
Centralized Run-Time Resource Management in a
Network-on-Chip Containing Reconfigurable Hardware Tiles ∗

V. Nollet, T. Marescaux, P. Avasare, D. Verkest†, J-Y. Mignolet
IMEC, Kapeldreef 75, 3001 Leuven, Belgium

†also Professor at Vrije Universiteit Brussel and at Katholieke Universiteit Leuven

{nollet, marescau, avasare}@imec.be

Abstract

Run-time management of both communication and com-
putation resources in a heterogeneous Network-on-Chip
(NoC) is a challenging task. First, platform resources need
to be assigned in a fast and efficient way. Secondly, the re-
sources might need to be reallocated when platform condi-
tions or user requirements change. We developed a run-time
resource management scheme that is able to efficiently man-
age a NoC containing fine grain reconfigurable hardware
tiles. This paper details our task assignment heuristic and
two run-time task migration mechanisms that deal with the
message consistency problem in a NoC. We show that spe-
cific reconfigurable hardware tile support improves perfor-
mance of the heuristic and that task migration mechanisms
need to be tailored to on-chip networks.

1. Introduction

Future platforms will contain a mixture of heteroge-
neous processing elements (PEs) [1], also denoted as tiles.
These programmable tiles will be interconnected by a con-
figurable on-chip communications fabric or a Network-on-
Chip (NoC) [2, 3]. Dynamically managing the computa-
tion and communication resources of such a platform is a
challenging task, especially when the platform contains a
special PE type such as fine-grain reconfigurable hardware
(RH) [1]. Compared to traditional PEs, RH operates in a dif-
ferent way, exhibiting its own distinct set of properties.

This paper details two important components of our run-
time resource management scheme: the NoC resource man-
agement heuristic and the run-time task migration. An in-
depth discussion of other components such as our injection

∗ This work is partly funded by the European Commission (IST-
AMDREL project IST-2001-34379) by the Flemish Government
(GBOU-RESUME project IWT-020174-RESUME) and by Xilinx
Labs, Xilinx Inc. R&D group.

rate control mechanism and our hierarchical configuration
mechanism is provided in respectively [12] and [13]. The
main contribution of this paper is the description of a NoC
resource management heuristic that makes efficient use of
reconfigurable hardware tiles and that is closely linked to
a run-time task migration mechanism. In addition, our task
migration mechanisms are tailored to a NoC environment. It
is the first time to our knowledge that the issues of run-time
task migration are addressed in a NoC context.

The rest of the paper is organized as follows. Section 2
describes our emulated NoC system. Section 3 details and
evaluates our RH enhanced resource management heuristic.
Section 4 details our NoC run-time task migration mech-
anisms. Section 5 presents the conclusions. Related work
[3-11] is discussed throughout the paper.

2. System Description

Our multiprocessor NoC is emulated by linking the
StrongARM processor of a PDA (further denoted as mas-
ter PE) to an FPGA containing the slave PEs (S) (Figure 1a).
All PEs are interconnected by a 3x3 packet-switched bidi-
rectional mesh NoC clocked at 30 MHz.

The central OS executes on top of the master PE and is
responsible for assigning resources (both computation and
communication) to the different tasks. The OS keeps track
of the computation resources by maintaining a list of PE de-
scriptors. The communication resources are maintained by
means of an injection slot table that indicates when a task
is allowed to inject messages onto a link of the NoC (Fig-
ure 1b). Every tile contains a destination lookup table (DLT)
that enables a task to resolve the location of its communica-
tion peers. The NoC provides the OS with a set of tools to
monitor the resources and to enforce its decisions [12].

In our current NoC configuration, tiles 1 and 5 expose
the fine-grain reconfigurable hardware (i.e. FPGA fabric).
These tiles are suited for computational intensive tasks, but
can only accommodate a single task. The mapping heuris-
tic will have to find the best fitting task for every reconfig-

1530-1591/05 $20.00 © 2005 IEEE

urable hardware tile, since some tasks can be too big for
a certain RH tile (i.e. cannot be placed on that tile), while
other tasks cause internal fragmentation (i.e. waste RH area
because the task size is smaller than the tile size).

a.

S

SS

SS

SS

I/F

S

0 1 2

3 4 5

6 7 8

SS
X YLink

Injection
Slot

Task ID

0 A
1 A

… …
198 F
199 D

b.

Master
ISP

Figure 1. (a) Our NoC emulation platform. (b)
Communication resource management.

3. Resource Management Heuristic

The resource management heuristic consists of a basic
algorithm completed with reconfigurable add-ons. The ba-
sic heuristic contains ideas from multiple resource man-
agement algorithms [5, 6, 7]. Here, our contribution lies in
compiling these ideas into a suitable run-time management
heuristic. In addition, we created a set of RH add-ons that
allow the basic heuristic to deal with the specific proper-
ties of RH. These add-ons aim to improve the performance
of the heuristic and to create extra management opportuni-
ties in the presence of RH.

3.1. Basic Heuristic

In order to assign resources to an application contain-
ing multiple communicating tasks, the heuristic requires the
application specification, the user requirements and the cur-
rent resource usage of the platform as input. The applica-
tion is specified by means of a task graph that contains the
properties of the different tasks (e.g. support for different
PE types) and the specification of the inter-task communi-
cation. The user requirements are specified by means of a
simple in-house QoS specification language (similar to the
ones specified by [4]) The different steps to come to a com-
plete resource assignment of an application are as follows.

1. Calculating requested resource load. Based on the
task load specification function fi(x, y, . . .) provided
by the application designer and the user requirements
(specifying x, y, . . .), the heuristic calculates the real
computation and communication task load. In case of

a video decoding task, for example, the framerate, res-
olution and decoding quality requested by the user will
affect both the computation and communication re-
source requirements of the task.

2. Calculate task execution variance. For every task Ti

in the application, determine its execution time vari-
ance on the different supported PE types and normalize
that value by the number of evaluated PE types (VNi).
Tasks with a high VNi are very sensitive to which pro-
cessing element they are assigned to. In addition, tasks
that can only be mapped on one specific PE should be
mapped before all other tasks. This way, the heuristic
avoids a mapping failure, that would occur if this spe-
cific PE would be occupied by another task.

3. Calculate task communication weight. For every
task Ti in the application, determine its communica-
tion importance Ci (both incoming and outgoing) with
respect to the total inter-task communication of the ap-
plication. This allows the algorithm to order the tasks
based on their communication requirements.

4. Sort tasks according to mapping importance. The
mapping priority of a task Ti is equal to VNi x Ci.
Tasks are sorted by descending priority.

5. Sort PEs for most important unmapped task. This
step contains two phases. First, the allocation prior-
ity of the PEs for a task Ti is determined based on
the weighted product of the current PE load and the
already used communication resources to the neigh-
boring PEs. The weights are determined by the com-
putation and communication requirements of the un-
mapped task. This allows the algorithm to match tasks
that combine a high need for processing power and
a low need for communication resources with their
counterparts. Secondly, in order to map heavily com-
municating tasks close together, the allocation prior-
ity is also multiplied with the hop-bandwidth product
(i.e. the product of the amount of assigned communi-
cation injection slots between two tasks and the hop-
distance between them) of the current task and its al-
ready placed communication peers. PEs that lack the
required computation resources (phase 1) or that do
not provide enough communication resources to the al-
ready placed tasks (phase 2) have their allocation pri-
ority set to infinity, indicating that the PE is not fit to
accommodate the unmapped task.

6. Mapping the task to the best computing resource.
The most important unmapped task is assigned to the
best fitting PE. Consequently, the platform resource us-
age is updated to reflect this assignment. Steps 5 and 6
are repeated until all tasks are mapped.

Occasionally this greedy heuristic is unable to find a suit-
able mapping for a certain task. This usually occurs when

mapping a resource-hungry application on a heavily loaded
platform. Backtracking is the classic solution for this issue:
it changes one or more previous task assignments in order
to solve the mapping problem of the current task.

The backtracking algorithm starts by undoing N (start
by N equals one) previous task resource allocations. Then,
the PEs are sorted, but instead of choosing the best PE for
a certain task, the second best PE is selected. If this does
not solve the assignment issue for the current task, back-
tracking is repeated with N+1. Backtracking stops when ei-
ther the number of allowed backtracking steps is exhausted
or when backtracking reached the first task assignment of
the application. In that case, the algorithm can (a) use run-
time task migration (Section 4) to relocate a task of another
application in order to free some resources, (b) use hierar-
chical configuration (Section 3.2) or (c) restart the heuristic
with reduced user requirements.

3.2. Reconfigurable Hardware Add-ons

Incorporating RH tiles requires some additions to the ba-
sic mapping heuristic in order to take reconfigurable hard-
ware properties into account.

The first set of additions are applied after step 5 of the
basic mapping heuristic (i.e. after sorting all suitable PEs).
There are two distinct RH properties that are taken into ac-
count. First, the internal fragmentation of reconfigurable
area is considered. In case both the first and second pri-
ority tile are RH tiles. The heuristic will re-evaluate their
priority using a fragmentation ratio in order to minimize the
area fragmentation. Intuitively it is easy to understand that if
placing the task on the highest priority tile causes 80% area
fragmentation while the second priority tile only causes 5%
area fragmentation, it might be better to place the task on
the latter. Secondly, the binary state (i.e. either 0% load or
100% load) and the computational performance of RH tiles
are considered. Due to the attempt at load-sharing of the
heuristic algorithm RH tiles are often selected as best map-
ping candidates. Obviously, it would not be wise to sacrifice
a RH tile when a regular PE could do a similar job. There-
fore, if the highest priority tile for a certain task is a RH tile,
while the second priority tile is a regular PE, the heuris-
tic will use a load ratio to re-evaluate their priority to avoid
wasting RH computing power.

The second set of additions involves hierarchical con-
figuration [13], i.e. the use of softcore PEs instantiated on
RH tiles. There are two situations where this technique can
improve mapping performance. First, when the task bina-
ries are not supported by the platform PEs, a suitable soft-
core can be instantiated on a RH tile. This means the heuris-
tic first needs to determine where to instantiate the softcore
This is done by going over all softcores that are (1) sup-
ported by the task, (2) that fit on the available (i.e. free)

RH tiles and (3) provide the required computing power. Af-
ter finding a suitable location, the softcore is instantiated.
From that moment on, the regular heuristic algorithm ap-
plies. Secondly, this technique can be used as an alterna-
tive to backtracking. Consider the mapping example (Fig-
ure 2a), where task TB still needs to be assigned. Since TB

has no RH support (tile 1) and all other tiles are occupied
or unsupported, TB can only be assigned to tile 8. Although
tile 8 can provide the required computing resources, it lacks
the required communication resources to support the com-
munication between TB and TC . Without hierarchical con-
figuration, the heuristic has no other option but to recon-
sider the mapping of TA and TC (i.e. perform backtrack-
ing). In case TA and TC are only supported on respectively
tile 0 and tile 2, the heuristic will even need to reallocate re-
sources of other applications (e.g. moving tasks from tile
4 to tile 8) in order to free resources. However, by means
of hierarchical configuration, TB can be mapped on a soft-
core instantiated on RH tile 1 (Figure 2b). Also from a hop-
bandwidth point of view (i.e. mapping quality), it is better
to map TB on a softcore on RH tile 1 than on tile 8.

1

TA
20

4 53

7 86

TB

b.

1

TCTA

TB

20

4 53

7 86

a.

TC

TA TB TC

?

Figure 2. Hierarchical configuration example.

3.3. Heuristic Performance Evaluation

The performance of the heuristic was assessed by com-
paring it to an algorithm that explores the full solution
space. The performance experiments consist of mapping a
typical test application (Figure 3) on our 3x3 NoC contain-
ing four PE types.

In order to include the current load of the platform and
the user requirements into the mapping decision process,
three types of load have been defined: LIGHT, MEDIUM
and HEAVY. In case of platform load, they indicate that no
platform resource (both computation and communication)
is used for more than respectively 25%, 50% and 75%. A
random function determines the actual resource usage for
every resource. If the random function returns 50% or more
usage on a single-task tile (e.g. RH tile), then this tile is
considered as used (i.e.100% usage). Otherwise, it is con-

Pipeline
input task

T1 T2 T3 T4 T5 T6 T7

bitvector to indicate
supported PE Types

Light
Medium
Heavy

Pipeline

Pipeline
output task

1 1 0 01 0 0 0 1 0 0 01 1 1 0 1 1 1 0 1 0 1 0 1 0 0 1

Type
3RHType

2
Type

1

Figure 3. Example application containing a
multimedia pipeline (e.g. video decoding).

sidered as free. In case of user requirements, these loads in-
dicate that no task of the application uses more than respec-
tively 25%, 50% and 75% of a certain resource. Placing a
task on a single-task tile will result in 100% usage.

Table 1 illustrates the success rate of the heuristic (with
respect to searching the full mapping solution space) for
LIGHT and MEDIUM loaded platforms and for varying ap-
plication load. The amount of backtracking steps allowed is
indicated by the BT value. On the StrongARM SA-1110 PE
(206 MHz), the heuristic requires on average 893 µs (std.
dev. 77 µs) to reach a full mapping without backtracking.
With backtracking (BT=3), the algorithm requires on aver-
age 1.13ms (std. dev. 358 µs) to come to a conclusion (i.e.
success or failure). Exploring the entire solution space re-
quires about 378 ms. The experiment shows that, although
backtracking clearly improves the success rate, the heuris-
tic does not always find a suitable solution.

NoC 3x3 LIGHT
Application BT=0 BT=1 BT=2 BT=3

LIGHT 100% 100% 100% 100%
MEDIUM 100% 100% 100% 100%
HEAVY 78.5% 88.0% 90.0% 94.5%

NoC 3x3 MEDIUM
LIGHT 100% 100% 100% 100%

MEDIUM 97.0% 99.0% 99.5% 100%
HEAVY 53.67% 61.00% 67.79% 71.75%

Table 1. Mapping success for varying number
of backtracking steps (BT).

In the experiments leading to the results of Table 1, all
tasks with RH support (i.e. T3, T4 and T5) could be placed
on any of the two RH tiles. However, when T4 and T5

only fit on tile 5, while T3 fits on both RH tiles, the map-
ping success rate drops from 53.67% to 44.73% in case of
a MEDIUM loaded 3x3 NoC (application HEAVY, with-
out backtracking). The mapping success drops even further

down to 36.84% in the absence of the reconfigurable hard-
ware add-ons concerned with area fragmentation and gain.
This means the RH add-ons significantly improve the map-
ping performance in case of different RH tile sizes.

By looking at the hop-bandwidth product (i.e. the prod-
uct of the number of assigned injection slots between two
tasks and the hop-distance between them), it is possible to
estimate the mapping quality. Indeed, heavily communicat-
ing tasks should be mapped close together in order to min-
imize communication interference [12]. Table 2 shows that
the heuristic algorithm performs well under various load
conditions. The main reason for the very low minimum hop-
bandwidth product of application LIGHT is that all tasks
with heavy communication can be placed on a single tile.
However, the heuristic tries to spread the communication
and computation load among the PEs.

NoC 3x3 MEDIUM - HopBandwidth
Application Heuristic Max Min Mean

LIGHT 315 825 75 466
MEDIUM 570 1530 420 936
HEAVY 945 1890 720 1275

Table 2. Hop-bandwidth mapping quality.

In contrast to the related work [5, 7], our heuristic does
not consider the co-scheduling issue nor the real-time con-
straints of individual tasks, because currently our slave PEs
(e.g. RH tiles) can only accommodate a single task (i.e. no
co-scheduling or real-time issue on these PEs).

4. Run-Time Task Migration

Whenever the user requirements change (e.g. switching
to another resolution in a video application) or in case of a
mapping failure, the resource management heuristic can use
run-time task migration to re-allocate resources. Run-time
task migration can be defined as relocation of an execut-
ing task from the source tile to the destination tile. In order
to overcome the architectural differences between heteroge-
neous PEs, tasks can only migrate at pre-defined execution
points in the code (further denoted as migration points) [10].
How to handle task state when migrating between a regu-
lar PE and a RH tile is detailed in [14]. Another major issue
in run-time task migration is assuring communication con-
sistency during the migration process. This issue originates
from the fact that, after receiving a migration request, the
amount of time and input messages a task requires to reach
its migration point is unknown. This means that the mes-
sage producer tasks (i.e. the communication peers) have to
keep sending messages until the migrating task signals that
a migration point is reached and that it stopped consum-

ing messages. However, at that time there might some un-
processed messages buffered in the communication path be-
tween message producer tasks and the migrating task.

The run-time task migration topic has been studied ex-
tensively for multicomputer systems since the beginning of
the 1980s. However, due to the very specific NoC proper-
ties (e.g. a very limited amount of communication mem-
ory), the existing mechanisms are not directly applicable.

The message consistency mechanism described by Russ
et al. [8] collects all unprocessed messages into a special
input queue when a migration point is reached. After the
actual migration, all communication peers are notified and
their task lookup table is updated to reflect the new loca-
tion of the migrated task. Communication consistency is
preserved by emptying the special input message queue be-
fore receiving any messages produced after completion of
the migration process. This mechanism is not well-suited
for a NoC: due to the very limited amount of message buffer
space it is impossible to store all incoming messages after a
task reached its migration point. Adding more buffer space
is expensive and the maximum amount of required storage
is very application dependent.

The message consistency mechanism of the Amoeba OS
[9] drops the unprocessed messages (instead of queuing
them) during task migration. The message producer is re-
sponsible for resending the message. After migration, any
task that sends a message to the old location of the mi-
grated task will receive a not here reply. This response trig-
gers a mechanism to update the producer’s task lookup ta-
ble. A drawback of this technique is the loss of migration
transparency (i.e. messages need to be resent to a new des-
tination). In addition, dropping and re-transmitting pack-
ets reduces network performance, increases power dissipa-
tion [3] and leads to out-of-order message delivery. Getting
messages back in-order in a task-transparent way requires
(costly) additional re-order functionality and buffer space.

4.1. NoC Task Migration Mechanisms

This section details two task migration mechanisms that
ensure message consistency in a task-transparent way, as-
suming a very limited amount of message buffer space per
tile. In addition, both mechanisms ensure in-order message
delivery without requiring message re-order functionality.

The first mechanism, further denoted as general mecha-
nism is illustrated by Figure 4. When the OS issues a mi-
gration request (1), the task running on the source tile may
require more input data from the producer tasks before it
can reach a migration point. Neither the OS, nor the pro-
ducer tasks know how many input messages are still re-
quired. When the task on the source tile reaches a migration
point, it signals this event to the OS (1 to 2). In turn, the OS
instructs the producers to send one last tagged message and

Freeze
Time

Migration
request

 Process messages
until next

migration point.

Operating
System

Source Tile Producer
Tile(s)

Destination
Tile

Send Messages to
Source Tile

Tag &
Stop

- Tag & Send last msg
- Stop producing

Instantiate
task on
dst tile

- Setup Task
- Setup DLT

- Initialize Task
- Start task

Send
Forward

DLT

- Setup Forward-DLT
- Forward messages
to Destination Tile

 Migration
point ?

NO

Migration
Done

Free Source Tile

Send
DLT

YES

- Update DLT & Resume
Normal Operation

- Normal
Operation

1

2

3

4

6

YES

YES

Received
a tagged

message ?

Reaction
Time

Residual
Dependencies

5

NO

Tag Msg
ACK?

Figure 4. General task migration mechanism.

then to stop sending (2). The OS consequently sets up, ini-
tializes and starts the migrating task on the destination tile
(3). The next step is to forward all buffered and unprocessed
messages to the new location of the migrated task. To this
end, the OS initializes a so-called forward-DLT (containing
the new destination for the messages) on the source tile and
instructs it to orderly forward all incoming messages (4).
The destination tile informs the OS whenever it receives a
tagged message. Consequently, the OS updates the DLT of
the respective message producer tile to reflect the new lo-
cation of the migrated task before instructing the producer
to resume sending messages (5). When all tagged messages
have been received, the migration process is finished and
the OS can free the resources of origin tile (6).

The second migration mechanism, further denoted
as pipeline mechanism, is based on the assumption that
many algorithms are pipelined (e.g. video decompres-
sion pipeline) and that they contain stateless points. Mean-
ing that at certain moments, new and independent informa-
tion is put into the pipeline. For example, an MPEG decod-
ing pipeline periodically decodes an I-frame. This I-frame
does not depend, in any way, on previously processed in-
formation. Hence, an I-frame could be decoded by a newly
instantiated MPEG decoding pipeline. This assumption al-
lows a migration mechanism to move multiple pipelined
tasks at once without being concerned about transfer-
ring task state. This is useful when new QoS requirements
affect a set of tasks within the application.

In this mechanism, the OS instructs the pipeline input
task (Figure 3) to continue feeding data into the pipeline

until a stateless point is reached. Then, the pipeline input
task should flush the pipeline by sending a tagged message
through the pipeline or by informing the pipeline output
task. As soon as the pipeline is flushed, the pipeline out-
put task notifies the OS. In contrast to the general mecha-
nism, there are no unprocessed or buffered messages in the
path between pipeline input and pipeline output. So the OS
can re-instantiate every task of the pipeline with its respec-
tive DLT in a different location. After updating the DLT of
the pipeline input task, normal operation can be resumed
and the OS can free the resources of the original pipeline.

4.2. Migration Mechanism Benchmarking

The migration mechanism performance can be assessed
by some typical benchmark parameters [11]. The reaction
time (i.e. time between migration request and the task ac-
tually reaching the migration point) of the pipeline mecha-
nism will depend on the time required to reach a stateless
pipeline migration point and the time required to empty the
pipeline. For the general mechanism, the reaction time for
migrating a single task is dependent on the amount of mi-
gration points implemented within that task.

The freeze time (i.e. the time during which a task is
suspended) depends on the time required to set up DLT’s
(tDLT ≈ 90µs), issue OS commands (tCMD ≈ 60µs), etc.
Consider a pipeline containing T tasks, C inter-task com-
munication channels and S pipeline input tasks. It can be
shown that the freeze time of the general mechanism (not
considering task state extraction and initialization) is higher
than that of the pipeline mechanism. The difference is:

∆ freeze time = (T − S).tDLT + (T + C − S).tCMD

If the required PE resources are available upfront, setting
up the new pipeline could be performed during the reac-
tion time. In that case the freeze time would be independent
of the amount of migrating pipeline tasks.

Once a migrated task has started executing on its new
tile, it should no longer depend in any way on its previ-
ous tile. This is denoted as residual dependencies. These
so-called residual dependencies are undesirable because
they waste both communication and computing resources.
The pipeline mechanism has no residual dependencies. The
residual dependencies of the general mechanism (Figure 4)
are caused by acknowledging the arrival of tagged messages
and updating the producer DLT(s) before instructing every
producer to resume sending messages. The time required to
forward the unprocessed messages heavily depends on the
NoC conditions (e.g. congestion, etc.).

In short, the pipeline mechanism is useful when simul-
taneously moving a set of tasks (e.g. due to changed user
requirements). Otherwise, when moving a single task in or-
der to e.g. resolve a mapping issue, the general mechanism

is more appropriate (due to the prolonged reaction time of
the pipeline mechanism). Both mechanisms require the ap-
plication designer to explicitly introduce migration points.

5. Conclusion

This paper details two components of our overall re-
source management scheme for NoCs containing recon-
figurable hardware tiles: the run-time resource assignment
heuristic and the task migration mechanisms. We show that
although the basic heuristic produces good results, specific
support for the reconfigurable hardware tiles improves its
performance. In addition to showing that the classic task
migration mechanisms are not suitable for an NoC environ-
ment, we detail two task migration mechanisms tailored for
our NoC emulation platform (i.e. with limited communica-
tion memory and to a simple communication protocol).

References
[1] R. Tessier, W. Burleson,”Reconfigurable Computing for Dig-

ital Signal Processing: A Survey”, VLSI Signal Processing
28, p7-27, 2001.

[2] L. Benini, G. DeMicheli, ”Networks on Chips: A new SOC
paradigm?”, IEEE Computer magazine, January 2002

[3] William J. Dally, Brian Towles, ”Route packets, not wires:
on-chip interconnection networks,” DAC 2001, p684-689.

[4] J. Jin, K. Nahrstedt, ”Classification and Comparison of QoS
Specification Languages for Distributed Multimedia Appli-
cations”, University of Illinois at Urbana-Champaign, 2002.

[5] Y. Wiseman, D. Feitelson, ”Paired Gang Scheduling”, IEEE
Trans. Par. and Distr. Systems, pp 581-592, June 2003.

[6] Jong-Kook Kim et al., ”Dynamic Mapping in a Heteroge-
neous Environment with Tasks Having Priorities and Mul-
tiple Dealines.”, Proc. 17th International Parallel and Dis-
tributed Processing Symposium, France, 2003.

[7] J. Hu, R. Marculescu, ”Energy-Aware Communication and
Task Scheduling for Network-on-Chip Architectures under
Real-Time Constraints”, DATE 2004, pp234-239.

[8] S. H. Russ, J. Robinson, M. Gleeson, J. Figueroa, ”Dynamic
Communication Mechanism Switching in Hector”, Missis-
sippi State University, September 1997.

[9] C. Steketee, W. Zhu, P. Moseley, ”Implementation of Pro-
cess Migration in Amoeba.”, Proc. of the 14th Conference
on Distributed Computing Systems, pp194-201, 1994.

[10] P. Smith, N. Hutchinson, ”Heterogeneous Process Migration:
The Tui System”, Univ. of British Columbia, 1996.

[11] Pradeep K. Sinha, ”Distributed operating systems: concepts
and design”, 1997, ISBN 0-7803-1119-1.

[12] V. Nollet, T. Marescaux, D. Verkest, J-Y. Mignolet, S.
Vernalde, ”Operating System controlled Network-on-Chip”,
Proc. of Design Automation Conference, pp.256-259, 2004.

[13] V. Nollet et al.,”Hierarchical run-time reconfiguration man-
aged by an operating system for reconfigurable systems”,
Proc. ERSA 2003, pp.81-87.

[14] J-Y. Mignolet et al., ”Infrastructure for Design and Man-
agement of Relocatable Tasks in a Heterogeneous Reconfig-
urable System-on-Chip”, Proc. DATE 2003, pp.986-992.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

