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Abstract - This extended abstract presents models to derive tim-
ing and resource usage numbers for an application when distant,
shared memories are used in an important class of future embed-
ded platforms, namely network-on-chip-based multiprocessors.

1. Introduction

Real-time requirements in media systems have put the main
focus on predicting the timing behavior of complex media
systems. This has led to the development of predictable,
tile-based multiprocessor networks-on-chip. Each tile con-
tains one or a few processors and local memories [3]. These
memories are typically too small to store large data struc-
tures (e.g. a video frame). A solution to this is to add tiles
with large memories to the architecture. The memories will
be distant and shared among potentially many computa-
tional resources. We use the terms local and remote to refer
to the local processing tile or remote memory tile and their
components.

2. Approach

To get a system with predictable timing properties, we need
an appropriate design flow. The starting point of this flow
is an SDF model of the application and a predictable archi-
tecture. Synchronous dataflow (SDF) and Boolean dataflow
(BDF) [2] are often used to specify multiprocessor applica-
tions. Nodes in the graph, called actors, communicate with
each other via tokens carried over the edges in the graph. An
actor firing typically models a data transformation or some
other activity and it consumes tokens from its inputs and
produces tokens on its outputs. An actor may have an edge
to itself (self-edge), modeling the state saving of an actor.
We use stepwise refinement of the application SDF model to
include mapping decisions and to model the effects of archi-
tecture details such as buffer sizes. During this refinement,
actors are annotated with appropriate execution times. The
result is a combined SDF graph of the application and the
architecture with predictable behavior wrt timing, memory
usage etc. See [4] for an example of such a flow.

The mapping of data structures onto memories is one of the
decisions that should be taken into account in this flow. To
be able to reason about the timing properties of this map-
ping decision, we need a model of the memory accesses to
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Figure 1. BDF model for remote memory accesses to
state and input data.

the remote memory. Such a model is presented in Sec. 3.
The communication between the remote memory and a lo-
cal actor is handled by the communication assist (CA). Its
role is to provide (pre)fetching of data from a remote mem-
ory in a transparent manner to a programmer. Support for
prefetching is important as it allows hiding of large delays
experienced when data is fetched over the network. The CA
cannot be ighored when we want to build a predictable sys-
tem with acceptable timing. Therefore, we need to refine
the memory access model with an SDF model, presented in
Sec. 4, of the (pre)fetching functionality of the CAs for ac-
cessing data in a remote tile memory. Timing annotations
are omitted because they are application and architecture
specific.

3. Memory access model

Assume an actor A with a single input i, a single output o
and a self-edge for its state. Furthermore, assume that input
and state are stored in remote memory, and output in lo-
cal memory. The following approach can be used to model
this mapping decision (other mappings can be handled simi-
larly). The basic idea is that the remote tile memory is mod-
eled through a separate actor M. An actor can send a token
to M to request a read or write of data stored in memory
M. On its turn, M returns the requested data elements to the
requesting actor. A BDF model based on this idea is shown
in Fig. 1. The state of A stored in the remote tile memory
is modeled via the self-edge on actor M. The input data for
A, also stored in the remote tile memory, is modeled via the
loop going through the switch Sy, the select S, and the actor



M. The switch S; and select S are used to keep the existing
input token (both control tokens true) or to read a new input
token from i into the remote tile memory (both control to-
kens false). This approach allows for (pre)fetching of data
elements to be incorporated later.

The functionality of actor A is split over two actors A; and
A, which allows tighter bounds on the time at which tokens
are consumed/produced because A, and M can operate in
parallel. When actor A; is executed, it reads the data el-
ements it requested from the remote tile memory into the
local memory. The local tile memory is modeled by the
edges from A; to A, and from A to switch S3. Az simulta-
neously sends a new request to the remote tile memory to
read and/or write data. It further outputs control tokens for
S1 and Sy, both with the same value. As soon as Az finishes
its firing, it hands over control to A,. Actor A, reads the lo-
cal state and performs a transformation on it, which is equal
to the transformation performed by the original actor A. At
the end of its firing, it outputs a control token to switch Ss.
This switch is used to control the production of an output
token for the original actor A on its output 0. The actor A,
indicates to the switch whether the produced data, stored in
local memory, is valid or not. If it is not valid, the token is
discarded,; if it is valid, the token is put on output 0. Actor
Az hands back control to A as soon as it has to read or write
data that is not stored in the local tile memory.

Remote memory tiles will be shared among many process-
ing tiles. To get a predictable system, each processing tile
must get guarantees on the response time of the remote
memory. This can be realized by using a TDMA scheme
to control access to the remote memory [1]. Using such
a scheme, different processing tiles using the same remote
memory can be considered independently. For each actor A
whose data is mapped to a remote memory we can use the
model shown in Fig. 1 (or variants of it for different map-
ping decisions). The sharing of the remote memory is taken
into account via the timing behavior of actor M (memory).

4. Prefetching model

(Pre)fetching functionality is implemented in the CAs in our
architecture template. Consider the ith firing of actors A;
and Ay in the memory access model of Fig. 1, called A
and Ay; in the remainder. Actor firing Az; produces data
for firing Az and it requests data from the remote memory
that is needed for firing i 4 1 of Az. The local CA sends this
request to the remote CA. On its turn, the remote CA will
return the requested data. Next, the local CA has to copy
the data into the local tile memory. However, it might be
that not all requested data can be stored in the local mem-
ory when firing Ay is being executed (and thus part of the
local memory is still occupied). For that reason, the local
CA might have to break the request to the remote CA into
two steps. First, the local CA requests and receives the data
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Figure 3. H.263 design space.

that can be prefetched during firing A2;. Next, it fetches the
data that could not be stored in the local memory. An SDF
model for the behavior of the CAs is shown in Fig. 2. The
various firings of A; and A are turned into separate actors.
The actors CA 1, CAr1 and CA » model the prefetching of
data and the actors CA, 3, CA;2 and CA, 4 model the fetch-
ing of data. These last three actors can be omitted if all data
can be prefetched. Note that the remote tile memory actor
M has been abstracted away. Its (timing) behavior is in-
cluded in the CA; actors. It is interesting to observe that the
untimed (pre)fetching model of Fig. 2 is independent of the
prefetching strategy. Prefetching strategies only influence
the execution time annotations of the model.

5. Results

We used our approach to determine the communication
bandwidth and network interface buffer sizes that must be
allocated to guarantee the performance of a motion com-
pensator in an H.263 decoder. For this we used, besides
the models presented here, an SDF model of the network.
The resulting design space is shown in Fig. 3. The experi-
ment shows that the number of frames per second is not in-
fluenced by the allocated bandwidth (which is always suffi-
cient), but that the network interface buffers need to be large
(64 elements) to obtain the maximal throughput.
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