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Abstract 
 

In this paper, we provide a methodology to perform 
both bus partitioning and bus frequency assignment to 
each of the bus segment simultaneously while 
optimizing both power consumption and performance of 
the system. We use a genetic algorithm and design an 
appropriate cost function which optimizes the solution 
on the basis of its power consumption and performance. 
The evaluation of our approach using a set of 
multiprocessor applications show that an average 
reduction of the energy consumption by 60% over a 
single shared bus architecture. Our results also show 
that it is beneficial to simultaneously assign bus 
frequencies and performing bus partitioning instead of 
performing them sequentially. 
 

1. Introduction and Previous work 
      System on chip architectures have been widely used 
in recent times as a viable solution to the increasing chip 
densities, due to the benefits offered by them with 
respect to improving system performance, cost, power 
dissipation and reusability. Many shared bus models 
like the AMBA [1], Coreconnect [2], WishBone [3] 
have been explored for connecting the various modules 
in such designs. However, increasing the number of 
modules connected to a single shared bus tremendously 
affects the performance and power consumption of such 
designs. To deal with this problem various designs have 
been proposed which try to increase the performance 
and reduce the power consumption of the bus structures 
[4,5]. Hierarchical bus designs like the Multi-Layer 
AMBA [6] is one of the ways to counter the problems 
faced by single shared bus architectures. In such designs 
the system comprises of multiple buses connected by 
bridges for inter-bus communications as shown in figure 
1. Such a hierarchical designing of bus systems is 
termed as bus segmentation or bus partitioning. Bus 
partitioning provides a methodology to keep a check on 
the growing bus capacitances and increased latencies 
due to the usage of single shared bus designs. In [7] bus 
segmentation was introduced for reducing the power 
consumption of the interconnect architecture. An 
interesting bus splitting technique for reducing the 
power consumed by interconnects has been presented in 

[9]. The results show that bus splitting is preferred over 
a single shared bus structure due to the benefits it 
provides with respect to lower power consumption, 
reliability, smaller driver sizes and larger timing slacks. 
Most of the bus splitting algorithms are based on 
clustering the modules present in the system, using the 
communication profile [8]. The main criteria behind 
such splitting are to cluster the highly communicating 
modules together and the low bandwidth modules in 
other clusters. One of the ways of achieving additional 
benefits out of the bus segmentation approach would be 
to operate the various buses on different frequencies. 
This gives an opportunity to sharply cut down on the 
power consumption of the low bandwidth module 
clustered together, by reducing the frequency of the bus 
they are connected to. This essentially is the motivation 
behind our work. 

  
Fig. 1: Hierarchical bus design 
      In this paper, we provide a methodology for 
simultaneously performing bus splitting and allocating 
variable frequency to each of the bus segments, while 
optimizing on both power consumption and 
performance of the system. This problem is essentially a 
clustering problem where given a graph; we are required 
to partition it into segments, based on multiple 
optimizing criteria. The nature of the problem ideally 
suits a genetic algorithm implementation, which solves 
the problem, provided we design an appropriate cost 
function. Genetic algorithms have been extensively 
employed to solve the clustering/partitioning problems 
in [10]. The genetic algorithm proposed in this paper 
provides a partitioning methodology and simultaneously 
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assigns appropriate frequencies to each of the bus 
segments. The solution obtained from our algorithm 
also provides the topology of the bus segments. The 
algorithm operates on the criteria of reducing power 
consumption and increasing the performance of the 
system.  
      The rest of the paper is organized as follows. We 
present the details of the bus partitioning problem in 
Section 2. The genetic algorithm used to solve the 
problem is presented in section 3. Section 4 presents the 
experimental setup followed by the results of our 
experiments in section 5. The conclusions of the paper 
are drawn in section 6. 
 

2. Bus Partitioning 
      Due to the infeasibility of using a single shared bus 
for many resources, bus segmentation has evolved as a 
natural alternative solution to the problem. The bus 
segmentation problem comprises of solving a graph 
partitioning problem which, given the communication 
information splits the architecture into smaller bus 
segments satisfying the constraints imposed. The 
constraints typically are the performance improvements 
and the power consumed by any architecture. Such 
splitting of the bus could be performed in many ways 
differing in the number of clusters and the way the 
segments are connected (topology) as shown in figure 5. 
However, increasing the segmentation of bus is 
restricted due to the cost of introducing bridges 
connecting the buses both with respect to power 
consumption and performance. Both the power 
consumption and the performance of a bus segment are 
dependant on the operating frequency of the bus. The 
power consumption of a bus reduces with the reduction 
in bus frequency; however this also reduces the 
performance of the system. This gives an opportunity to 
operate the buses at different frequencies to optimize on 
the power consumption and the performance of the 
system. Bridge in AMBA is unidirectional [6], with the 
master and the slave having different clocks as shown in 
figure 2. Our approach of bus partitioning would be 
applicable on such architectures.  

 
Fig 2: Bridge design in AMBA Multilayer implementation. 
 
 

3. The Genetic Algorithm 
      The input to the genetic algorithm is a graph 
capturing the communication profile for a given 

architecture as shown in figure 3. Such a 
communication graph provides us with the information 
about the transactions in any given application along 
with the timing of the transactions. The nodes of the 
graph represent the occurrence of any task and the edges 
depict the ordering information of the tasks. These tasks 
are essentially the operation carried out on various 
processors for the mentioned number of time cycles. 
The numbers associated with the edges depict the 
communication among the tasks. 

 
Fig.3:  Communication Graph  
      The goal of the genetic algorithm is to determine an 
optimal topology for connecting the components and at 
the same time assign appropriate frequencies to each of 
the buses. The inputs to the genetic algorithm are (a) the 
various topologies that we are going to enumerate on (b) 
the communication profile graph, which provides the 
information about communication among the various 
components to be connected to the bus (c) the range of 
frequencies that we want to assign to each of the buses. 
We need to have a set of frequencies, which we would 
be enumerating while analyzing the solution. 
 

3.1. Working of the GA 
Chromosome description: The chromosome is designed 
in a way that it captures the clustering information, the 
frequencies associated with the clusters and the 
topology for the given number of clusters. The 
chromosome in our proposed scheme is an array of 
integers A[0…N+K+1], where N is the number of nodes 
in the communication graph and K is the maximum 
number of clusters that we might have such that:  
A[i] = t, for 0<=i < N, indicates that the ith node is 
assigned to the cluster t. 
A[i] = x, for N<=i<N+K, means that the bus for the (i-
N)th cluster operates in frequency x. 
      The last value is a number associated with the type 
of topology. We assign a number to each of the 
topologies that are possible for a given number of 
clusters. The inclusion of this value in our chromosome 
helps us to enumerate the various topologies possible 
with a given number of clusters. 
 

Crossover operator: The crossover function requires us 
to select two parents for mating. In our algorithm we 
use a random selection scheme. This enables the 
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exploration of the solution space in an efficient manner. 
The crossover operation performs the mating of two 
parents giving birth to two new chromosomes. The way 
we perform such an operation is shown in the figure 4. 
As shown in the figure, we perform the crossover of the 
two parents separately on the first N and the next K 
elements. The last element, which defines the topology 
of the architecture encoded in the solution, is 
determined randomly for each of the offspring produced 
by crossover. Note that all the chromosomes always 
have K frequencies encoded in them regardless of the 
number of clusters proposed by that chromosome. 
However, only the relevant frequencies are used in the 
estimation of the fitness values. This ensures that the 
crossover operator always generates chromosomes in 
consistent format. However, there are cases where 
unidirectional nature of the bridges does not support the 
segmentation proposed by our solution. In such cases, 
the fitness function rates the solution as invalid by 
assigning its fitness value to 0.   

 
Fig. 4: Crossover operation 
Mutation operator: The primary motive behind the 
mutation operator should be to change the entire 
topology of a solution including the number of clusters. 
The way this is achieved is by randomly 
increment/decrementing the values from [1-N], which 
would surely increase or decrease the total number of 
clusters in the system and then randomly assigning the 
frequencies for each of the clusters. Finally, we should 
also randomly assign the topology for the solution.   
 

Fitness function: The fitness function captures the two 
optimizing criteria, which are the power and 
performance of a proposed solution.  
      Performance of a chosen architecture is given by the 
completion time of any given application on the 
architecture. Note that, we cannot base the performance 
numbers on the number of cycles as the buses may be 
operating on different frequencies and therefore the 
number of cycles is a misleading number in such a case. 
The completion time of a given application on a given 
architecture is primarily dependant on the inter-cluster 
communication and intra-cluster communication. The 
clustering algorithm should try to maximize the intra-
cluster communication and minimize the inter-cluster 
communication. However at the same time the 
completion time should also be minimized.  

      The calculation of intra-cluster communication cost 
is relatively easy, given the communication profile. This 
was done in a similar manner as presented in [8]. 
However, analysis of cost for inter-cluster 
communication required us to account for the 
communication overhead due to the presence of the 
bridges and the fact that the communication might 
happen across two different clock domains. Whenever a 
master requests a communication burst across the 
bridge, there is a minimum communication overhead of 
2 cycles for synchronizing. Note that the two cycles are 
with respect to the slower clock that the bus is attached 
to. The completion time for such a communication is 
also calculated based upon the frequency of the slowest 
bus among the buses through which the communication 
occurs. The fitness value for performance is calculated 
as: 

base
per CT

CTF −= 1  

      Where Fper is the fitness value of the solution with 
respect to the performance of the system. CT is the 
completion time of the application on the architecture 
proposed by the current solution and CTbase is the 
completion time of the application on a shared bus 
operating at minimum frequency. The higher the 
completion time the lower the solution is rated with 
respect to performance. 
       The power consumption of the given topology 
could be obtained as a split of the power consumption of 
the buses and the power consumed by the bridges. The 
following equation shows the way bridge power is 
calculated given Gswun and Gswu are the number of gates 
in the bridge that switch when the bridge is not used and 
used respectively and used is the fraction of time when 
the bridge is used.  

usedGusedGBridgePow swuswun *)1(* +−∝       
The power consumed by the buses was calculated in 
similar manner as in [9] paper where the interconnect 
power is directly proportional to the frequency at which 
the bus is operated on and the capacitance of the bus. 
Since the genetic algorithm operates on the principle of 
comparing the solution we just need an abstract model 
that captures all the factors that the power is depending 
upon, and not the exact power numbers. The average 
power consumption is therefore calculated as: 

fCkrbridgepowePower bus **+=  
      The capacitance Cbus of the bus is calculated using 
the equation provided in [9], f is the operating frequency 
of the bus and k is a constant taking care of other factors 
that power is dependant on. The fitness value for power 
is computed as shown in the following equation. The 
maximum power consumption MaxPower is the sum of 
power consumed by a single shared bus operating at 
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maximum frequency and the maximum power that 
could be consumed by bridges. 

MaxPower
PowerF pow −= 1

 

      The following equation shows the manner in which 
the final fitness value is calculated. 

)/()**( βαβα ++= powper FFFitness   
      As shown in the equation the final fitness value is 
calculated as a weighted average of the performance 
fitness value and the power fitness values. The value of 
the weights α and β are determined based on the 
importance of power and performance in the system.  
We also tested the quality of our solutions by using the 
fitness function as the product of Fper and Fpow. 
  

4. Experimental Setup 
      The genetic algorithm was coded in C language 
using the Genetic Algorithm Utility Library [11]. We 
generated the communication graph for a multi-
processor benchmark circuit comprising of multiple 
processor cores communicating with various memory 
banks. The communication information was obtained by 
using the tool MP_Simplesim [14] which is a multi-
processor implementation of the simplescalar tool [12]. 
We used a set of benchmarks from SPLASH-2 suite 
[15]. The communication profile for the benchmark 
designs were obtained using a configuration of 4 
processors and 8 memory banks as well as with an 
architecture having 8 processors and 8 memory banks. 
The communication profile provided the detailed timing 
information of when a processor accesses any memory 
module. Based on the communication profile the 
communication graph of the transactions was created. 
       The various topologies that the algorithm tries to 
generate are shown in figure 5. We have chosen a 
maximum of three clusters because of the limited 
number of modules in our benchmarks. Increasing the 
number of clusters will increase the power consumption 
of the architecture with limited performance benefits. 
The circles in the figure depict a bus segment which has 
various components connected to it. The edges between 
the circles depict the presence of a bus. Since bridges 
are unidirectional they are shown by directed edges 
connecting the circles where, the direction of the edge 
determines the master and the slave of the bridge. 
 

5. Results 
      The genetic algorithm was implemented on an Intel 
Xeon dual processor machine. The size of the 
population was chosen as 200 and the algorithm was 
allowed to run for 5000 generations. We chose to 
operate on a frequency range of 50 to 250 MHz and 
enumerated on frequency values that are multiples of 
25. These are the frequencies that the algorithm tries to 
assign to the different buses. The communication traces 

were obtained for the benchmark designs for 2 million 
cycles using a single shared bus. 

 
Fig 5: The topologies used by our algorithm 
       We select the radix benchmark as a representative 
to perform extensive analysis of the solutions generated 
by our algorithm with varying of fitness functions. We 
investigate the various interconnect topologies chosen 
by our algorithm, by varying the weights associated 
with the power fitness value (‘a’) and the performance 
fitness value (‘b’), while calculating the final fitness 
function. Note that the weights are the metrics to 
determine the criticality of power or performance in the 
system. The various fitness functions and the results 
obtained are shown in table 1. The results show that the 
optimal topology for the bus design is chosen to be 
segmented topology over a single shared bus topology 
in all the cases. Another observation that could be made 
from the table is the fact that as the weights associated 
with the power fitness values are increased the solution 
tends to have its buses operating at lower frequencies. 
We also show the completion times of our final 
solution. The completion time on a single bus operating 
at highest frequency of 250MHz is 0.08 sec. The 
solution provided by our algorithm when performance is 
weighted high performs better with respect to the single 
shared bus design operating at the highest frequency. 
Note that even when we rate power more than 
performance the final solution performs better than the 
single shared bus design in net energy consumption. We 
can observe an average reduction in energy 
consumption by 49% as compared to the single bus 
operating at 250MHz. 

 
Fig 6: Bus partitioning and frequency assignment for radix 
benchmark provided by our approach for fitness function 
a*b.      
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Completion 
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 Reduction in 
Energy over 
single bus at 
250MHz(%) 

 

a 2 1 50,50 24.71 0.300999 

b 2 2 250,250 6.27 0.070753 

(a + b)/2 2 1 250,50 60.06 0.088734 

(a+2*b)/
3 

3 2 250,75,5
0 

62.13 0.078823 

(a+3*b)/
4 

3 1 250,125,
50 

61.82 0.072821 

(2*a+b)/
3 

3 1 175,75,5
0 

54.98 0.125046 

(3*a+b)/
4 

3 1 125,75,5
0 

62.16 0.139672 

a*b 3 1 250,75,5
0 

64.84 0.083332 

Table 1: The fitness function used where ‘a’ and ‘b’ are 
the power and performance fitness values respectively for 
the radix benchmark design.  
       Figure 6 presents the solution determined by our 
algorithm when we choose the fitness function as the 
product of the power and performance fitness values. 
The solution has three bus segments where only one of 
the segments is operated at the highest frequency while 
the other two buses are operated at lower frequencies of 
75MHz and 50MHz respectively. The reason for our 
solution to arrive at this solution can be explained by 
analyzing the communication traces of the benchmark 
circuit. The radix benchmark had all the processors 
accessing the memory banks M5, M6 significantly more 
than the rest of the memory modules. This provides an 
opportunity to the genetic algorithm for placing the 
memory modules other M5 and M6 in different bus 
segments that could operate on lower frequencies and 
thereby help in saving power without significant impact 
on performance. The highly accessed memory modules 
were placed in the first cluster along with the processors 
and the least used ones are placed in the last cluster. 
This reflects the quality of our approach to in being able 
to reduce power consumption on buses supporting low 
bandwidth devices by adjusting the frequencies. We 
tested the solution presented by our algorithm by fixing 
the frequencies at which the buses operate and 
compared the results obtained when the algorithm 
performed variable frequency assignment. The results as 
shown in figure 7 indicate that variable frequency 
assignment results in considerable energy savings than 
the case when the algorithm is forced to assign a fixed 
frequency. 
      Table 2 presents a comparison of the energy and 
performance of the solutions generated when we 
perform simultaneous frequency assignment with the 
solutions generated by first performing the clustering at 
a fixed frequency followed by frequency allocation. Our 
results show that solutions generated by performing 
simultaneous frequency assignment are better than that 
of sequential bus clustering and bus assignment 
approach.  
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Fig 7: Energy savings of the solutions generated when the 
algorithm is forced to assign fixed frequency than when it 
performs simultaneous variable frequency assignment.       
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Completion 
time for 
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f=50 15.61 0.086882 0.083332 

f=100 13.03 0.084222 0.083332 

f=150 14.182 0.088732 0.083332 

f=200 16.1252 0.085223 0.083332 

f=250 17.532 0.083770 0.083332 

Table 2: Comparing algorithms with simultaneous and 
non-simultaneous frequency assignment. 

Table 3: Solutions obtained for various benchmark 
designs.  
      We used the fitness function a*b to determine the 
optimal topologies for the rest of the benchmark 
designs. Table 3 shows the results of our 
implementations on various benchmark circuits. The 
values (m, n) which follow each of the benchmark 
designs in the table depict the number of processors and 
the number of memory banks in the system, 
respectively. Most of the benchmarks result in bus 
architectures with two-partitions and fully connected 
topology due to the similar communication profiles of 
these benchmark designs.  Figure 7 shows a plot of the 
energy savings obtained by using the final solution over 
the single shared bus architecture operating at the 
frequency of 50MHz and 250MHz for various 
benchmark designs. Note that the final solution is able 
to achieve energy savings of nearly 60% for the 
benchmark designs. 
Figure 8 shows the completion times of our final 
solution compared with completion time of a single 
shared bus design operating at frequency 250MHz. The 

Benchmark Seg. Top. Frequencies 

barnes(4,8) 2 2 175,175 
cholesky(4,8) 2 2 150,150 
Radix(4,8) 3 1 200,75,50 
raytrace(4,8) 2 1 200,50 
water(4,8) 2 2 125,125 
barnes(8,8) 2 2 100,100 
cholesky(8,8) 2 2 150,175 
Radix(8,8) 3 2 200,150,50 
raytrace(8,8) 2 1 200,50 
Water(8,8) 2 2 150,150 



solution generated by our algorithm outperforms the 
single shared bus solution for almost all the benchmark. 
In case of the radix benchmark, the final completion 
time is larger than the completion time of single shared 
bus operating at 250MHz. This is due to the fact that the 
final solution is selected based on both the power 
consumption and the performance metrics. In case of 
the radix benchmark, the significant power savings in 
the final solution compensates for the slight 
performance penalty. The percentage reduction in the 
energy consumption of the final solution is infact the 
largest in this benchmark. Since the solution provided 
by our algorithm is significantly better with respect to 
performance of the single shared by operating at the 
least frequency of 50MHz, we omit those results.   

Percentage of energy reduction
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Fig. 8: Percentage reduction in energy consumption of the 
final solution over the single shared bus solution. 
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Fig. 9: The completion time of our proposed solution as 
compared to the single shared bus architecture operating 
at 50MHz and 250MHz. 
 

6. Conclusion 
        We provide a genetic algorithm based 
methodology to perform both bus partitioning and bus 
frequency assignment to each of the bus segment 
simultaneously while optimizing both power 
consumption and performance of the system. The 
generation of the solution is directed by the power and 
performance constraints imposed by us. The results 
present some interesting tradeoffs in the power and 
performance numbers. The prime feature of the 
algorithm is its adjustable nature to assigning 
importance to power and performance based on the 
requirements of the system. The evaluation of our 
approach using a set of multiprocessor applications 
show that an average reduction of the energy 

consumption by 60% over a single shared bus 
architecture. Our results also show that it is beneficial to 
simultaneously assign bus frequencies and performing 
bus partitioning instead of performing them 
sequentially.    
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