuit with n row variables r0,r1 . . .rn
this corresponds to moving rn to rn−1, rn−1 to rn−2 and so
on. This method is efficient because the rperm(Ip+q−k,σk)
gates are row variable permutations on the identity matrix
and Ik is a k-variable identity matrix. For any n, In =
In−1 ⊗ I1, and this recursive calculation of In takes linear
time in n [12]. The row variable permutation also takes O(n)
space because a matrix with 2n rows has only n row vari-
ables. We note that decomposition of permutations into ten-
sor products was studied in [5]. However, that work did not
use variable permutations while we do not use conjugated
tensor products.

4.3 Evaluation Procedure

PTM evaluation proceeds by level, from the primary outputs
to the primary inputs; see Figure 3. First the primary outputs
are stored in the list called CurrSigs. The gates that output
these signals are tensored together to form the PTM for Cur-
rLevel and are removed from CurrSigs. The CurrLevel PTM
is then multiplied by the circuit PTM to form the new Cur-
rCircuit PTM. This process continues until the CurrSigs are
identical to the primary input signals and avoids tensoring
gate PTMs together until necessary.

The intermediate level PTMs can be discarded after they
are multiplied into the circuit PTM. This is important for the
scalability of a circuit because tensoring two PTMs of size
2n × 2n and 2m × 2m produces a result with 2n+m × 2n+m

entries. So suppose a level has n inputs and m outputs, then
PTM is given by a 2n × 2m matrix. If these can be stored
seperately as individual gates with one output per gate then
the size is only m2n. This is an exponential decrease in the
space complexity.

CurrSigs = primary out puts
while (CurrSigs 6= primary inputs)

for j = 0:CurrSigs.size()
CurrLevel = CurrLevel ⊗ gate lookup(CurrSigs[ j])
zero track(CurrLevel)
remove redundancy(CurrLevel)

end
CurrCircuit = CurrCircuit ∗ CurrLevel
CurrSigs = CurrCircuit.inputs

end

Figure 3: Pseudo-code for our PTM evaluation method.

In Figure 3 the function gate lookup(S) returns the PTM
for the gate which is the source for signal S. If the source
gate has multiple outputs then the desired signal is ab-
stracted. If S is a primary input or needed in a future iteration
(this is looked up in a table), the function returns the iden-
tity gate with S as the input thereby propagating the input to
the previous level. At the termination of the procedure the
current signals should include all primary inputs and only
primary inputs.

To improve the efficiency of PTM evaluation in prac-
tice, we introduce two additional ADD operations: one for
removing redundancy in input signals and one for reliabil-
ity calculation. In place of fanout gates, described in Sec-
tion 3, we use an operation called redundancy removal. By
removing each duplicated input signal, instead of adding a
fanout gate, the PTM size is cut in half. Consider the case
where inputs i0 and i2 are identical. In this case, all PTM
rows whose indices have different bits 0 and 2 do not repre-
sent observable behavior and should be discarded, including
row 6 = 1102. The redundancy removal is implemented as
a variation of the abstraction operation (see Definition 3).
In abstraction entries corresponding to the variables being
eliminated are summed together; for redundancy removal,
one of the two rows corresponding to the redundant signal is
chosen. This process can be repeated for more redundancy.

The reliability operation determines the probability of
correctness of a circuit by comparing the ITM with the PTM.

Definition 4 The reliability of a circuit c with PTM M and
ITM J is given by Rel(c) = ΣJ(i, j)=1 p( j|i)p(i). Recall that
p( j|i) is found in the (i, j)th entry of M. In the case that all
inputs are equally likely, Rel(g) = 1

2n ΣJ(i, j)=1 p( j|i) where n
is the number of inputs to c.



Characteristics Performance, p = 0 Performance, p = .05 Reliability, p = .05
Circuits gates inputs outputs width time(s) memory (MB) time(s) memory(MB) two-way one-way
C17 6 5 2 5 .057 .003 .076 .003 .846 .880
mux 6 21 1 23 6.13 3.16 6.13 2.51 .907 .939
z4ml 8 7 4 20 1.74 1.54 2.22 1.59 .67 .817
x2 12 10 7 23 18.8 7.91 35.3 9.03 .15 .099
parity 15 16 1 23 .350 .129 .350 .144 .602 .731
pcle 16 19 9 16 12.7 3.61 74.9 24.2 .573 .657
decod 18 5 16 13 2.17 1.72 56.9 11.8 .000 .000
cu 23 14 11 23 5.12 2.53 93.87 10.0 .461 .579
pm1 24 27 17 27 24.6 6.95 7169 160 .375 .596
9symml 44 9 1 37 362 612 1758 1200 .327 .534
xor5 47 5 1 19 19.3 4.42 1337 57.3 .067 .071

Table 1: Performance of PTM evaluation and reliability of circuits with gate error p = 0.05.

4.4 Empirical Results

Results from calculation of circuit ITMs and circuit PTMs
are shown in Table 1 for smaller LGSynth 91 and LGSynth
93 benchmarks with independent uniform distributions on
all primary inputs. These simulations were run on a Linux
workstation with a 3GHz Pentium 4 processor. In our exper-
iments CPU time was limited to 24 hours. The runtimes and
memory requirements are sensitive to the width of a circuit,
i.e., the largest number of signals at any level. This deter-
mines the size of the tensor products and permutations/fanin
gates for zero-tracking in tensor products. Empirically, cir-
cuits with widths of around 40 signals can be evaluated effi-
ciently. Memory is not a bottleneck in our experiments.

Table 1 gives the overall reliability of the circuits for
gate error probabilities of 0.05 and also one-way gate er-
rors of 0.05. In CMOS gates, an erroneous output value 0
is more likely than an erroneous value 1 because SEUs typ-
ically short-circuit power to ground. PTMs can encode this
bias easily because the error probability depends on the input
value. Relevant empirical results are given in the “one-way”
column in Table 1. Note that circuits with a high output-to-
input ratio, such as decod.blif, tend to magnify gate errors at
fanout stems and therefore have lower reliability.

PTM evaluation for p = 0.05 takes more memory and
runtime because less compression is possible. Ideal matri-
ces have large blocks of 0s which makes for more identical
submatrices to compress. When PTMs with errors are com-
posed, there is greater variety in the matrix entries yielding
less compression.

5 Applications

PTM evaluation has a wide range of applications. Below we
describe two sample applications that we have implemented.

5.1 Gate Susceptibility

Replication is often used to increase the reliability of a cir-
cuit e.g. TMR (triple modular redundancy). In [8] the au-
thors show that in some circuit applications it may not be
necessary to replicate the entire circuit. Only certain gates
which are especially susceptible to error are chosen for repli-
cation and this increases the reliability of a circuit with rel-
atively little area overhead. According to their heuristic, er-
rors are injected into gates and then a sample of input vectors
is applied in order to assess the probability of error at the
primary outputs. Since the number of input vectors is ex-
ponential in the number of inputs to the circuit, this process
can have high time complexity. Further, it can be inaccurate

because a few inputs which are not included in the sampled
set can lead to a drastic increase in the gate susceptibility.

PTMs can provide an accurate measure for the suscep-
tibility of a gate using. The observability of a gate g in a
circuit C can be thought of as the observability of its out-
put signal. It is defined as the probability of output error
given that gate g has error probability p on all inputs. This
value is obtained by calculating Rel(C)/p where Rel(C) is
reliability after insertion of an error into g. The gates with
highest observability can be regarded as the most susceptible
to probabilistic errors.

Since PTM calculations implicitly include all input vec-
tors, sampling is unnecessary. Observability can be com-
puted by introducing an appropriate error into gate PTMs
and then evaluating the circuit PTM. This method can han-
dle various error types, e.g., one-way errors.

Circuit Orig. Top 3 Improved Top 5 Improved
C17 .864 .959 11.0 % .980 13.4 %
mux .907 .974 7.39 % .985 8.6 %
parity .603 .637 5.64 % .666 10.4 %
xor5 .047 .068 46.2 % .070 50.5 %
pm1 .375 .429 14.4 % .469 25.1 %

Table 2: Improvement in reliability after increasing robust-
ness of the 3 and 5 most susceptible gates.

Table 2 illustrates gate susceptibility calculations in
some of the standard benchmarks. The most susceptible
gates are hardened by decreasing the probability of error by a
factor of 10 while retaining the error probability of .05 in all
other gates. For many circuits increasing the robustness of
just a few gates can improve circuit reliability significantly.
Note an exact calculation can can identify signals with zero
observability which implies that the circuit contains redun-
dancy. This cannot be done with an approximate method.

5.2 NAND-Multiplexing Analysis

A classic application of PTMs is the evaluation of fault-
tolerant architectures. The advent of nanotechnology has
renewed interest in building reliable circuits from unreli-
able components because nanodevices are poorly controlled
but available in large quantities, justifying computing tech-
niques with high levels of redundancy, such as NAND-
multiplexing and Cascading TMR which originated in [13].

In NAND-multiplexing, each unreliable signal is repli-
cated N times. Then a set of NAND gates, each of which
takes two of the N redundant signals as inputs, is used as a
simple majority function. Some of these NAND gates may



Figure 4: Von Neumann’s NAND-multiplexing scheme.

produce the wrong output due to an unfortunate combination
of inputs. For instance, if 25% of the N replicated signals are
0 and 75% are 1, then 1 is most likely the correct value; how-
ever, some NAND gates may have both their inputs from the
erroneous 25%. In order to compensate for this effect, the
outputs of the NAND gates themselves are replicated and
then fed into a “random permutation” gate. The outputs of
the random permutation gates enter another series of NAND
gates. These gates are likely to have fewer 0’s since there
are relatively few combinations which give the wrong value.

In order to calculate the reliability of N iterations of
NAND-multiplexing, several types of errors need to be taken
into account. These include

• Errors in the gates including the NAND gates.
• Errors due to combinations of inputs.
• Pseudo-randomness in the permutation which biases

the combinations of inputs applied to NAND gates.
In [6], this architecture is evaluated using analytical tech-

niques. We can automate this type of analysis while relax-
ing some of the assumptions such as identical probabilities
of error in gates, independence of input signals, and perfect
randomness. Using PTM evaluation, we can input the spe-
cific probability of error and function of each of the gates,
including the permutation gate analysis thereby automating
the analysis. This will also take into account all the ways in
which errors can cancel.

Table 3 shows results from a NAND-multiplexing in-
stance with four replicated inputs, all of which have correct
value 1 and are erroneous with probability 0.2. They are
then passed through a number of NAND-multiplexing lev-
els. Table 3 shows the probability that errors are corrected
(signals are all returned to an identical 1 state). The multi-
plexing units themselves have probabilities of error for their
constituent gates and also for the random-permutation unit.
Table 3 shows that depending on the gate error probabilities,
increasing the number of multiplexing stages can either in-
crease or decrease the amount of error cancellation. This be-
havior is also not monotonic, thereby making analytical cal-
culations difficult. Results for eight input replications show
a similar trend.

6 Conclusion and Ongoing Work

In this paper we investigated the PTM framework for rep-
resenting errors at the gate level, stressing its use in ana-
lyzing soft errors in logic. We provided an implementation
for exact reliability calculations which used matrix opera-
tions to calculate circuit PTMs. The implementation, which
compresses circuit-matrices using ADDs, shows that exact

Gate error Number of NAND-MUX levels
2 4 6 8 10

.05 .8075 .7780 .7470 .7190 .5740

.02 .9160 .9144 .9074 .9005 .8175

.005 .9741 .9795 .9789 .9784 .9544

Table 3: NAND-multiplexing with inputs replicated 4 times.

reliability measures can be calculated efficiently for larger
circuits than previously thought.

PTM evaluation has a wide variety of applications. Ex-
act reliability calculations are useful for analyzing fault-
tolerant architectures and in calculating gate error suscep-
tibility. Other applications include measuring the testability
of signals under transient errors, and reliability-driven logic
restructuring where parts of circuits are re-synthesized.

Our ongoing work promises to extend PTM evaluation to
handle sequential logic blocks in addition to combinational
logic blocks. This involves breaking circular dependencies
in calculating conditional error probabilities. To increase
the scalability of PTMs, partitioning based on logic cones,
which is used in pseudo-exhaustive testing [11], can be used
to break larger circuits into small components. The PTM for
each component is calculated, then a path tracing method
can be used to compute the result for specific instantiations
of a circuit. This can increase the accuracy and speed up
approximate circuit reliability calculations.
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