
Symmetric Multiprocessing on Programmable Chips Made Easy ∗

Austin Hung William Bishop Andrew Kennings

ahung@uwaterloo.ca wdbishop@uwaterloo.ca akennings@uwaterloo.ca

Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1.

Abstract

Vendor-provided softcore processors often support ad-

vanced features such as caching that work well in unipro-

cessor or uncoupled multiprocessor architectures. How-

ever, it is a challenge to implement Symmetric Multipro-

cessor on a Programmable Chip (SMPoPC) systems using

such processors. This paper presents an implementation of

a tightly-coupled, cache-coherent symmetric multiprocess-

ing architecture using a vendor-provided softcore processor.

Experimental results show that this implementation can be

achieved without invasive changes to the vendor-provided

softcore processor and without degradation of the perfor-

mance of the memory system.

1. Introduction

Advances in Field-Programmable Gate Array (FPGA)

technologies have led to programmable devices with greater

density, speed and functionality. It is possible to implement

a highly complex System-on-Programmable-Chip (SoPC)

using on-chip FPGA resources (e.g., DSP blocks, PLLs,

RAM blocks, etc.) and vendor-provided intellectual prop-

erty (IP) cores. Furthermore, it is possible to build MPoPC

systems, where the number of softcore processors (e.g., Al-

tera Nios [3] or Xilinx MicroBlaze [14]) that can be used in

a MPoPC system is only limited by device resources. Pre-

vious research [13, 8, 5] investigated application-specific

MPoPC systems that did not require shared memory re-

sources. This paper focuses on general-purpose MPoPC

systems that utilize cache-coherent, symmetric multipro-

cessing.

∗ This work was supported in part by a Science and Engineering Re-
search Canada (SERC) Discovery Grant (203763-03), a grant from
Altera Corporation, and an Ontario Graduate Scholarship (OGS).

We describe the design and use of general-purpose

MPoPC systems based on vendor-provided IP. The sys-

tems use the familiar architecture of a shared-memory Sym-

metric Multiprocessing (SMP) system. The design goals

are the following: (i) implementation with minimal user ef-

fort, (ii) no invasive alterations to vendor-provided IP, (iii)

little if any performance penalties, and (iv) support for ad-

vanced features, namely caching.

Symmetric Multiprocessing on a Programmable Chip

(SMPoPC) systems are suitable for a wide variety of em-

bedded applications. The SMPoPC architecture offers sev-

eral potential benefits including the following:

1. Enhanced embedded system performance: Processor

cores may be added if device resources permit.

2. Simplified development: Time and effort can be spent

on application development rather than on hardware

specialization.

3. Performance improvements for computations: Many

parallel algorithms exist for SMP architectures.

Our systems use 32-bit Altera Nios processors connected

by an Altera Avalon Bus. This vendor-provided IP is sup-

ported by a suite of software development tools, optimized

for the latest Altera FPGAs, and popular. A primary goal

was to leverage the advanced features offered by softcore

processors when implemented in leading-edge FPGAs. To

this end, the Nios processor utilizes on-chip memory to

serve as a cache to improve system performance. Unfortu-

nately, the use of individual processor caches can introduce

cache coherency problems – the Nios processor was not de-

signed for use in tightly-coupled SMP architectures. This

issue is addressed with a hybrid hardware/software solution

that avoids invasive alterations to the Nios processor or the

Avalon Bus. Thus, the solution serves as an “add-on” to ex-

isting Nios systems to facilitate cache coherency.

This paper is organized as follows. Section 2 provides

an overview of SMP and cache coherency. Relevant de-

tails of the vendor-provided IP are provided in Section 3. A

1530-1591/05 $20.00 © 2005 IEEE

design for a cache-coherent SMPoPC system is described

in Section 4. Section 5 describes the experimental results

obtained using several cache-coherent SMPoPC systems.

Conclusions and future work are presented in Section 6.

2. Symmetric Multiprocessing

SMP systems are a subset of multiple instruction, mul-

tiple data stream parallel computer architectures [6]. Each

processing element independently executes instructions on

its own stream of data. SMP systems can function equally

well as a single-user machine focusing on a single task with

high efficiency, or as a multiprogrammed machine running

multiple tasks [7]. SMP systems share memory resources

using a shared bus as illustrated in Figure 1.

System Bus

Main memory I/O system

Processor 1
Cache

Processor 2
Cache

Processor N
Cache

Figure 1. Typical SMP system architecture

The symmetry aspect is three-fold: (i) all processors

are functionally identical and the hierarchy is flat with

no master-slave or interprocessor communication relation-

ships; (ii) all processors share the same address space; (iii)

all processors share access to the same I/O subsystems with

interrupts available to all processors. This symmetry helps

to eliminate and reduce potential bottlenecks in critical sub-

systems and leads to software standardization in which sys-

tem developers can produce systems with different numbers

of processors that can execute the same binaries [11].

2.1. Processor Identification

SMP systems require a means to uniquely identify pro-

cessors to permit selection of a bootstrap processor (BSP)

for global initialization upon startup and to allow software

(e.g., an operating system) to assign processes and threads

to processors. Unique identification of processors is one is-

sue addressed by our system.

2.2. Cache Coherency

Processor performance can be improved via one or more

levels of cache located between the processor and main

memory. A processor accessing cached data does not re-

quire any memory bus transactions, thereby reducing bus

contention. Caches are designed to follow either a write-

through or write-back policy. A write-through policy spec-

ifies that a value to be stored is written into the cache and

the next level of the memory hierarchy. A write-back pol-

icy only writes to the next level of the memory hierarchy

when the written cache line is replaced.

The presence of multiple, independent processor caches

in a SMPoPC system leads to a cache coherency problem.

Put simply, the view of the shared memory by different pro-

cessors may be different. Consider a system utilizing two

processors (P1 and P2) with local write-through caches (C1

and C2). When processor P1 reads memory location X , the

value is stored in cache C1. If processor P2 subsequently

writes a different value to memory location X , cache C1

will contain a stale value in memory location X . If proces-

sor P1 subsequently reads location X , it will retrieve old

data from the local cache. [7]

Two classes of protocols are often used to enforce cache

coherency: snooping and directory. Snooping protocols in-

volve having processor caches monitor (snoop) the mem-

ory bus for writes by other processors. If the local cache

contains the address being written, the cache either invali-

dates the cache line or updates its contents. Directory pro-

tocols use a central directory to track the status of blocks of

shared memory. When a processor writes to a shared mem-

ory block, it secures exclusive-write access to the block.

Messages are passed to ensure that no stale memory blocks

exist in the local processor caches. Neither of these two

methods are appropriate for the SMPoPC system described

in this paper as shown in Section 3 and Section 4.

3. The Nios Processor and Avalon Bus

The SMPoPC system described in this paper is based on

one or more Nios processors connected to an Avalon Bus.

The Nios processor and the Avalon Bus are vendor-provided

IP cores designed for rapid SoPC development.

3.1. Nios Embedded Softcore Processor

The Nios embedded softcore processor is designed

specifically for SoPC design. It features a 5-stage pipeline

architecture and comes in both 16- and 32-bit vari-

ants. The memory system uses a modified Harvard mem-

ory architecture with separate bus masters for data and

instruction memory. Memory-mapped I/O is used to ac-

cess memory and peripherals attached to an Avalon bus.

The global address space is configurable at system gener-

ation time. The processor can implement up to four cus-

tom user instructions. Custom logic can be placed within

the arithmetic logic unit to implement single or multiple cy-

cle instructions. Further details are found in [3].

The following Nios features are particularly relevant

for this paper: (i) takes advantage of on-chip memory for

caching, (ii) provides control registers for invalidating par-

ticular cache lines, (iii) supports of up to 64 vectored excep-

tions including interrupts generated by external hardware,

and (iv) interfaces to an Avalon Bus. It is also important to

note that the Nios was never intended for use in a cached

SMP architecture.

3.2. Avalon Bus

The Avalon Bus is not a “traditional” bus, but rather a

“switch fabric” used to interconnect processors and other

devices in a Nios embedded processor system [2]. The bus

provides point-to-point connections and supports multiple,

simultaneous bus masters [1] (i.e., there is a dedicated con-

nection from each potential bus master to each slave device

that it can master). Although each processor and device ap-

pears to connect to a shared bus, there are no shared lines in

the system. This structure is illustrated in Figure 2.

Device 1

Device 2

Device 3

Device 4 Device 5

Processor 1 Processor 2 Processor N

Avalon
Bus

Module

MUX MUX MUX

MUX MUX

Figure 2. Structure of an Avalon Bus module

The Avalon Bus effectively prevents the use of bus

snooping protocols and directory protocols to implement

cache coherency. A non-trivial amount of invasive hardware

re-development would be necessary after system generation

to monitor every set of primary bus connections, denoted by

ovals in Figure 2.

4. Design and Implementation

We now describe the design and implementation of a

cache coherency module (CCM). The goal of the CCM is to

enforce cache coherency with a minimum of alterations to

existing vendor-provided IP. This requires a careful exami-

nation of the Nios and the Avalon Bus to understand which

features facilitate and hinder cache coherency. It is also ad-

vantageous to make the process of instantiating a cache co-

herent SMPoPC as seamless and transparent as possible,

with little if any deviation from the existing system gen-

eration procedure.

4.1. Processor Identification

The Nios processor has a CPU ID control register that

stores the version number of the Nios processor. This regis-

ter is read-only so it is not well-suited for processor identifi-

cation. Several solutions exist: (i) changing the value of the

CPU ID control register, (ii) adding a control register to the

Nios, (iii) implementing a small ROM for each processor to

store a unique processor ID (PID), and (iv) implementing

a custom instruction in each Nios to return a unique value.

The only non-invasive solution is (iii). In addition to be-

ing simple and non-invasive, this approach takes advantage

of the Avalon Bus architecture to make each ROM accessi-

ble to its corresponding processor. This exclusivity also al-

lows the ROMs to be assigned the same address to conserve

address space.

4.2. Architecture

In the context of a SMP Nios system, traditional snoop-

ing or directory protocols are not suitable for ensuring cache

coherency. A directory protocol would either require a ded-

icated bus or consume additional bandwidth on an already

congested system bus. A directory protocol would require

invasive changes to each Nios processor so that its cache

could send, receive and understand directory protocol mes-

sages. Such a protocol would also incur a large hardware

cost in the form of the central directory.

A snooping protocol would require snooping hardware

to be added to monitor the caches. The Nios processor im-

plements a pair of instruction and data caches with a write-

through policy [4]. Traditionally, cache coherency is en-

forced by creating a hardware module for each cache that

monitors the processor’s memory bus. This, unfortunately,

is not feasible due to the point-to-point nature of the Avalon

Bus. Thus, a traditional snooping protocol cannot be used.

Our solution involves adding a slave peripheral to the

system module to inform processors of memory writes. Im-

plementing cache coherency through a slave peripheral al-

lows system developers to instantiate the peripheral using

the standard system generation tools. This solution is easy

to implement since the Avalon Bus is well-specified. This

is, in reality, a hybrid snooping protocol, that uses a cen-

tralized peripheral module to snoop the bus and maintain

a “directory” to enforce coherency. The module can access

the relevant signals on the Avalon Bus. This solution works

with standard interfaces to peripherals (e.g., on-chip RAM,

memory controller, etc.) or with special interfaces (e.g., tri-

state bridge used to communicate with off-chip SRAM and

flash memories).

Figure 3 shows the CCM in relation to a typical N -

way SMP Nios system. The CCM must be able to detect

writes as well as read the address bus. This allows the mod-

ule to notify the processors of modified memory addresses,

so that the appropriate cache line can be invalidated. The

cache line must be invalidated, as opposed to updated, since

the Nios only possesses the ability to invalidate particular

cache lines. Invalidation is performed by writing the appro-

priate address to specific control registers implemented in

each Nios processor. An update policy would require inva-

sive changes to the system.

Processor 1

Processor 2

C
ac

he

A
va

lo
n

B
us

Off-Chip Memory

Cache Coherency
Module (CCM)

On-Chip Memory
or Memory Controller

FPGA

Processor N

C
ac

he

Tri-State Bridge

Nios Peripherals
(UART, timers, PIO,

ROM, etc.)

C
ac

he

Snooping Signals

Snooping Signals

Figure 3. SMPoPC Nios system architecture

The implementation of cache clearing through processor

control registers requires that software play a role in main-

taining coherency. Due to the importance of maintaining

coherency, the software component was written as a high-

priority interrupt service routine (ISR). The CCM, a slave

peripheral, raises an interrupt to enforce cache coherency.

4.3. Hardware Cache Coherency Module

The cache coherency module is divided into three com-

ponents: a write detect component (one per memory de-

vice to be monitored), a central register bank component

(one per system), and an Avalon slave port component (one

per processor). The write detect component is responsible

for snooping a single memory bus and detecting writes. For

each write that is detected, the address is stored in a FIFO

queue. If one or more FIFOs contain entries, then the 1-bit

STATUS register is set, causing the Avalon slave ports to

interrupt all of the processors. The 32-bit ADDRESS regis-

ter stores the current address being processed. Once each

processor in the system has read ADDRESS, the next ad-

dress is processed. The STATUS register is cleared once all

addresses have been processed allowing all processors to

resume normal execution. Finally, a 1-bit CONTROL regis-

ter allows the CCM module to be disabled to prevent the

setting of the STATUS register. The CCM can be intro-

duced into a system using the vendor-provided system gen-

eration tools without user intervention. Further details, in-

cluding schematics and VHDL, can be found in [9]. This

is a second-generation CCM design that improves perfor-

mance and resolves a flaw in the original design [10, 9].

4.4. Interrupt Service Routine

The CCM ISR was written as a “system” ISR in Nios

assembly language (as opposed to a “user” ISR based on

vendor-provided C/C++ routines). The user ISR overhead

(an additional 61 instructions, including 30 memory ac-

cesses) was avoided, drastically reducing ISR latency and

run-time. Our ISR is 24 instructions long and works by dis-

abling both caches, and then individually retrieving mem-

ory addresses to be invalidated from the CCM and invali-

dating them. It re-enables the cache and spin locks until the

STATUS register is cleared (which occurs when all proces-

sors in the system have invalidated all relevant addresses).

Details, including assembly code, can be found in [9].

We note three inefficiencies related to this configuration.

The first is that all processors clear the specified cache line,

whether it contains the data or not. This is a limitation of

the Nios. The second is that the writing processor will clear

its cache, even though it contains the true value, resulting

in a cache miss on the next read, increasing latency. Finally,

the system memory bus becomes a bottleneck when an in-

terrupt is raised as all the processors in the system attempt

to fetch the ISR code. This leads to ISR latency that scales

with the number of processors since all processors must ac-

knowledge the interrupt before normal execution can re-

sume. This can be eliminated by duplicating ISR code in

on-chip ROMs, one per processor.

The Nios supports sixty-four exception vectors. The first

sixteen (0-15) vectors are unused or used for various high-

priority system-level routines, including debugging and reg-

ister window interrupts. Vector 16 is the highest priority ex-

ception vector available for the CCM to use. The choice of

this vector is acceptable since the system-level routines do

not execute under normal circumstances.

4.5. Software Requirements

The software requirements for maintaining cache co-

herency are simple. After initialization of each of the ap-

plication processors (i.e., processors not designated as the

bootstrap processor), barrier synchronization causes the ap-

plication processors (APs) to wait until global initializa-

tion is complete. This is similar to the Intel SMP method

of holding APs in a reset state until the bootstrap processor

is finished [11]. In this case, global initialization involves

installing the ISR and enabling the CCM. The application

or operating system is responsible for ensuring that the per-

processor frame and stack pointers do not accidentally over-

write other processors’ private memory spaces.

4.6. Memory Consistency

Memory consistency refers to the rules that a particular

system follows with respect to the ordering of memory ac-

cesses (reads and writes). Defining a memory consistency

model is critical to ensuring correct operation of parallel

shared-memory programs.

A model in which any read to a memory location returns

the value stored by the most recent write operation to that

location is called the strict consistency model. The sequen-

tial consistency model relaxes the strict model, specifying

that all memory accesses be serialized (they execute atomi-

cally), and that operations from a single processor appear to

execute in program order [12]. This model is simple and be-

haves as programmers expect.

The Nios is a scalar pipelined processor that statically

schedules instructions. Thus, a single processor Nios sys-

tem supports strict memory consistency. The same is not

true for an SMP Nios system. The cache allows a proces-

sor to write a value, followed by a read to that new value,

prior to write completion (i.e., prior to all other processors

invalidating their cache). This relaxation is called read-own-

write-early, and is allowed by sequential consistency.

An SMP Nios system follows strict program ordering

since instructions are statically scheduled. Though the Nios

does not execute the instruction following a write until the

memory transaction is complete, this does not include any

cache invalidations by other processors. The completion

of the CCM ISR indicates the completion of a write, but

processors continue to execute in-flight instructions while

the CCM raises an interrupt. This can lead to the situation

where a write to a data value occurs, followed by a write to

a synchronizing variable S. If the data that is protected by

S is cached and S is not, then a processor may read the new

value of S, but operate on stale data in the cache.

The program ordering problem can be solved one of two

ways. The first is by placing synchronizing writes three or

more instructions after the data write (causing the synchro-

nizing write to be located either as the last instruction prior

to ISR execution, or after ISR execution, guaranteeing that

the data cannot be accessed prior to being invalidated). The

second solution is to force such data reads to bypass the

cache by using the GCC volatile keyword or PFXIO

assembly instruction.

An SMP Nios system also makes writes appear atomic.

Write atomicity has two requirements: (i) all processors see

writes to the same location in the same order (write serial-

ization), and (ii) a written value cannot be read by another

processor unless all processors read the same value. Both

conditions are satisfied by the ISR, since all processors are

forced to execute it at the same time, and no read can oc-

cur prior to invalidation.

Since writes appear atomic, if program order can be en-

forced, then the SMP Nios system appears to follow the se-

quential consistency model (though this has not been for-

mally verified). Furthermore, such a system supports the

read-own-write-early relaxation. Alternatively, since the so-

lution to the program order problem is not necessarily a de-

sirable solution, a relaxed write-after-write (WAW) order-

ing can be used instead of a sequential model. A program-

mer can choose to use either of the two models.

5. Experimental Results

All development and testing was performed using a

Nios Development Kit, Stratix Professional Edition. This

kit includes an EP1S40 FPGA with 41,250 logic elements

(LEs) and 3,423,744 bits of on-chip RAM. The develop-

ment board includes a 50 MHz clock, 1 MB of SRAM,

8 MB of flash and other resources. Software development

was performed using the GCC toolset and hardware de-

velopment was performed using Quartus II 3.2SP2. Test-

ing was conducted using 1-, 2-, 4- and 8-way SMP systems.

5.1. Cache Coherency Tests

Two software tests were conducted to validate cache

coherency. The first test performs the default start-up ini-

tialization which includes enabling interrupts and initializ-

ing the cache. A single processor is arbitrarily designated

as the bootstrap processor (BSP). The BSP waits until all

other processors have loaded the value of a shared variable

synch into their cache and have begun a busy-wait loop on

synch. The BSP then performs global initialization by in-

stalling the CCM ISR and enabling the CCM module. Fi-

nally, the BSP writes to synch allowing all other proces-

sors to begin normal execution. A system is cache coherent

if the write to synch is propagated to all other processors

and the other processors subsequently exit their busy-wait

loops.

The second test performs consecutive writes to differ-

ent addresses immediately following a write to the synch

variable (executing before the ISR). This test ensures that

pipelined writes are handled correctly. A system is cache

coherent if all of the written addresses are invalidated.

Succinctly stated, the system with the CCM executed

both tests correctly, whereas the system without the CCM

failed both tests as expected.

5.2. Device Usage and Performance Analysis

Table 1 outlines the usage statistics for the different sys-

tems compiled into the EP1S40. Each Nios was configured

with 1 kB of instruction and data cache. Additional slave

peripherals (8-bit UART, CCM, and so forth) were also in-

cluded. From Table 1, the EP1S40 can be populated with

more than an 8-way system. Only 10% of the on-chip mem-

ory bits are used, thus there are sufficient resources to in-

crease the cache sizes to 8 kB.

Table 1. Device usage for SMPoPC systems

Nios Logic Elements On-Chip Memory Fmax

Cores Usage % Usage % (MHz)

1 2,861 6% 46,480 1% 100.16

2 5,790 14% 92,960 2% 83.44

4 11,708 28% 185,920 5% 69.66

8 24,302 58% 371,840 10% 61.74

Logic resources required for the CCM in each system

were also computed; the CCM required 50, 73.5, 83.75 and

101.125 LEs per processor for the 1-, 2-, 4- and 8-way sys-

tems, respectively. In terms of memory bits, the CCM re-

quired 4 × 32 = 128 bits per memory interface per proces-

sor for a full-depth FIFO.

Table 1 indicates that the system clock frequency de-

creases as the number of processors increases. The critical

paths for the 1-, 2-, 4- and 8-way systems were identified

and all multiprocessor systems were found to have similar

critical paths. These paths originated from the tri-state bus

arbiters to the address lines on the tri-state bus. As the num-

ber of processors increases, the lower clock rates can be at-

tributed to the additional arbitration logic and multiplexers

for connecting to the Avalon Bus. This critical path analysis

shows that the CCM is not responsible for the decrease in

clock frequency [9]. Finally, comparing each N-way system

with a CCM to those compiled without the CCM shows neg-

ligible differences in clock frequency; variations are -3.9%

to +1.8%, further confirming that the CCM is not responsi-

ble for any decrease in clock frequency.

6. Conclusions and Future Work

We have presented the development of a generic, N -way

SMP system with enforced cache coherency. With respect

to our original goals, the system utilizes vendor-provided IP

and leverages advanced features (i.e., caching). The result-

ing cache coherency module is an IP block, and therefore

easy to use. Experimentation indicates that the CCM has no

impact on the overall clock frequency of the systems. Our

hardware/software solution to the cache coherency problem

is scalable and efficient in terms of hardware. Finally, the

solution is applicable to other vendor-provided IP with fea-

tures similar to the Nios processor and the Avalon Bus.

Future work will focus on system efficiency. A second

level cache can be added to the CCM to take further ad-

vantage of on-chip memory by reducing bus contention.

The CCM can also be modified to raise individual inter-

rupts for each processor, thus avoiding unnecessary cache

clearing. Finally, simple test-and-set or fetch-and-increment

hardware instructions can be added to the CCM to allow

processors to perform atomic synchronization.

References

[1] Altera Corp. Simultaneous Multi-Mastering with the Avalon

Bus. Application Note AN-184-1.1, Altera Corp., San Jose,

California, April 2002.

[2] Altera Corp., San Jose, California. Avalon Bus Specification

Reference Manual, July 2003.

[3] Altera Corp. Nios 3.0 CPU. Data Sheet DS-NIOSCPU-2.1,

Altera Corp., San Jose, California, March 2003.

[4] Altera Corp., San Jose, California. Nios Embedded Proces-

sor 32-Bit Programmer’s Reference Manual, January 2003.

[5] M. Collin, R. Haukilahti, M. Nikitovic, and J. Adomat.

SoCrates - A Multiprocessor SoC in 40 days. In Confer-

ence on Design, Automation and Test in Europe, Munich,

Germany, March 2001.

[6] M. J. Flynn. Very High-Speed Computing Systems. In Pro-

ceedings of the IEEE, number 54, pages 1901–1909, Decem-

ber 1966.

[7] J. L. Hennessy and D. A. Patterson. Computer Architec-

ture: A Quantitative Approach. Morgan Kaufmann Publish-

ers, Inc., San Francisco, California, second edition, 1996.

[8] R. Hoare, S. Tung, and K. Werger. An 88-Way Multipro-

cessor within an FPGA with Customizable Instructions. In

Proceedings of the 18th IEEE Intl. Parallel and Distributed

Processing Symposium, page 258b, Sante Fe, New Mexico,

April 2004.

[9] A. Hung. Cache Coherency for Symmetric Multiprocessor

Systems on Programmable Chips. M.A.Sc. Thesis, Univer-

sity of Waterloo, Waterloo, August 2004.

[10] A. Hung, W. Bishop, and A. Kennings. Enabling Cache Co-

herency for N -Way SMP Systems on Programmable Chips.

In Proceedings of the 2004 Intl. Conference on Engineer-

ing of Reconfigurable Systems and Algorithms, Las Vegas,

Nevada, June 2004.

[11] Intel Corp., Santa Clara, California. MultiProcessor Specifi-

cation - Version 1.4, 1997.

[12] L. Lamport. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs. IEEE Transac-

tions on Computers, 28(9):690–691, September 1979.

[13] X. Wang and S. G. Ziavras. Parallel Direct Solution of Lin-

ear Equations on FPGA-Based Machines. In Proceedings of

the 17th IEEE Intl. Parallel and Distributed Processing Sym-

posium, pages 113–120, Nice, France, April 2003.

[14] Xilinx Inc. MicroBlaze RISC 32-Bit Soft Processor. Product

Brief, Xilinx, Inc., San Jose, California, August 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

