
Simultaneous Partitioning and Frequency Assignment for On-chip Bus
Architectures.

Suresh Srinivasan, Lin Li, N. Vijaykrishnan

Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA- 16802

{ssriniva,lili,vijay}@cse.psu.edu

Abstract

In this paper, we provide a methodology to perform
both bus partitioning and bus frequency assignment to
each of the bus segment simultaneously while
optimizing both power consumption and performance of
the system. We use a genetic algorithm and design an
appropriate cost function which optimizes the solution
on the basis of its power consumption and performance.
The evaluation of our approach using a set of
multiprocessor applications show that an average
reduction of the energy consumption by 60% over a
single shared bus architecture. Our results also show
that it is beneficial to simultaneously assign bus
frequencies and performing bus partitioning instead of
performing them sequentially.

1. Introduction and Previous work
 System on chip architectures have been widely used
in recent times as a viable solution to the increasing chip
densities, due to the benefits offered by them with
respect to improving system performance, cost, power
dissipation and reusability. Many shared bus models
like the AMBA [1], Coreconnect [2], WishBone [3]
have been explored for connecting the various modules
in such designs. However, increasing the number of
modules connected to a single shared bus tremendously
affects the performance and power consumption of such
designs. To deal with this problem various designs have
been proposed which try to increase the performance
and reduce the power consumption of the bus structures
[4,5]. Hierarchical bus designs like the Multi-Layer
AMBA [6] is one of the ways to counter the problems
faced by single shared bus architectures. In such designs
the system comprises of multiple buses connected by
bridges for inter-bus communications as shown in figure
1. Such a hierarchical designing of bus systems is
termed as bus segmentation or bus partitioning. Bus
partitioning provides a methodology to keep a check on
the growing bus capacitances and increased latencies
due to the usage of single shared bus designs. In [7] bus
segmentation was introduced for reducing the power
consumption of the interconnect architecture. An
interesting bus splitting technique for reducing the
power consumed by interconnects has been presented in

[9]. The results show that bus splitting is preferred over
a single shared bus structure due to the benefits it
provides with respect to lower power consumption,
reliability, smaller driver sizes and larger timing slacks.
Most of the bus splitting algorithms are based on
clustering the modules present in the system, using the
communication profile [8]. The main criteria behind
such splitting are to cluster the highly communicating
modules together and the low bandwidth modules in
other clusters. One of the ways of achieving additional
benefits out of the bus segmentation approach would be
to operate the various buses on different frequencies.
This gives an opportunity to sharply cut down on the
power consumption of the low bandwidth module
clustered together, by reducing the frequency of the bus
they are connected to. This essentially is the motivation
behind our work.

Fig. 1: Hierarchical bus design
 In this paper, we provide a methodology for
simultaneously performing bus splitting and allocating
variable frequency to each of the bus segments, while
optimizing on both power consumption and
performance of the system. This problem is essentially a
clustering problem where given a graph; we are required
to partition it into segments, based on multiple
optimizing criteria. The nature of the problem ideally
suits a genetic algorithm implementation, which solves
the problem, provided we design an appropriate cost
function. Genetic algorithms have been extensively
employed to solve the clustering/partitioning problems
in [10]. The genetic algorithm proposed in this paper
provides a partitioning methodology and simultaneously

B
R
I
D
G
E

cpu1 Co-proc.

Memory modules …

UART Interrupt
controller

ROM
Interface

Other
peripherals

Low communicating
modules

Highly communicating
modules

1530-1591/05 $20.00 © 2005 IEEE

assigns appropriate frequencies to each of the bus
segments. The solution obtained from our algorithm
also provides the topology of the bus segments. The
algorithm operates on the criteria of reducing power
consumption and increasing the performance of the
system.
 The rest of the paper is organized as follows. We
present the details of the bus partitioning problem in
Section 2. The genetic algorithm used to solve the
problem is presented in section 3. Section 4 presents the
experimental setup followed by the results of our
experiments in section 5. The conclusions of the paper
are drawn in section 6.

2. Bus Partitioning
 Due to the infeasibility of using a single shared bus
for many resources, bus segmentation has evolved as a
natural alternative solution to the problem. The bus
segmentation problem comprises of solving a graph
partitioning problem which, given the communication
information splits the architecture into smaller bus
segments satisfying the constraints imposed. The
constraints typically are the performance improvements
and the power consumed by any architecture. Such
splitting of the bus could be performed in many ways
differing in the number of clusters and the way the
segments are connected (topology) as shown in figure 5.
However, increasing the segmentation of bus is
restricted due to the cost of introducing bridges
connecting the buses both with respect to power
consumption and performance. Both the power
consumption and the performance of a bus segment are
dependant on the operating frequency of the bus. The
power consumption of a bus reduces with the reduction
in bus frequency; however this also reduces the
performance of the system. This gives an opportunity to
operate the buses at different frequencies to optimize on
the power consumption and the performance of the
system. Bridge in AMBA is unidirectional [6], with the
master and the slave having different clocks as shown in
figure 2. Our approach of bus partitioning would be
applicable on such architectures.

Fig 2: Bridge design in AMBA Multilayer implementation.

3. The Genetic Algorithm
 The input to the genetic algorithm is a graph
capturing the communication profile for a given

architecture as shown in figure 3. Such a
communication graph provides us with the information
about the transactions in any given application along
with the timing of the transactions. The nodes of the
graph represent the occurrence of any task and the edges
depict the ordering information of the tasks. These tasks
are essentially the operation carried out on various
processors for the mentioned number of time cycles.
The numbers associated with the edges depict the
communication among the tasks.

Fig.3: Communication Graph
 The goal of the genetic algorithm is to determine an
optimal topology for connecting the components and at
the same time assign appropriate frequencies to each of
the buses. The inputs to the genetic algorithm are (a) the
various topologies that we are going to enumerate on (b)
the communication profile graph, which provides the
information about communication among the various
components to be connected to the bus (c) the range of
frequencies that we want to assign to each of the buses.
We need to have a set of frequencies, which we would
be enumerating while analyzing the solution.

3.1. Working of the GA
Chromosome description: The chromosome is designed
in a way that it captures the clustering information, the
frequencies associated with the clusters and the
topology for the given number of clusters. The
chromosome in our proposed scheme is an array of
integers A[0…N+K+1], where N is the number of nodes
in the communication graph and K is the maximum
number of clusters that we might have such that:
A[i] = t, for 0<=i < N, indicates that the ith node is
assigned to the cluster t.
A[i] = x, for N<=i<N+K, means that the bus for the (i-
N)th cluster operates in frequency x.
 The last value is a number associated with the type
of topology. We assign a number to each of the
topologies that are possible for a given number of
clusters. The inclusion of this value in our chromosome
helps us to enumerate the various topologies possible
with a given number of clusters.

Crossover operator: The crossover function requires us
to select two parents for mating. In our algorithm we
use a random selection scheme. This enables the

20

15

25

20 30

20 15

T3
10cycle

T2
15cycle

T4
30cycle

T6
10cycle

T5
25cycle

T1
20cycle

Bridge
Slave

Bridge
Master

Read

Write

shclk mhclk

exploration of the solution space in an efficient manner.
The crossover operation performs the mating of two
parents giving birth to two new chromosomes. The way
we perform such an operation is shown in the figure 4.
As shown in the figure, we perform the crossover of the
two parents separately on the first N and the next K
elements. The last element, which defines the topology
of the architecture encoded in the solution, is
determined randomly for each of the offspring produced
by crossover. Note that all the chromosomes always
have K frequencies encoded in them regardless of the
number of clusters proposed by that chromosome.
However, only the relevant frequencies are used in the
estimation of the fitness values. This ensures that the
crossover operator always generates chromosomes in
consistent format. However, there are cases where
unidirectional nature of the bridges does not support the
segmentation proposed by our solution. In such cases,
the fitness function rates the solution as invalid by
assigning its fitness value to 0.

Fig. 4: Crossover operation
Mutation operator: The primary motive behind the
mutation operator should be to change the entire
topology of a solution including the number of clusters.
The way this is achieved is by randomly
increment/decrementing the values from [1-N], which
would surely increase or decrease the total number of
clusters in the system and then randomly assigning the
frequencies for each of the clusters. Finally, we should
also randomly assign the topology for the solution.

Fitness function: The fitness function captures the two
optimizing criteria, which are the power and
performance of a proposed solution.
 Performance of a chosen architecture is given by the
completion time of any given application on the
architecture. Note that, we cannot base the performance
numbers on the number of cycles as the buses may be
operating on different frequencies and therefore the
number of cycles is a misleading number in such a case.
The completion time of a given application on a given
architecture is primarily dependant on the inter-cluster
communication and intra-cluster communication. The
clustering algorithm should try to maximize the intra-
cluster communication and minimize the inter-cluster
communication. However at the same time the
completion time should also be minimized.

 The calculation of intra-cluster communication cost
is relatively easy, given the communication profile. This
was done in a similar manner as presented in [8].
However, analysis of cost for inter-cluster
communication required us to account for the
communication overhead due to the presence of the
bridges and the fact that the communication might
happen across two different clock domains. Whenever a
master requests a communication burst across the
bridge, there is a minimum communication overhead of
2 cycles for synchronizing. Note that the two cycles are
with respect to the slower clock that the bus is attached
to. The completion time for such a communication is
also calculated based upon the frequency of the slowest
bus among the buses through which the communication
occurs. The fitness value for performance is calculated
as:

base
per CT

CTF −= 1

 Where Fper is the fitness value of the solution with
respect to the performance of the system. CT is the
completion time of the application on the architecture
proposed by the current solution and CTbase is the
completion time of the application on a shared bus
operating at minimum frequency. The higher the
completion time the lower the solution is rated with
respect to performance.
 The power consumption of the given topology
could be obtained as a split of the power consumption of
the buses and the power consumed by the bridges. The
following equation shows the way bridge power is
calculated given Gswun and Gswu are the number of gates
in the bridge that switch when the bridge is not used and
used respectively and used is the fraction of time when
the bridge is used.

usedGusedGBridgePow swuswun *)1(* +−∝
The power consumed by the buses was calculated in
similar manner as in [9] paper where the interconnect
power is directly proportional to the frequency at which
the bus is operated on and the capacitance of the bus.
Since the genetic algorithm operates on the principle of
comparing the solution we just need an abstract model
that captures all the factors that the power is depending
upon, and not the exact power numbers. The average
power consumption is therefore calculated as:

fCkrbridgepowePower bus **+=
 The capacitance Cbus of the bus is calculated using
the equation provided in [9], f is the operating frequency
of the bus and k is a constant taking care of other factors
that power is dependant on. The fitness value for power
is computed as shown in the following equation. The
maximum power consumption MaxPower is the sum of
power consumed by a single shared bus operating at

N-1 N+K-1 N+K 0

a b

N+K N-1 N+K-1 0

c d

N+K N-1 N+K-1 0

a d

N+K N-1 N+K-1 0

c b

C
R
O
S
S
O
V
E
R

Father

Mother Daughter

Son

maximum frequency and the maximum power that
could be consumed by bridges.

MaxPower
PowerF pow −= 1

 The following equation shows the manner in which
the final fitness value is calculated.

)/()**(βαβα ++= powper FFFitness
 As shown in the equation the final fitness value is
calculated as a weighted average of the performance
fitness value and the power fitness values. The value of
the weights α and β are determined based on the
importance of power and performance in the system.
We also tested the quality of our solutions by using the
fitness function as the product of Fper and Fpow.

4. Experimental Setup
 The genetic algorithm was coded in C language
using the Genetic Algorithm Utility Library [11]. We
generated the communication graph for a multi-
processor benchmark circuit comprising of multiple
processor cores communicating with various memory
banks. The communication information was obtained by
using the tool MP_Simplesim [14] which is a multi-
processor implementation of the simplescalar tool [12].
We used a set of benchmarks from SPLASH-2 suite
[15]. The communication profile for the benchmark
designs were obtained using a configuration of 4
processors and 8 memory banks as well as with an
architecture having 8 processors and 8 memory banks.
The communication profile provided the detailed timing
information of when a processor accesses any memory
module. Based on the communication profile the
communication graph of the transactions was created.
 The various topologies that the algorithm tries to
generate are shown in figure 5. We have chosen a
maximum of three clusters because of the limited
number of modules in our benchmarks. Increasing the
number of clusters will increase the power consumption
of the architecture with limited performance benefits.
The circles in the figure depict a bus segment which has
various components connected to it. The edges between
the circles depict the presence of a bus. Since bridges
are unidirectional they are shown by directed edges
connecting the circles where, the direction of the edge
determines the master and the slave of the bridge.

5. Results
 The genetic algorithm was implemented on an Intel
Xeon dual processor machine. The size of the
population was chosen as 200 and the algorithm was
allowed to run for 5000 generations. We chose to
operate on a frequency range of 50 to 250 MHz and
enumerated on frequency values that are multiples of
25. These are the frequencies that the algorithm tries to
assign to the different buses. The communication traces

were obtained for the benchmark designs for 2 million
cycles using a single shared bus.

Fig 5: The topologies used by our algorithm
 We select the radix benchmark as a representative
to perform extensive analysis of the solutions generated
by our algorithm with varying of fitness functions. We
investigate the various interconnect topologies chosen
by our algorithm, by varying the weights associated
with the power fitness value (‘a’) and the performance
fitness value (‘b’), while calculating the final fitness
function. Note that the weights are the metrics to
determine the criticality of power or performance in the
system. The various fitness functions and the results
obtained are shown in table 1. The results show that the
optimal topology for the bus design is chosen to be
segmented topology over a single shared bus topology
in all the cases. Another observation that could be made
from the table is the fact that as the weights associated
with the power fitness values are increased the solution
tends to have its buses operating at lower frequencies.
We also show the completion times of our final
solution. The completion time on a single bus operating
at highest frequency of 250MHz is 0.08 sec. The
solution provided by our algorithm when performance is
weighted high performs better with respect to the single
shared bus design operating at the highest frequency.
Note that even when we rate power more than
performance the final solution performs better than the
single shared bus design in net energy consumption. We
can observe an average reduction in energy
consumption by 49% as compared to the single bus
operating at 250MHz.

Fig 6: Bus partitioning and frequency assignment for radix
benchmark provided by our approach for fitness function
a*b.

250MHz 75MHz 50MHz

 Bridge

P0 P1 P2 P3

M M M

M
1

M M

M
2

M3

Topologies for 2 clusters

Topologies for 3 clusters

(1) (2)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Function seg top freq
Completion

time

 Reduction in
Energy over
single bus at
250MHz(%)

a 2 1 50,50 24.71 0.300999

b 2 2 250,250 6.27 0.070753

(a + b)/2 2 1 250,50 60.06 0.088734

(a+2*b)/
3

3 2 250,75,5
0

62.13 0.078823

(a+3*b)/
4

3 1 250,125,
50

61.82 0.072821

(2*a+b)/
3

3 1 175,75,5
0

54.98 0.125046

(3*a+b)/
4

3 1 125,75,5
0

62.16 0.139672

a*b 3 1 250,75,5
0

64.84 0.083332

Table 1: The fitness function used where ‘a’ and ‘b’ are
the power and performance fitness values respectively for
the radix benchmark design.
 Figure 6 presents the solution determined by our
algorithm when we choose the fitness function as the
product of the power and performance fitness values.
The solution has three bus segments where only one of
the segments is operated at the highest frequency while
the other two buses are operated at lower frequencies of
75MHz and 50MHz respectively. The reason for our
solution to arrive at this solution can be explained by
analyzing the communication traces of the benchmark
circuit. The radix benchmark had all the processors
accessing the memory banks M5, M6 significantly more
than the rest of the memory modules. This provides an
opportunity to the genetic algorithm for placing the
memory modules other M5 and M6 in different bus
segments that could operate on lower frequencies and
thereby help in saving power without significant impact
on performance. The highly accessed memory modules
were placed in the first cluster along with the processors
and the least used ones are placed in the last cluster.
This reflects the quality of our approach to in being able
to reduce power consumption on buses supporting low
bandwidth devices by adjusting the frequencies. We
tested the solution presented by our algorithm by fixing
the frequencies at which the buses operate and
compared the results obtained when the algorithm
performed variable frequency assignment. The results as
shown in figure 7 indicate that variable frequency
assignment results in considerable energy savings than
the case when the algorithm is forced to assign a fixed
frequency.
 Table 2 presents a comparison of the energy and
performance of the solutions generated when we
perform simultaneous frequency assignment with the
solutions generated by first performing the clustering at
a fixed frequency followed by frequency allocation. Our
results show that solutions generated by performing
simultaneous frequency assignment are better than that
of sequential bus clustering and bus assignment
approach.

Energy savings due to variable frequency
assignments

0

10

20

30

40

50

60

f=50 f=100 f=150 f=200 f=250

Fixed frequency values at which the algorithm is forced to
operate

P
er

ce
nt

ag
e

en
er

gy
 s

av
in

gs

Fig 7: Energy savings of the solutions generated when the
algorithm is forced to assign fixed frequency than when it
performs simultaneous variable frequency assignment.

Frequency
used during
clustering
phase for
sequential
approach

Energy
reduction due

to
simultaneous

approach over
seq.

approach.

Completion
time for

sequential
approach

Completion
time for

simultaneous
approach

f=50 15.61 0.086882 0.083332

f=100 13.03 0.084222 0.083332

f=150 14.182 0.088732 0.083332

f=200 16.1252 0.085223 0.083332

f=250 17.532 0.083770 0.083332

Table 2: Comparing algorithms with simultaneous and
non-simultaneous frequency assignment.

Table 3: Solutions obtained for various benchmark
designs.
 We used the fitness function a*b to determine the
optimal topologies for the rest of the benchmark
designs. Table 3 shows the results of our
implementations on various benchmark circuits. The
values (m, n) which follow each of the benchmark
designs in the table depict the number of processors and
the number of memory banks in the system,
respectively. Most of the benchmarks result in bus
architectures with two-partitions and fully connected
topology due to the similar communication profiles of
these benchmark designs. Figure 7 shows a plot of the
energy savings obtained by using the final solution over
the single shared bus architecture operating at the
frequency of 50MHz and 250MHz for various
benchmark designs. Note that the final solution is able
to achieve energy savings of nearly 60% for the
benchmark designs.
Figure 8 shows the completion times of our final
solution compared with completion time of a single
shared bus design operating at frequency 250MHz. The

Benchmark Seg. Top. Frequencies

barnes(4,8) 2 2 175,175
cholesky(4,8) 2 2 150,150
Radix(4,8) 3 1 200,75,50
raytrace(4,8) 2 1 200,50
water(4,8) 2 2 125,125
barnes(8,8) 2 2 100,100
cholesky(8,8) 2 2 150,175
Radix(8,8) 3 2 200,150,50
raytrace(8,8) 2 1 200,50
Water(8,8) 2 2 150,150

solution generated by our algorithm outperforms the
single shared bus solution for almost all the benchmark.
In case of the radix benchmark, the final completion
time is larger than the completion time of single shared
bus operating at 250MHz. This is due to the fact that the
final solution is selected based on both the power
consumption and the performance metrics. In case of
the radix benchmark, the significant power savings in
the final solution compensates for the slight
performance penalty. The percentage reduction in the
energy consumption of the final solution is infact the
largest in this benchmark. Since the solution provided
by our algorithm is significantly better with respect to
performance of the single shared by operating at the
least frequency of 50MHz, we omit those results.

Percentage of energy reduction

0

10

20

30

40

50

60

70

80

ba
rn

es
(4,

8)

ch
ol

es
ky

(4,
8)

ra
di

x(4
,8)

ra
yt

ra
ce

(4,
8)

wat
er

(4
,8)

ba
rn

es
(8,

8)

ch
ol

es
ky

(8,
8)

ra
di

x(8
,8)

ra
yt

ra
ce

(8,
8)

wat
er

(8
,8)

Pe
rc

en
ta

ge
 e

ne
rg

y
re

du
ct

io
n Savings over

single bus at
50MHz

Savings over
single bus at
250MHz

Fig. 8: Percentage reduction in energy consumption of the
final solution over the single shared bus solution.

Completion time

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

ba
rn

es
(4

,8)

ch
ol
es

ky
(4

,8)

ra
di
x(

4,8
)

ra
yt
ra

ce
(4
,8
)

wat
er

(4
,8)

ba
rn

es
(8

,8)

ch
ol
es

ky
(8

,8)

ra
di
x(

8,8
)

ra
yt
ra

ce
(8
,8
)

wat
er

(8
,8)

Ti
m

e
in

 s
ec

SIngle shared bus at
250MHz
Sementation provided
by our allgorithm.

Fig. 9: The completion time of our proposed solution as
compared to the single shared bus architecture operating
at 50MHz and 250MHz.

6. Conclusion
 We provide a genetic algorithm based
methodology to perform both bus partitioning and bus
frequency assignment to each of the bus segment
simultaneously while optimizing both power
consumption and performance of the system. The
generation of the solution is directed by the power and
performance constraints imposed by us. The results
present some interesting tradeoffs in the power and
performance numbers. The prime feature of the
algorithm is its adjustable nature to assigning
importance to power and performance based on the
requirements of the system. The evaluation of our
approach using a set of multiprocessor applications
show that an average reduction of the energy

consumption by 60% over a single shared bus
architecture. Our results also show that it is beneficial to
simultaneously assign bus frequencies and performing
bus partitioning instead of performing them
sequentially.

Acknowledgements
This work was supported in part by NSF CAREER
AWARD 0093085 and grants from SRC and
GSRC/PAS.

References
[1] Flynn. AMBA: enabling reusable on-chip designs, IEEE
Micro, 1997.
[2] CoreConnect Bus Architecture. http://www.chips.ibm.com
/products/coreconnect.
[3] WishBone Specification. http://www.silicore.net/
wishbone.htm.
[4] K. Lahiri, G. Lakshminarayana, and A. Raghunathan.
LOTTERYBUS: A new communication architecture for high-
performance system-on-chip design. In proceedings of Design
Automation Conference, June 2001.
[5] B.Cordan. An efficient bus architecture for system-on-chip
design. In proceedings of Custom Integrated Circuits
Conference, 1999.
[6] AMBA Specification (rev2.0) and Multi layer AHB
specification, Arm: http://www.arm.com, 2001.
[7] W.B. Jone, J.S. Wang, H. Lu, I.P.HSU and J.Y.Chen.
Segmented Bus design for low-power systems. IEEE
transactions on VLSI Systems, March 1999.
[8] K. Lahiri, A. Raghunathan and S. Dey. Design space
exploration for optimizing on-chip communication
architectures. IEEE transactions on Computer-Aided Design
of Integrated Circuits and Systems, June 2004.
 [9] C-Ta Hsieh and M. Pedram. Architectural power
optimization by bus splitting, Design, Automation and Test in
Europe, 2000.
[10] H. Maini, K. Mehrotra, C. Mohan and R. Sanjay. Genetic
algorithms for graph partitioning and incremental graph
partitioning, In proceedings of 5th International conference on
Supercomputing, 1994.
[11] GAUL: Genetic Algorithm Utility Library.
http://gaul.sourceforge.net.
[12] D. Burger, and T.M. Austin. The simplescalar toolset
version 2.0. Technical report 1342, Department of Computer
Sciences, The University of Texas at Austin, June 1997 .
[13] D. Liu and C. Svenoson. Power consumption estimation
in CMOS VLSI chips. IEEE Journal on Solid State Circuits,
June 1994.
[14] N. Manjikian. Multiprocessor enhancement of
simplescalar toolset. ACM SIGARCH Computer Architecture
News, 2001.
[15] S. C. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. In ISCA-22, pp. 24, 1995.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

