
A Complete Network-On-Chip Emulation Framework

N. Genko?, D. Atienza†, G. De Micheli?,
J. M. Mendias†, R. Hermida†, F. Catthoor+

? Stanford University, Palo Alto, USA.{ngenko, nanni}@stanford.edu
†DACYA/UCM, Juan del Rosal 8, Madrid, Spain.{datienza, mendias, rhermida}@dacya.ucm.es

+ IMEC vzw, Kapeldreef 75, Leuven, Belgium.{catthoor}@imec.be
∗

Abstract
Current Systems-On-Chip (SoC) execute applications

that demand extensive parallel processing. Networks-On-
Chip (NoC) provide a structured way of realizing intercon-
nections on silicon, and obviate the limitations of bus-based
solution. NoCs can have regular or ad hoc topologies, and
functional validation is essential to assess their correctness
and performance. In this paper, we present a flexible emula-
tion environment implemented on an FPGA that is suitable
to explore, evaluate and compare a wide range of NoC so-
lutions with a very limited effort. Our experimental results
show a speed-up of four orders of magnitude with respect to
cycle-accurate HDL simulation, while retaining cycle accu-
racy. With our emulation framework, designers can explore
and optimize a various range of solutions, as well as char-
acterize quickly performance figures.

1 Introduction
With the growing complexity in consumer embedded

products, new tendencies envisage heterogeneousSystem-
On-Chip (SoC) architectures consisting of complex in-
tegrated components communicating with each other at
very high-speed rates. Intercommunication requirements of
SoCs made of hundreds of cores will not be feasible using
a single shared bus or a hierarchy of buses due to their poor
scalability with system size and their shared bandwidth be-
tween all the cores attached to them.

To overcome these problems of scalability and com-
plexity, Network-On-Chip(NoC) has been proposed as a
promising replacement for buses and dedicated intercon-
nections [1, 8]. NoCs involve the design of network inter-
faces to access the on-chip network and switches to pro-
vide the physical interconnection mechanisms to transport
the data of the cores. Therefore, the definition and imple-
mentation of NoCs involve a complex design process, for
instance, the selection of suitable protocols or topologies of
switches to use.

Concrete options for NoC topologies and interfaces have

∗This work is partially supported by NSF under contract CCR-
0305718, by a grant from Jerry Yang and Akiko Yamazaki, a Fellowship of
Institut Superieur d’Eletronique de Paris and by the Spanish Government
Research Grant TIC2002/0750.

been proposed at different levels of abstraction [13, 9, 10, 2]
and some even implemented onto FPGAs for functional val-
idation. Nevertheless, these different physical implementa-
tions onto FPGAs are limited in flexibility and do not allow
a full test of different actual realizations of NoC on silicon.

In this paper, we present a complete mixed HW-SW
NoC emulation framework where a wide range of NoC fea-
tures can be easily instantiated and compared at the phys-
ical level. As a result, this emulation framework provides
a consistent way to test the performance achieved by ac-
tual physical realizations of NoCs on silicon at a very high
speed (16000 times faster than an HDL simulator). To this
end, it is implemented onto an FPGA platform and supplies
a wide range of statistics for the different traffic patterns that
can be generated in NoCs. In addition, our framework im-
plementation is very modular and the statistics reports are
easily extensible for further testing of concrete effects (e.g.
saturations effects in parts of NoCs) on a particular NoC
instantiation.

The remainder of the paper is organized as follows. In
Section 2, we describe some related work. In Section 3,
we present the architecture of our emulation framework. In
Section 4 we detail how the emulation process of NoC sys-
tems is performed with our platform. In Section 5, we in-
troduce several case studies and present the experimental
results. Finally, in Section 6 we draw our conclusions.

2 Related Work
In the last years, significant research has been done to

evaluate the design and implementation features of NoC at
its different levels of abstraction. To provide accurate func-
tional validation (i.e. circuit level), several approaches have
been implemented in FPGAs. In [10] and [2], NoCs with
a mesh-based topology and packet-switching as communi-
cation mechanism have shown the effectiveness of NoC.
Also, other NoC architectures (e.g. torus) and designs of
switches/routers have been ported to FPGAs in order to val-
idate their NoC features (e.g. packet sizes, switching-mode)
based on additional HDL simulations [11, 18, 19, 4]. These
previous approaches can validate several NoC implementa-

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



tions features, but none of them is designed to exhaustively
test the details of NoC topologies and traffics as ours.

To evaluate in detail different architectural alterna-
tives reducing the cost of synthesizable NoC design, sev-
eral cycle-accurate simulation environments have appeared.
In [15], VHDL is employed to evaluate several features
of virtual channels in mesh-based and hierarchical NoC
topologies. In [13], XML and SystemC are used to spec-
ify the NoC components (e.g. routers, network interfaces)
and to test mesh-based NoC design alternatives. The main
difference with our approach is that their simulations have a
much larger execution time compared to our physical NoC
emulation environment.

To increase the simulation speed of cycle-accurate
VHDL, several approaches have been proposed. [7]
and [9] describe modeling environments for custom NoC
topologies based on SystemC. [3] presents a mixed
VHDL/SystemC implementation and simulation methodol-
ogy using a template router to support several interconnec-
tion networks. In [5], a C++-based library of communi-
cation APIs is built on top of SystemC to explore NoCs
topologies. Finally, [12] presents a fast transaction level
modeling approach to explore bus-based communication ar-
chitectures. While the previous approaches enable the fast
exploration of the main features of NoC designs as our pro-
posed emulation platform, their level of accuracy in the es-
timations and their simulation speed is more limited com-
pared to our complete physical emulation of parameteriz-
able NoCs.

Other proposed approaches improve the speed of cycle-
accurate NoC simulations by using high-level abstraction
languages, e.g. C or C++. [6] presents a C-based inter-
connection network simulator. Similarly, [17] proposes an
event-driven C++ simulator. Also, [8] presents a NoC de-
sign methodology that uses a parameterizable NoC archi-
tecture executed in a high-level event simulator. At a higher-
level of abstraction, several algorithms, analytical mod-
els and heuristics have been proposed to achieve very fast
rough estimations of the cost of NoC topologies based on
graphs representions [16, 14]. Although these approaches
attain high simulation speeds (sometimes close to real hard-
ware), they cannot obtain detailed statistics of final physical
implementation systems as our emulation framework does.

3 NoC Emulation Architecture

Our emulation framework has been designed in a modu-
lar way to easily implement various custom NoC topologies
and architectures. An overview of the architecture of our
platform is depicted in Figure 1. It consists of three main
elements, which are mapped onto an FPGA board with a
hard-core processor. We have used a Xilinx Virtex 2 Pro
v20 with an embedded Power PC. The hard-core processor
of the FPGA is used to orchestrate the emulation process
in a flexible way. Then, the monitor module provides the
interface to communicate with the host PC and show the
produced statistics onto its screen through the serial port.

Finally, the main element of our NoC emulation framework
is the NoC programmable emulation platform. It is a mod-
ule that consists of the necessary elements to emulate a net-
work of switches:Traffic Generators(TGs),Traffic Recep-
tors (TRs) and a user-defined set of interconnections be-
tween the switches of the network. The originality of our
platform is that TGs and TRs are addressable by the pro-
cessor. By this way, the processor can set in those devices
some parameters, which determines the behavior of the de-
vices during emulation. The switches are generated using
the Xpipes compiler [7]. The previous modules commu-
nicate using a common bus available in our FPGA board
called On-chip Peripheral Bus (i.e. OPB in Figure 1). This
emulation platform consumes a limited amount of logic and
enables to instantiate and to emulate real NoCs on current
FPGAs. For example, the instantiation of a NoC proposed
in [7] including 6 switches and 4 TGs and 4 TRs uses 7387
Xilinx slices (79% of our device), and its emulation time
for 16 million packets on our platform clocked at 50 Mhz
takes 3.2 sec. Therefore, with present larger devices used in
NoC (e.g. Virtex 2 Pro v40), large NoCs (i.e. More than 40
switches and TGs/TRs) can be emulated rapidly.

The first component of the emulation platform is a filter
which drivesInternal Buses(IBs). This unit manages the
decoding of the address bus. In our design, we use a 12-bit
address bus, which drives up to four IBs and up to 1024 de-
vices per IB. We currently use only two IBs. The first IB
is used to communicate with the Control unit. This compo-
nent (also addressable by the processor) can communicate
with all the other components of the platform by sending
some control signals simultaneously to all of them. The
second bus drives the present TGs and TRs. Each TG gen-
erates different traffic (see Subsection 3.1) that is injected
to the network of switches through a dedicated connection
for each TG. Then, after passing through the network of
switches, the traffic is received and analyzed by a set of
TRs.

In the following subsections we describe in detail the
functionality of the different types of TGs/TRs that are
available in our emulation platform.

3.1 Traffic Generators

In our platform the TG module offers two possible im-
plementations or working modes. First, a TG can generate
stochastic traffic. Second, it can use input traffic traces gen-
erated by real-life applications, thus emulating the behavior
of real workloads for the NoCs. In our platform, both types
of TG can be used at the same time by including a controller
for each used type (Figure 1). These types of TGs are ex-
plained in detail, including their implementation figures, in
the following subsections.

3.1.1 Stochastic Traffic Generators
The TG includes tree different interfaces. The first one is
linked to the Internal Bus 1 (IB1). Using this IB1 interface,
some registers are initialized by the processor in each TG to

2



Figure 1. NoC Emulation Architecture

define the type of stochastic traffic to inject into the network
of switches and the total emulation time. The second inter-
face enables the communication of the TG with the Control
module. Finally, the third one connects the TG with a net-
work channel used to send the traffic of packets into the
network of switches that simulate the internal physical con-
nections of the emulated SoC.

To make the traffic generation as flexible as possible for
NoC exploration, the TG can generate different types of
stochastic traffic, which are the following:

- UNIFORM DISTRIBUTION: the length of packet, the la-
tency between packets and the destination of packets are
randomly chosen using initialized ratios that can be pro-
vided by the user and aLinear Finite Shift Register(LFSR)
of 80 bits randomizes the process.

- BURST-MODE: this mode emulates typical bursts
modes generated from real cores using a 2-state Markov
chain. In the burst-mode state, all the packets are sent ac-
cording to one latency indicated by the user. In the stable
state, the TG is stopped for the amount of time indicated by
the user. The probabilities of making a transition between
the two states are set by the user at the initialization of the
emulation. Then, the switching between two states is ran-
domized by a LFSR.

Finally, note that any other stochastic mode can be incor-
porated to our emulation platform simply by making small
modifications in that part of the TG code and adding it as
an additional version of TG to our emulation environment.
This process just takes a matter of minutes. Currently, this
type of TGs consume on our platform 719 slices each on
average (7.74% of the target FPGA) and this figure does
not vary significantly (less than 3%) when other stochastic
traffic generation functionality are implemented.

3.1.2 Trace-Driven Traffic Generators
Instead of working with traffic model, the trace-driven TG
uses an image of some real traffic obtained from any actual

Figure 2. Data flow in trace-driven TGs

application. A trace is a set of traffic descriptors, which
represents a packet. Each packet descriptor is made of three
fields: a packet length, a destination and a time to inject
the packet into the NoC. Before any simulation, the user
must store a trace in the memory. The memory used is a
regular DRAM available on the FPGA board. Some board
can support up to 4GB of RAM, which could store a trace,
which represents 4 billions packets.

As depicted on Figure 2, a continuous stream of packet
descriptors are fetched from main memory by the proces-
sor and are sent to TGs (labeled as 1 and 2 in Figure 2).
Then, the TGs store these descriptors in a buffer and inject
the packets into the network of switches at the moment the
traces indicate (labeled as number 3).

A very important feature of this type of TG is that it can
provide an image of the congestion of the network at each
moment in time of the emulation. In fact, each time a flit
is not acknowledged by its receptor (i.e. switch or TR) and
has to be resent, a readable counter by the processor is in-
cremented.

As with the previous type of TGs (Subsection 3.1.1), the
implementation of the trace-driven TG tries to save as much
logic as possible in the board. Thus, each instantiation con-
sumes 652 slices (7.02%) on our FPGA device.

3.2 Traffic Receptors

Similarly to the TGs, we have included two different im-
plementations of TRs in our emulation platform. They pro-
vide different kind of statistics to the user. In addition, both
can be used in a debug mode, and in two corresponding sub-
modes. First, it can perform an automatic check of the flits
received via CRC check to guarantee that they are the cor-
rect ones sent by the TGs. Second, for manual checking, the
content of the flits can be shown on the screen of the host PC
to verify their content. The use of two different TRs imple-
mentations allows us to achieve an efficient implementation
according to the required type of reports to generate and a
suitable debug tool for the network. The two types of TRs
are described in the following subsections.

3.2.1 Traffic-Activity-Analysis Receptor
This first type of TR has to be initialized by the processor to
define the granularity of the analysis in the emulation. This
granularity corresponds to the amount of clock cycles per
taken sample of NoC traffic. During this specified time, the
receptor counts the number of acknowledged flits. By this
way, the TR can generate a histogram that represents the
activity in the receptor. Then, the results can be monitored

3



by the hard-core processor. This type of TR uses 371 slices
(3.99%) on the FPGA.

3.2.2 Independent-Packet-Trace-Analysis Receptor
The second type of TR generates a trace report for each re-
ceived packet. The trace has the same format as the one
used by the TGs. Typically, the received trace would not
be directly monitored, but stored in a memory accessible
by the Power PC. Then, the processor can compute a de-
tailed analysis (e.g. latency, arrival time) for each delivered
packet that can be provided to the user. This TR is more
complex than the one described previously and takes 690
slices (7.4%) on the FPGA.

3.3 Control Module

The Control module is addressable by the processor and
takes care of the synchronization of all traffic devices in the
platform (i.e. TGs and TRs). For instance, it makes sure that
all devices start the emulation at the same time. Also, the
controller has the ability to reset the whole platform or even
stop it. This is useful if the emulation platform needs to be
programmed to execute several consecutive emulations.

In our system, one controller module is required per set
of types of TG/TR used in the system (e.g. stochastic, trace-
driven). Therefore, since we have at least one kind of traffic
device in a basic emulation platform (i.e. one type of TG
and TR), we include at least one type of Control modules
for each emulation. This is not a problem since the amount
of slices used by each instantiation of the Control module is
very small, i.e. 18 slices (0.19%) on the FPGA.

3.4 Implementation of Network Interfaces

In our platform the TGs/TRs are used to accurately con-
trol the traffic on the NoC. Additionally, we have introduced
the option to useNetwork Interfaces(NIs) on our platform
at each edge of the network of switches. This provides an
additional way to interconnect new components to the em-
ulated NoC (e.g. external memories, processors, etc.) and
introduce more flexibility in our platform. The NIs imple-
mented on the board areOpen Core Protocol(OCP) com-
pliant [20]. Note that in this case the routing of packets is
statically implemented in NIs while it is dynamically pro-
vided when TGs are directly plugged into the network of
switches. In this case, TGs/TRs are replaced by NIs and
external cores.

In order to keep the programmability of our platform,
we have introduced some programmable OCP Master and
Slave devices. Like our TGs/TRs, those devices behave ac-
cording to some registers addressable by the processor. Our
results show that the traffic generated/received is different,
showing that this way additional and more realistic studies
of the influence of NIs in real-life NoCs can be performed in
our emulation framework (as in transaction-level NoC sim-
ulators, but at much faster speed).

Figure 3. Our NoC Emulation Flow

Finally, adding cores with NIs on our platform still al-
lows us to use TGs/TRs at the same time, which enables
further research studies. For example, this kind of configu-
ration can be used to study the behavior of a core when the
NoC is artificially congested by TGs.

4 Versatile Emulation Framework

The main feature of our emulation framework and its
flow is the simple initialization and statistics acquisition
of any circuit level emulation without re-synthesizing and
remapping the whole system. This is possible thanks to
its mixed HW-SW structure, which allows the processor to
initialize some parameters in the hardware part of the plat-
form. The emulation flow in our FPGA environment varies
slightly in case either a stochastic or a trace-based emulation
is performed. An overview of these two emulation flows is
shown in Figure 3. In the following subsections we describe
in detail the internal phases in each flow.

4.1 Stochastic Emulation Flow

As Figure 3 indicates, from the hardware point of view,
thanks to the components explained in Section 3 we can em-
ulate at the circuit level various switching configurations of
a NoC. The precise configuration to use in our emulations
is defined in the first phase (first square in Figure 3) by con-
figuring the Verilog code of our platform, which is a matter
of defining several parameters.

After that, in our flow the initialization of the stochas-
tic traffic to generate (e.g. uniform, burst-mode, etc) is
performed (second box in Figure 3) using the processor of
the FPGA board (i.e. Power PC). It executes a file with C
code that contains the software code to configure the sys-
tem. This file contains information about the total emula-
tion time, the sampling period for statistics generation, rout-
ing information, latencies to use between packets, flits per

4



packet and stochastic traffic distribution. Thus, this enables
a high flexibility because no time-consuming recompilation
of the HW involved is needed to emulate and study a wide
range of these parameters. Then, during the initialization
phase, by reading and writing in the TGs/TRs, the proces-
sor transmits data to TGs/TRs and is configured to receive
results of the specified analysis at the end of the simulation.

After that, the emulation works autonomously and the
TGs/TRs acquire the information necessary to generate the
statistics demanded by the user in its C configuration file.

Finally, at the end of the emulation, the stored statistics
are sent back to the processor which displays a summary
report about the behavior and congestion of the network on
the screen of the user using the monitor module (see Sec-
tion 3) and its serial interface to the host PC. The infor-
mation contained in this report is related to (1) average la-
tency in the emulation, (2) amount of packets sent/received
in each TG/TR, (3) delivery time for each burst of flits, (4)
total emulation time and (5) histogram of flits delivered ac-
cording to the granularity defined by the user.

4.2 Trace-based Emulation Flow

The trace-based emulation flow is equivalent to the
stochastic flow explained previously, as far as the config-
uration of the network parameters and the TGs/TRs types
are concerned. Then, the main difference is related to the
way the emulation is performed. In this case, an entire NoC
trace can be loaded by software in a RAM located on the
FPGA board. Then, the processor uses it to generate a con-
tinuous stream toward the emulation platform and receives
another continuous stream of output traces, which can be
used to generate detailed statistics (e.g latency, congestion)
for each packet sent through the emulated NoC.

5 Case Studies and Experimental Results

We have applied our proposed emulation framework to
several custom NoCs design to validate its emulation speed
and versatility to change different NoC parameters and
types of statistic measurements.

We first compared our emulation performances with tra-
ditional simulators. A HDL simulator (Modelsim) was able
to compute 3.2k cycles/s while a SystemC simulator runs
at 20k cycles/s. Our platform is driven by a 50MHz clock,
which represent a significant improvement in speed. For
example, 1 billon packets will be emulated in 3’20” in our
platform but it would take about 6 days to simulate it in a
SystemC simulator.

As a first experiment, we have used the stochastic TGs in
the two different modes explained in Subsection 3.1.1 with
a NoC of 6 switches. The instantiated network of switches
is a flat topology 3x2 with 7 bidirectional link between
switches. One TG and a TR have been placed at each edge
of the network. In this case, we have compared the influ-
ence of the traffic model on the congestion of the network.
The left graph of Figure 4 shows the relation between run-

time of a traffic pattern and the number of delivered pack-
ets. The curves indicate the different results obtained with
uniform-traffic and burst-traffic generation patterns. For the
uniform traffic, we have used a packet length of 5 flits and
latency between packet randomly chosen between 4 and 8
clock cycles. Those parameters have been decided to gener-
ate congestion on the network after evaluating a large range
of values for them by configuring our emulation environ-
ment via the C file of the processor. With this configuration,
the traffic load at the output of each TG is 45% of the max-
imum available bandwidth and the routing has been set in
order to include some shared links on the network between
several paths. For the burst-mode traffic, we have used sev-
eral latencies for the input parameters to provide the same
traffic load at the output of each TG with the same packet
length.

As Figure 4 shows, the total delivery time with the same
amount of packets for the burst-mode is higher than for the
uniform traffic. This is because the probability of collisions
between packets in the burst-mode is significantly higher.
Also, as Figure 4 indicates, the probability of collisions ini-
tially increases fast when the number of packets to deliver
grows, but at a certain level of congestion it stabilizes.

In our second set of experiments we have used the trace-
based emulation devices (i.e. trace-driven TGs and TRs) to
study the congestion produced with real traces on a network
of 4 switches. The topology that is the focus of our study
in this case is a flat 2x2 topology with one TG and one TR
at each corner. In this case, we have measured the conges-
tion rate compared to the number of delivered packets per
burst in the burst mode. As in the previous case, we have
set the NoC parameters to obtain a traffic load of 45% at the
output of each TG. Since the traces have been captured in
software by the processor, the traces from any real-life ap-
plication can be easily used as input for the system. In this
case, we have used a burst mode and the number of trace
units (i.e. packets) to generate and inject into the network
can be easily modified in the software of the processor. The
results obtained are shown in the middle graph of Figure 4.
They indicate that the congestion rate does not increase lin-
early with the number of delivered packets in a burst mode.
In fact, the more packets are sent during a burst mode, the
longer the inactivity between two burst modes is. Thus, the
collision probability grows less than linearly. Also, the dif-
ferent curves show that the size of the packets is a relevant
design constraint. The lower curve has been obtained with
a packet length of 2 flits, the middle one with a length of
5 and the upper one with a length of 8. This indicates that
when the number of packets in a burst mode increases sig-
nificantly, the influence of the packets sizes becomes almost
irrelevant. This is explained by the fact that the congestion
tends to be the same when the burst mode length (i.e. num-
ber of packets× length of packets) is relatively large.

Finally, in the third set of experiments, we have mea-
sured with our trace-based emulation framework the latency
of packets through the network. Thus, the graph on the right

5



Figure 4. Emulation results for stochastic and trace-based experiments

side of Figure 4 shows the average packet latency through
the network versus the packet size. Similarly to the other
case studies, we have explored and defined the parameters
to inject the same traffic ratio in the network by all TGs.
As in the second set of experiments, the average latency of
packets reaches a limit of congestion, which is the limit of
the NoC in terms of latency.

As a final test, we have increased the load generated by
each TG to 55% in all the previous experiments. As a conse-
quence, some links were overloaded and the limits extracted
from the two previous experiments was largely exceeded. It
shows the importance of the design of the network regarding
expected traffic bandwidth between cores in a single SoC.

Note that the exploration results of these experiments
were obtained in few hours thanks to the flexibility and
speed of our proposed SW/HW emulation framework com-
pared to similar approaches at the cycle-accurate level.
Our platform enables changing the parameters of the traf-
fic model and NoC characteristics (e.g. latency) in a matter
of minutes. Also, it achieves the fast emulation speed of the
system at physical level without the recompilation of a pure
hardware platform, which can take about an hour. Thus,
workloads of real NoCs (i.e. billions of packets) can be em-
ulated in our HW/SW approach in few minutes, while in
cycle-accurate simulators will take several days.

6 Conclusions
New consumer products have increasingly higher de-

mands and complex SoCs are used to implement such sys-
tems under the tight time-to-market constraints. NoCs solu-
tions have been proposed to reduce the complexity of inte-
grating tens of cores on-chip, but none of them allows com-
plete architectural studies of different NoC realizations on
silicon. In this paper, we have presented a flexible HW-
SW emulation environment implemented on an FPGA that
is suitable to explore, evaluate and compare at the physical
level various custom NoC solutions for these new consumer
systems with a very limited implementation effort. More-
over, as we have shown, a large set of important implemen-
tation and design parameters for actual NoCs can be eval-
uated on this proposed emulation platform in a very short
interval, thanks to its HW-SW framework design to avoid

multiple hardware synthesis on the FPGA and its fast emu-
lation speed.

References
[1] L. Benini and G. De Micheli. Networks on chip: a new soc

paradigm.IEEE Computer, January, 2002.
[2] G. Brebner and D. Levi. Networking on chip with platform

fpgas. InProc. FPT, 2003.
[3] J. Chan et al. Nocgen:a template based reuse methodology

for NoC architecture. InProc. ICVLSI, 2004.
[4] D. Ching, P. Schaumont, et al. Integrated modeling and gen-

eration of a reconfigurable NoC. InProc. IPDPS, 2004.
[5] M. Coppola, et al. Occn: a NoC modeling and simulation

framework. InProc. DATE, 2004.
[6] W. Hang-Sheng, et al. Orion: a power-performance simula-

tor for interconnect. networks. InProc. MICRO, 2002.
[7] A. Jalabert, S. Murali, et al. xpipescompiler: A tool for

instantiating application specific NoC. InProc. DATE, 2004.
[8] S. Kolson, A. Jantsch, et al. A NoC architecture and design

methodology. InProc. Annual Symp. VLSI, 2002.
[9] J. Madsen, S. Mahadevan, et al. NoC modeling for system-

level multiprocessor simulation. InProc. RTSS, 2003.
[10] T. Marescaux, J.I. Mignolet, et al. NoC as hw components

of an os for reconfigurable systems. InProc. FPL, 2003.
[11] F. Moraes, et al. Hermes: an infrastructure for low area over-

head packet-switch. NoC.Integration-VLSI Journal, 2004.
[12] S. Pasricha, et al. Fast exploration of bus-based communi-

cation architectures at the ccatb abstraction. InDAC, 2004.
[13] S. Pestana, E. Rijpkema, et al. Cost-performance trade-offs

in NoC: a simulation-based approach. InProc. DATE, 2004.
[14] A. Pinto, et al. Efficient synth. NoC. InProc. ICCD, 2003.
[15] D. Siguenza-Tortosa et al. Vhdl-based simulation environ-

ment for proteo noc. InProc. HLDVT Workshop, 2002.
[16] L. Tang and S. Kumar. Algorithms and tools for NoC based

system design. InProc. SBCCI, 2003.
[17] D. Wiklund, S. Sathe, et al. NoC simulations for benchmark-

ing. In Proc. IWSoC for Real-Time Apps., 2004.
[18] C. Zeferino, M. Kreutz, et al. Rasoc: a router soft-core for

NoC. InProc. DATE, 2004.
[19] C. Zeferino and A. Susin. Socin: a parametric and scalable

NoC. InProc. SBCCI, 2003.
[20] OCP International Partnership (OCP-IP). Open Core Proto-

col Standard. 2003. http://www.ocpip.org/home

6


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




