
Low Cost Task Migration Initiation in a Heterogeneous MP-SoC ∗

V. Nollet, P. Avasare, J-Y. Mignolet, D. Verkest†

IMEC, Kapeldreef 75, 3001 Leuven, Belgium
†also Professor at Vrije Universiteit Brussel and at Katholieke Universiteit Leuven

{nollet, avasare}@imec.be

Abstract

Run-time task migration in a heterogeneous multiproces-
sor System-on-Chip (MP-SoC) is a challenge that requires
cooperation between the task and the operating system. In
task migration, minimization of the overhead during normal
task execution (i.e when not migrating) and the minimiza-
tion of the migration reaction time are important. We intro-
duce a novel technique that reuses the processor’s debug
registers in order to minimize the overhead during normal
execution. This paper explains our task migration proof-of-
concept setup and compares it to the state-of-the art. By
reusing existing hardware and software functionality our
approach reduces the run time overhead.

1. Introduction

Today’s state-of-the-art MP-SoC platforms contain mul-
tiple heterogeneous processing elements (PEs). An operat-
ing system (OS) is responsible for allocating the comput-
ing resources in an optimal way. In order to react to vary-
ing run-time conditions, the OS requires heterogeneous task
migration capabilities. Run-time task migration can be de-
fined as the relocation of an executing task from its cur-
rent location, the source PE, to a new location, the destina-
tion PE. This allows the OS to e.g. maximize energy sav-
ings of dynamic voltage and frequency scaling techniques.
It also enables thermal chip management by moving tasks
away from hot PEs. The architectural differences between
the source PE and destination PE are masked by capturing
and transferring the logical task state (i.e. PE-independent
state), shown by Figure 1.

In order to relocate a task, the operating system notifies
the task by means of a migration request signal (1). When-
ever that signaled task reaches a migration point (M), it
checks if there is a pending migration request. In case of

∗ This work was partly funded by Xilinx Labs, Xilinx Inc. R&D group.

M

Operating System

migrate request 1
2

M

3

PESrc , type X

PEDest, type Y

Reaction Time

Figure 1. Task migration sequence.

such a request, all the relevant state information of that mi-
gration point is transferred to the operating system (2). Con-
sequently, the OS will instantiate the same task on a differ-
ent processing element. The new task instantiation will be
initialized using the state information previously captured
by the operating system (3). Finally, the task resumes exe-
cution at the corresponding migration point.

One of the main issues in heterogeneous task migration
is the overhead incurred by checking for a pending migra-
tion request during normal execution (i.e. when there is no
pending migration request). Especially since a task requires
frequent migration points in order to reduce the reaction
time. The reaction time (Figure 1) is the time elapsed be-
tween selecting a task for migration and the selected task
reaching the next migration point. In order to minimize
the checking overhead during normal execution, further de-
noted as migration initiation, we propose a novel technique
targeted at embedded systems, that uses the debug registers
present on most modern PEs.

The rest of the paper is organized as follows. Section
2 briefly discusses the related work. Section 3 gives an
overview of our proof-of-concept task migration initiation
implementation. Section 4 presents our conclusions.

2. Assessment of Existing Techniques

Since the 1980s, several multicomputer task migration
mechanisms have been developed. Two distinctive migra-
tion initiation approaches can be identified. The first ap-
proach is based on polling [3, 4]. It introduces initiation
polling points into the execution code at the location of

1530-1591/05 $20.00 © 2005 IEEE

the migration point. The amount of poll points and their
placement in the code is critical for performance: too many
poll points introduce a large run-time overhead, while not
enough poll points increase the reaction time. The amount
of work required for the OS to enable the migration re-
quest can be as little as setting a global variable. The sec-
ond approach is based on dynamic modification of code. In
this case, the execution code is altered at run-time to intro-
duce the migration-initiation code after receiving a migra-
tion request. The Tui System [2] stops the concerning task
and places a breakpoint instruction at every migration point.
Then the task continues until a breakpoint trap occurs. In or-
der to avoid overwriting other instructions when inserting
these breakpoint instructions, extra space needs to be re-
served. This can be done using dummy instructions, which
introduce some performance overhead during normal exe-
cution. Prashanth et al. [1] introduce a technique that detects
the fragment of code containing the next migration point
and places migration initiation instructions in a copy of that
code. This technique does not require any placeholder in-
structions. The amount of work to enable a migration point
(for the second approach) is quite large in contrast to the
first approach, which prolongs the reaction time.

3. Hardware Supported Migration Initiation

Most contemporary microprocessors (PowerPC, ARM,
i386, etc.) contain a set of debug registers. The PowerPC
405 [5], present in the Xilinx VirtexIIPro FPGA, contains
four 32-bit Instruction Address Compare (IAC) registers.
Whenever the program counter (PC) register reaches a value
present in one of the activated IAC registers, an exception
is generated.

However, this mechanism can be reused as a poll-free
migration initiation technique that does not require any
copying or insertion of code to enable migration points. The
setup of our proof-of-concept implementation is illustrated
by Figure 2. After starting the task (1), a migration han-
dler is registered with the operating system (2). This han-
dler will be responsible for collecting the logical task state
after the task reaches a migration point. In addition, all mi-
gration point addresses (mp) are registered with the OS (3).
Then, the task starts executing. In the absence of a migration
request, there is no run-time overhead (4). The OS maintains
the migration point addresses in a task-specific data struc-
ture. With every context switch to another task the OS up-
dates the IAC registers. When the resource manager decides
to migrate a task, it activates the IAC registers (i.e. sim-
ply setting some register flags) (5)(6). As soon as the task
reaches the instruction on a migration point address (mp), a
hardware interrupt is generated (7), which activates the mi-
gration signal handler (8). After gathering the logical task
state, the task is ready for migration to the destination PE.

Register Migration
Point Addresses

Activate IAC register

OS Migration Module

Interrupt
Handler

Hardware
Debug Registers & register flags

Migration
Signal

Handler

start task

register migration
handler

register migration
point addresses

 while(true) {
 do("stuff");
mp: do("stuff");
 do("stuff");
 }

1

2

3

4

5

6

7

8

OS

Task

PE

Resource
Manager

8

Figure 2. Migrating by using debug registers.

This technique not only incurs zero overhead during nor-
mal execution (just like the poll-free solutions), it also re-
quires just a minimal amount of OS effort in order to issue
a migration request (just like the polling solutions). A draw-
back of this technique is the limited amount of debug reg-
isters. This means that, currently, a task cannot have more
migration points than the number of available debug regis-
ters. Eventually, this drawback can be overcome by select-
ing the right subset of migration point addresses during the
OS migration request. Another drawback is the potential in-
terference with debuggers and the lack of compiler support
for setting migration points.

4. Conclusion

This papers details a novel task migration initiation tech-
nique for heterogeneous MP-SoC, based on the reuse of the
debug registers present in most modern microprocessors.
We show that our technique incurs no overhead during nor-
mal execution and minimizes the work of the operating sys-
tem, which reduces the migration reaction time.

References
[1] Prashanth P. Bungale, Swaroop Sridhar, Vinay Krishna-

murthy, ”An Approach to Heterogeneous Process State Cap-
ture/Recovery to Achieve Minimum Performance Overhead
During Normal Execution”, Proc. IPDPS , April 2003.

[2] Peter Smith, Norman C. Hutchinson, ”Heterogeneous Pro-
cess Migration: The Tui System”, Report TR-96-04, Univ.
British Columbia, 1996.

[3] Adam J. Ferrari, Stephen J. Chapin, Andrew S. Grimshaw,
”Process Introspection: A Heterogeneous Check-
point/Restart Mechanism Based on Automatic Code
Modification”, Report CS-97-05, Univ. of Virginia, 1997.

[4] H. Jiang, V. Chaudary, ”Compile/run-time support for thread
migration”, Proc. IPDPS, p58-66, April 2002.

[5] http://www.xilinx.com/bvdocs/userguides/ppc ref guide.pdf

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

