
Activity Packing in FPGAs for Leakage Power Reduction

Hassan Hassan Mohab Anis Antoine El Daher Mohamed Elmasry
VLSI Research Group

University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

In this paper, two packing algorithms for the detection of ac-
tivity profiles in MTCMOS-based FPGA structures are proposed
for leakage power mitigation. The first algorithm is a connection-
based packing technique by which the proximity of the logic blocks
is accounted for, and the second algorithm is a logic-based pack-
ing approach by which the weighted Hamming distance between
the blocks activities is considered. After both algorithms are ana-
lyzed, they are applied to a number of FGPA benchmarks for verifi-
cation. Once the activity profiles are realized, sleep transistors are
carefully positioned to contain the clustered blocks that share sim-
ilar activity profiles. Finally, the percentage of the leakage power
savings for each of the two algorithms is evaluated.

1. Introduction and Related Work

The scaling of the CMOS technology has precipitated an expo-
nential increase in subthreshold leakage currents. Therefore, it is
not surprising that leakage power now constitutes a high percent-
age of the total chip power. In FPGA applications, the manage-
ment of leakage power has been overshadowed by performance
improvement and dynamic power minimization techniques. As
modern FPGAs are getting implemented in 90nm CMOS tech-
nology, solving the leakage power problem is pivotal to devising
power-aware FPGAs. For the FPGA industry to continue compet-
ing with high-performance custom VLSI designs in the semicon-
ductor market, or to explore new territories such as wireless per-
sonal communication systems (PCSs), the industry must invest in
novel techniques to control leakage power dissipation. Although,
FPGAs provide flexibility in design, they are not fully exploited.
In fact, the logic and switching resources utilization are approx-
imately only 60% and 50%, respectively, of the total FPGA re-
sources. As a result, unutilized parts of FPGAs cost designers
a large amount of inactive leakage power without providing any
gainful output. Thus, these unutilized resources should be investi-
gated to achieve minimal leakage power. In addition, it is helpful to
recall that even the utilized blocks dissipate inactive leakage power
during their standby modes.

One technique that has become increasingly popular for miti-
gating inactive leakage power is employing high-Vth (HVT) sleep
transistors (STs) to cut off a low-Vth circuit from the power rails
during the standby mode. When the ST is turnedoff , the cir-
cuit leakage is limited to that of the ST. In this technique, the siz-

ing of the ST also impacts the amount of speed loss in the active
mode because of the added resistance to ground. STs should be
able to support the peak current requirements of the logic clusters
that the STs control so that the speed penalty does not exceed 5%.
Therefore, by selecting the appropriate ST size, the speed penalty,
leakage power, and area overhead can be minimized for the entire
circuit. Since the peak currents of the clustered logic blocks con-
trol the circuit speed, a method by which the kind and number of
blocks are chosen to be clustered to share one ST is crucial. Ide-
ally, any number of gates can be grouped with one ST, as long as
their switching periods are mutually exclusive. However, for gates
with simultaneous switching, the number of clustered gates must
be limited to ensure that the speed penalty does not exceed 5%.

Over the past few years, a number of ST sizing methodologies
have been reported in the literature. In [1] and [2], a single ST
was proposed to support the whole circuit. The ST was sized ac-
cording to the mutual exclusive discharge patterns in [1]. Also, a
distributed ST network methodology was suggested in [3] to min-
imize the total ST area. None of the techniques in the literature
offer automated methodologies to cluster the logic blocks [1, 2, 3].
Either they were all based on intuition, or on supporting the en-
tire circuit with a global ST. In addition, none of these techniques
accounted for the routing overhead for clustering purposes, which
is a critical issue in nanometer designs. In addition, [4] and [5]
discussed techniques that employed STs, but did not address how
and which gates should be chosen to share an ST. From the FPGA
perspective, a leakage control technique which employed region-
constrained placement of STs was developed in [6]. Again, there
was no description of how clusters were created.

Consequently, in this paper two new packing algorithms for de-
tecting which blocks in FPGA structures exhibit switching corre-
lations, i.e., can be clustered in one activity profile. A flow chart
for the new design flow is shown in Figure 1. The first algorithm
is a connection-based packing technique, where the proximity of
FPGA blocks is considered, whereas the second algorithm is a
logic-based packing approach where the Hamming Distance be-
tween the activity of the different blocks is utilized. Both algo-
rithms are analyzed and applied to a number of FGPA benchmarks
for validity. Once the activity profiles are known, STs are con-
nected to contain these clustered blocks sharing similar activity
profiles. This connection is performed in the configuration stage
of the FPGA. The leakage power saving is finally evaluated for
each of the two algorithms. It is important to note that this cluster-
ing (packing) stage occurs before the placement stage in FPGAs.
Consequently, by applying the two algorithms and knowing which

1530-1591/05 $20.00 © 2005 IEEE

����������	
���

�������

��������

�
�
������

�������

����
�
��

����������������

Figure 1. Proposed design flow.

gates should be clustered, the placer ensures that they would be
placed close to each other to minimize the routing overhead. The
FPGA fabric is thus divided into regions of similar activity, each of
which is independently controlled though a local ST. Furthermore,
latches are inserted between one MTCMOS circuit and another to
ensure that the logic is retained during the standby mode (when the
virtual ground rails float). These latches are inherently located in
the FPGA BLEs, and are adopted as the interface between every
two MTCMOS blocks. Thus, no extra logic is required to perform
this interface to guarantee data retention. By applying these tech-
niques, the blocks which are unutilized are connected to a com-
mon ST and permanently turnedoff during the configuration of
the FPGA. On the other hand, utilized blocks that display similar
switching activities (i.e., the same activity profile) will be grouped
together to dynamically and collectively turn themon or off. In
order to limit the overhead of the reconfiguration control circuitry,
the ST should not change state so frequently.

2. Targeted FPGA Architecture

The targeted FPGA architecture is shown in Figure 2. Each
BLE consists of a 4-input LUT, flip-flop and 2:1 multiplexer. Sev-
eral BLEs are grouped together to form CLBs. Inside the CLBs,
the BLEs are connected together using the local switching re-
sources. In addition, the CLBs are connected using the global
routing resources of the FPGA. Everyn CLBs are connected to
the ground via a High-VT (HVT) NMOS transistor to reduce leak-
age current and force then CLBs into low-power modes during
their inactive periods. The HVT sleep transistor is controlled using
a SLEEP signal at its gate. Moreover, in each CLB, the latches
are used to retain the value of the BLEs outputs when they en-
ter they sleep mode. The several CLBs served by one sleep tran-
sistor are called the sleep region. The size of the sleep region,
i.e.,n is controlled by many factors; maximum allowable size for
the sleep transistor, hence the maximum peak current this transis-
tor will hold, the maximum performance deterioration due to the
sleep transistor allowed, as well as the maximum permitted ground
bounce in the virtual supply lines.

3. Connection-Based Activity Packing Algorithm (CAP)

The CAP algorithm involves assigning similar activity labels to
the BLEs that are expected to have similar activity profiles. Af-
terwards, the BLEs are clustered to minimize the delays along the

��� ���
�
�
�

��� ���
�
�
� ��� ���
�
�
�

���	
��
���
��

�����

������
��

�����
������

��������
��	���	�
��������

��� ���
�
�
�

����

Figure 2. Sleep region architecture.

critical paths by applying simulated annealing. The CAP algorithm
consists of two phases: activity generation and clustering.

3.1 Activity Generation

The aim for the activity generation phase of CAP is to give
BLEs that share nets, similar activity labels. The main reasoning
for this approach is that BLEs that share inputs are expected to
be active at the same time. Moreover, cascaded BLEs are more
likely to have similar activity labels because as the output of the
driving BLE change, the driven gate is expected to change state.
Hence, this approach assumes a 100% probability of change in the
output of a BLE when one of its inputs change state, thus giving
the pessimistic results for the activity labeling.

The algorithm begins with the circuit primary inputs and greed-
ily allocates activity regions as it traverses the circuit netlist by
means of simple depth-first graph search algorithm. The result is
a fast and computationally efficient algorithm. While traversing
the circuit netlist, whenever a new BLE is encountered, it is nec-
essary to determine whether to add this BLE to the current activity
region, or to place it in a new activity region. There are two princi-
pal driving costs that need to be considered at each node: the total
number of activity regions and the size of the activity region.

The number of activity regions corresponds physically to the
total number of sleep signals employed in the design. Increasing
the number of activity regions results in increasing the number of
sleep signals used, thus causing a power-inefficient implementa-
tion, as well as complicating the control circuitry for generating
these signals. Hence, the total number of activity regions needs to
be minimized as much as possible.

The other driving cost function for the activity generation algo-
rithm is the size of the activity region. Reducing the size of the ac-
tivity region provides the clustering algorithm with more flexibility
to pack only those BLEs that manifest the same activity, not those
that have close activity profiles. Although this leads to a greater
leakage savings, the disadvantages of a large number of activity
regions once again become an issue. Furthermore, the algorithm
must be expansive while each BLE is processed. The addition of
any BLE to the current activity region, implies the addition of all of
its fan-in and fan-out BLEs, because the algorithm is connection-
based. As a result of this, the number of fan-ins and fan-outs of
any BLE, should be considered during the process. Consequently,
the cost of adding the current BLE to the current activity region is

expressed as

cost1 =
currCap + α× levb + (1− α)× leva −maxCap

maxCap
,

(1)
wheremaxCap is the predefined maximum capacity for the activ-
ity region,currCap is the current capacity of the activity region,
levb andleva are the minimum number of unlabeled logic levels
from the BLE to the primary inputs and outputs, respectively, and
α is a weighting constant that is used to signify the logic levels
either before or after the BLE, respectively, hence, improve the
quality of the final solution. The use ofleva andlevb provides the
cost function with the ability to look around the current BLE to ex-
amine what other BLEs are expected to be attracted to the current
activity region when the BLE under investigation is placed in it.

By running the algorithm on several benchmarks, it is found
that a value formaxCap of 1.5 times the longest path from input
to output in the circuit provides the best results in terms of power
savings. Giving a constant value formaxCap, irrespective of the
circuit size, results in impractical results. Moreover, increasing
maxCap than 1.5 times the longest path in the circuit results in
having excessively large activity regions that are usually not fully
filled up by the algorithm. On the other hand, decreasingmaxCap
increases the number of activity regions in the final design.

Another cost function is maintained to represent the attraction
between the BLE and the activity region under consideration, and
is expressed as

cost2 = m , (2)

wherem is the number of nets that connect the current sleep region
to the BLE under consideration. Hence, the decision of whether or
not a certain BLE should be placed in the current activity region is
given by:

cost1 + δ × cost2 6 0 ⇒ add to the current activity region

cost1 + δ × cost2 > 0 ⇒ start a new current activity region

whereδ is a normalization factor. The values of theα andδ are
determined by exhaustively trying several values and checking the
quality of the solution. In our experiments, a value of 0.5 is se-
lected forα. Again, the value ofδ controls which of the cost func-
tions,cost1 or cost2, should be given higher priority. A value of
-0.1 is adopted forδ in this work, and it proved to produce good
results. The reason for choosing a negative value is that the value
of cost1 is negative, unless the activity region size constraint is
violated.

The activity generation phase consists of two stages: explo-
ration and labeling. In the exploration stage, the netlist is con-
verted into a directed graph and traversed by the depth-first search
algorithm. While each node is traversed, two labels are added to
it; the number of levels and paths from this node to any of the
primary inputs and the primary outputs. In the second stage, the
graph is traversed by the depth-first search approach and the cost
of adding each of the nodes connected to it to the current activity
region (cost1) is computed. Then the cost of not adding them to
the activity region (cost2) is computed. The node with the mini-
mum cost1 is selected as the candidate node, and then compared
to itscost2, and a decision is made. This continues until each node
in the graph is labeled with its activity region. The pseudocode for
the activity generation phase of CAP is given in Figure 3.

Create a directed graph from the netlist
Traverse the graph using DFS
for each node

Calculate levels before
Calculate levels after

end for
Traverse the graph using DFS
for each node i

for each node j connected to i
calculate cost1
calculate cost2
if cost1 6 min cost1

min cost1 = cost1
min cost2 = cost2
min node = j

end if
end for
if min cost1 = δ ×min cost2

add to current activity region
else

start a new region
end for

Figure 3. CAP pseudocode.

Figure 4 depicts an example of the activity generation phase of
CAP for a maximum activity region size of four. Figure 4 indicates
that the algorithm begins with nodeA and then studies its childD,
and adds it to the activity region. Following that, the logic blocks
connected toD; B andE are examined.B is added to the activity
region because it has the minimumC2. Afterwards,E is added to
the activity region. A new activity region is started fromF because
the sum ofC1 andδC2 is positive. Lastly,C is added to the second
activity region.

3.2 Packing Phase

The packing is performed by employing simulated annealing
technique on the resulting circuit netlist which consists of the in-
put netlist plus an activity number for each CLB. The packing algo-
rithm follows these hard constraints while solving the optimization
problem: (i) the number of BLEs must be less than the cluster size,
(ii) the number of inputs needed by the BLEs inside the cluster
must be less than the number of cluster inputs, (iii) all the BLEs
inside a cluster must have the same activity profile, and (iv) the
peak current in the cluster does not surpass the maximum allow-
able current of the ST for a speed penalty of 5%. In addition, the
packing algorithm follows the same objective function as that of T-
VPack [7]. The objective is to minimize the number of inter-cluster
connections that lie on the critical path of the circuit. In addition,
simulated annealing is applied to the optimization problem, unlike
[7]. The reason for using simulated annealing is to speed up the
solution of the packing problem since the problem here is more
complex than the one in [7] due to the addition of the new hard
constraints (iii) and (iv).

3.3 Experimental Results

The CAP algorithm is implemented and tested on several
benchmarks to assess its capability of using connectivity to gen-
erate the activity of the circuit, as well as the power savings due to
the use of STs. The experiments are performed on a 900MHz Ultra
Sparc III machine with 8Gbytes RAM, and the results are summa-
rized in Table 1. The third column in Table 1 lists the number of
resulting clusters and the minimum FPGA array that can be used
to map the circuit.

�

�

�

�
�

���� 	
�

���� 	
��
���
������������	����

�

�

�

�

�
�

�

���

���

����
	
�

���� 	
��
���
������	
�����

�

�

�

�
�

���� 	
�

���� 	
��
�
������������

	
������

�

�

�

�

�
�

�

���

���

����
	
�

���� 	
��
�
������	����

�

�

�

�
�

�

��	
��
	���	�
����	��	�	��	�	���
��

��	
��
	���	�
����	��	�	��	�	���
��

���

���� �	�

���� �	�� ! �"��#$�#%&'%
�	#!(�)*

Figure 4. CAP activity generation flow for α = 0.5 and δ = −0.1

The power dissipated by each design is calculated using the
power model developed in [8]. In each benchmark, the power sav-
ings consist of two parts; savings from permanently turningoff all
the unused cluster and savings from dynamically turningonandoff
the different used clusters in the design during operation depend-
ing on their activity profile. When the unused clusters are turned
off, their standby leakage power dissipation is reduced significantly
because of the presence of the sleep transistor in the leakage path.
Thus this part of power saving is calculated by merely subtract-
ing the standby leakage for each cluster with and without a sleep
transistor and multiplying it by the total number of unused clusters
in the design. Moreover, to calculate the savings due to the dy-
namic switching of the used clusters, the logic power dissipation
per clusterPd is calculated by

Pd = ton × Pdyn + toff × Pleak , (3)

whereton andtoff are the percentage of times the cluster is either
on or off, respectively, andPdyn andPleak are the dynamic and
standby leakage power dissipation of the cluster. The active leak-
age dissipation of each cluster is ignored in the case when sleep
transistors are used with respect to the dynamic power dissipation.
The power savings is thus the difference betweenPd and the logic
power dissipation without using sleep transistors.

From the results in Table 1, it can be deduced that the CAP al-
gorithm can be used to achieve an average power saving of 22.5%.
Moreover, the minimum power saving that is attained is more than
10%, except for the s1269 benchmark which has high switching
characteristics, thus resolving the power savings to merely that of
turning off the unused part of the FPGA. In addition, the results
for cm150a and cm163a denotes that the power savings in these
two cases results only from turningoff the used parts of the FPGA
during their idle state, as there are no utilized parts in the FPGA.
Furthermore, the execution time of the packing algorithm is almost
linear with the circuit size, except for sequential circuits that have
long cycles which complicates their processing, due to the use of
simple depth-first search algorithms in traversing the netlist graph.

Table 1. CAP algorithm results with 5% delay penalty.

Circuit
of # of % Saving Execution % of Unused

BLEs Clusters in Leakage Time (s) CLBs
cm82a 6 2 (2×2) 42.84 0.01 50
cm151a 9 3 (2×2) 37.31 0.005 25
cm150a 16 4 (2×2) 50.07 0.01 0
cm163a 16 4 (2×2) 22.38 0.02 0
cm162a 19 5 (3×3) 23.14 0.02 44.4
cm85a 24 6 (3×3) 21.98 0.01 33.3
s400 162 41 (7×7) 13.61 30.3 16.32
s991 519 130 (12×12) 11.27 1336.18 9.72
s1269 569 145 (13×13) 4.63 12.84 14.2
s1494 647 162 (13×13) 10.13 875.43 4.14
s1488 653 164 (13×13) 10.27 456.49 2.96

This grouping is similar to the worst-case grouping because the
algorithm does not incorporates the actual logic function of the
circuit and assumes that when the inputs to the BLE change, its
output will change, which is not true in all cases. Incorporating the
logic function of the BLE can actually result in a better grouping,
but can be computationally expensive. That’s why the Logic-based
Activity Packing (LAP) algorithm is proposed.

4. Logic-Based Activity Packing (LAP)

The LAP algorithm depends on the representation of the activi-
ties as binary sequences. The packing is then performed by group-
ing those BLEs that have similar activity sequences, i.e., minimum
Hamming distance between the activity vectors. For LAP, the cir-
cuit topology for the activity-based packing is ignored and instead
the circuit logic function is used to find the optimum clustering
that prolongs theoff periods of each CLB. This is achieved by ex-
haustively simulating all the input combinations of the circuit to
generate the activity vectors. In order to properly explain this al-
gorithm, several definitions and notations will be first explained.

4.1 Activity Vector
Definition 1: Activity Vector
Given a netx in a circuit netlist, theactivity vectorAx of x is

defined as follows:

Ax = [a1 a2 a3 a2n−1 a2n]T , (4)

wheren is the total number of inputs to the circuit,ai is a binary
variable that is ‘1’ if any of the outputs of the circuit depend on net
x for evaluation when the inputs to the circuit are given by theith

input vector, andT represents the transpose of the vector.
In FPGAs, each BLE has only one output; thus, the activity

vector of each net resolves to be the activity vector of the BLE
driving that net. Hence,Ax is the activity vector of netx, as well
as the BLE calledX, wherex is the output ofX.
Example 1: For the circuit in Figure 5, blocksF andG must
be on to generate the outputs of the circuitf andg, respectively.
Consequently, the activity vectorsAf andAg for blocksF andG,
respectively, are given by

Af = [1 1 1 1 1 1 1 1]T ,

Ag = [1 1 1 1 1 1 1 1]T . (5)

On the other hand, for computing the activity vector at the inputs

�

�

�

�

�

�

�
�

	

 �

� �

�

������� ��������	����
������	���� �����	

������ �����	

Figure 5. An example of a circuit.

of block F , it is noteworthy that blockD will be only used to
generate the output signalf if the input c is ‘1’. Similarly, block
E is only used whenc is ‘0’. Hence, the activity vectors forD and
E, whenf is evaluated, are represented by

Ad = [0 1 0 1 0 1 0 1]T ,

Ae|f = [1 0 1 0 1 0 1 0]T . (6)

However, to evaluateh, E will have the following activity vector:

Ae|h = [1 1 1 1 1 1 1 0]T , (7)

which differs from the one given in (6). Hence, the resultingAe is
given by

Ae = Ae|1 + Ae|2 = [1 1 1 1 1 1 1 0]T .

Furthermore, the activity vector fori will be given by

Ai = [1 1 0 0 0 0 1 1]T . (8)

From this discussion, it can be deduced that ifF , G, andH are
active for all the input combinations, packing them together will
result in improved results. Moreover,E will be active for almost
all of the input combinations except for only one, thus it can also
be packed withF , G, andH in the same cluster. Therefore, the
cluster containingE, F , G, andH will be alwayson. On the
other hand,D andI have similar activity profiles for half of the
input combinations, thus it will be a good strategy to group them
together and turnoff this cluster for half of the circuit operational
time.

4.2 Hamming Distance and Weighted Hamming Dis-
tance

Definition 2: Hamming Distance
Given two binary sequences of lengthn; An andBn, theHamming
distanced(a,b) between these two sequences is defined as

d(a,b) =

n−1X

k=0

|ak − bk| , (9)

whereak andbk are thekth elements ofAn andBn, respectively.
From (9), the Hamming distances between the activity vectors

given in (5) to (8) are written as

d(f,g) = 0 d(f,d) = 4 d(f,e) = 1

d(f,i) = 4 d(f,h) = 0 d(g,d) = 4

d(g,e) = 1 d(g,i) = 4 d(g,h) = 0

d(e,d) = 5 d(e,i) = 5 d(e,h) = 1

d(d,i) = 4 d(d,h) = 4 d(i,h) = 4 (10)

From (10), it is seen that the Hamming distance between the activ-
ity vectors of any two CLBs is a measure of the correlation between
the activity profiles of the CLBs. A Hamming distance close to the
absolute minimum of zero, indicates that the two blocks will ex-
hibit the same activity profile, thus when positioned together in the
same cluster will result in maximum power saving. On the other
hand, a Hamming distance close to the absolute maximum ofn,
denotes that the two clusters have distant activity profiles, and will
be power-inefficient if these two BLEs are grouped together. This
is verified by examining the values in (10) and the results stated in
the previous sub-section.

The Hamming distance between the activity vectors of two
CLBs does not take into consideration the probability of occur-
rence of the different input combinations. As a result, the quality
of the results can be notably affected, especially for large circuits.
Definition 3: Weighted Hamming Distance
Given two binary sequences of lengthn; An andBn, and a weight-
ing vectorWn, theweighted Hamming distancedw(a,b) between
these two sequences is defined as

dw(a,b) =

n−1X

k=0

wk × |ak − bk| , (11)

whereak, bk, andwk are thekth elements ofAn, Bn, andWn,
respectively.

The weighting Hamming distance is an efficient way to incor-
porate the various probabilities of the input combinations into the
algorithm. Hence, in this work, the weighted Hamming distance is
used to group the different BLEs into activity regions.

4.3 The LAP Algorithm Operation
The LAP algorithm consists of two main phases: activity vec-

tor generation and packing. The activity generation phase exhaus-
tively simulates the circuit by iterating all the input vectors and
finding the values of all the circuit nets resulting from that input
vector. Moreover, for each input vector iteration, each signal (or
block) is tested to investigate whether or not the output will be af-
fected. This is achieved by complementing the value of the signal
under consideration and then proceeding from that point to the cir-
cuit outputs. If any of the circuit outputs change their state due to
changing the signal value, this means that the net (or block) under
consideration is needed in order to generate the output and a ‘1’ is
placed in the corresponding row of the activity vector. Otherwise,
a ‘0’ is inserted in the activity vector.

After exhaustively generating all the vectors as well as activity
vectors for all the circuit nets, the static probability of each net is
calculated. This is calculated directly from the exhaustive simula-
tion performed in the first stage.

The clustering phase has the same hard-constraints as those of
the CAP algorithm. The clustering phase starts with any BLE and
then inserts it into a new cluster. In addition, BLEs are added to
the current cluster in a greedy manner based on their minimum
weighted Hamming distance to the blocks currently in the cluster.
Thus, the block with the minimum weighted Hamming distance is
added to the cluster, until the cluster is full. Afterwards, a new
cluster is created and a seed BLE is selected and added and the
same procedure is repeated until all the BLEs are clustered. A
pseudocode of the algorithm is listed in Figure 6.

for all the input combinations
for all the nets in the circuit

find the value of the net
end for
for each net in the circuit

toggle the value of the net
Activity[input vector][net] = 0
proceed with the new value of the net
if the value of any output changes

Activity[input vector][net] = 1
end if

end for
end for
while there are unpacked BLEs

if current cluster has space
find the BLE with minimum HD to
the current cluster
add this BLE to the current cluster

else
start a new cluster

end if
end while

Figure 6. Pseudocode of LAP.

4.4 Experimental Results
Although the LAP algorithm produces very accurate results, yet

it is computationally expensive. In order to test its efficiency, LAP
is allowed to pack several FPGA benchmarks, and the results are
listed in Table 2. The algorithm is run on an 900MHz Ultra Sparc
III processor with 5Gbyte RAM. From the results in Table 2, it can

be deduced that LAP can achieve an averageoff time of 33% for
the benchmarks investigated. Moreover, the LAP algorithm has an
exponential complexity with the number of primary inputs to the
circuit.

Table 2. LAP algorithm results with 5% delay penalty.

Circuit
of # of # of Avg OFF Execution % Savings

BLEs inputs clusters time % time (s) in Power
cm82a 6 5 3 32.3 0.01 45.4
sec 10 5 4 24.2 0.02 12.9
x2 12 10 4 17.75 0.81 9.3
alu2 59 10 16 43.9 50.7 15.3
cm85a 24 11 7 13.4 1.74 23.1
cm151a 9 12 3 45.8 0.74 38.9
cm162a 19 14 6 20.5 13.49 23.7
cu 23 14 7 27.7 26.71 18.5
pm1 48 15 9 29.2 157.82 12.4
cmb 14 16 5 57.72 38.1 27.3
cm163a 16 16 5 40 42.35 24.1
cm150a 16 21 5 48.75 1277.86 51.6

5. Conclusion

This work presented two packing techniques for MTCMOS-
based FPGAs architectures for leakage power minimization. The
two algorithms suggest average standby leakage reduction of 15%
for the FPGA benchmarks tested. The LAP algorithm, although is
more accurate in predicting the activity, and hence, the packing of
the circuit, than the CAP algorithm, yet its computational time is
exponential with respect to the circuit inputs.

References

[1] M. Khellahet al., “Power Minimization of High-Performance
Submicron CMOS Circuits using a Dual-Vdd Dual-Vth

(DVDV) Approach,” in Proc. ISLPED, pp. 106–108, 1999.

[2] S. Mutohet al., “1-V Power Supply High-Speed Digital Cir-
cuit Technology With Multithreshold-Voltage CMOS,”IEEE
J. Solid-State Circ., vol. 30, no. 8, pp. 847–854, Aug. 1995.

[3] C. Long and L. He, “Distributed Sleep Transistor Network for
Power Reduction,”in Proc. DAC, pp. 181–186, 2003.

[4] J. Tschanzet al., “Dynamic Sleep Transistor and Body Bias
for Active Leakage Power Control of Microprocessors,”IEEE
J. Solid-State Circ., vol. 38, no. 11, pp. 1838–1845, Nov. 2003.

[5] A. Abddollahi et al., “Precomputation-Based Guarding for
Dynamic and Leakage Power Reduction,”in Proc. ICCD, pp.
90–97, 2003.

[6] A. Gayasenet al., “Reducing leakage energy in fpgas using
region-constrained placement,”in Proc. International Sympo-
sium on FPGAs, pp. 51–58, 2004.

[7] A. Marquardtet al., “Using cluster-based logic blocks and
timing-driven packing to improve fpga speed and density,”in
Proc. International Symposium on FPGAs, pp. 37–46, 1999.

[8] K. W. Poonet al., “A Flexible Power Model for FPGAs,”in
Proc. international conference on Field-Programmable Logic
and Applications, pp. 312–321, 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

