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In this paper, we study a communication/sensing network that
comprises of large number of radio enabled sensors. These sensors are
either randomly or deterministically placed within a certain region to d-" |
monitor events that are spatially and temporally independent of each
other. Possible applications include: habitat and climate monitoring, (b)
diagnosing faults in industrial supply lines, measuring data such as
traffic-intensity, detecting human/vehicular intrusion, etc. The sensor P wP @2 onaP e
nodes in these networks are powered by a battery with limited power, <12§>4
which is dissipated during the data transmission/reception. A cheap e AT
and effective approach is to replace the sensor nodes in due course T Foor ‘
instead of replenishing of their batteries. Thus, the objective is to (c)

find the replacement tim&, such that none of the sensor nodes

run out of their batteries (disconnected) befdfe An alternative F'9- 1- A linear network of sensor nodes, when the node placement is (a)
. . . . L random, (b) deterministic, and (c) when each bin is considered a separate
way of formulating this problem is to find th&fetime 7' of the

o . ; . . energy unit. The variabley; represents the fraction of nodes in 18 bin
network, which is defined as the time after which the first node ing P represents the sum of initial energy at all the nodes in the network.
the network disconnects. Studies evaluating the lifetime model of the

sensor networks have been done before in [1], [2], [4]. However,

the primary difference between previous approaches and our work is ) ] ] o
that we specifically model a data generation process at an individdigi€ ¢- Let 7i denote the disconnection time of individual energy-

sensor node, where each node covers certain area and the amouHP&- The time when the residual energy at;Eeaches zero, which
data generated at a node is proportional to its coverage area. ~ ¢&n be written as:

[I. Model Preliminaries T; = inf(t : Ri(t) = 0). (2)

We present a routing abstraction where the network is divided iné?]d the lifetime of the network, which is equal to the time when the

n number of bins of qual S|ze..Further, we |mposg a restriction t}.}"étsidual energy at any one of the energy-units reaches zero is given
nodes that are placed in il bin can forward traffic to the nodes as

. Introduction d.. ‘

that are within their transmission radius and are nodes iri the" ' T = min({T,}2,) ®)
bin. The length of the bi is chosen such that= b(1 + €), where - =t
e depends on the node densityand is given as follows. For the planar network, we consider a circular region divided into

Lemma 1: The density of nodes in any bin in the network should” @nnular regions and the DCR is placed at the center. Now, each

atleast be equal tq171€>A for the network to be connected with @nular region can be considered as a bin. Unlike linear network, the
2 size of the bins unequal and is proportional to the area ofithe

probability equal tee 20-<), wheree lies between 0 and 1. annular region. Thus, if the size of the first binsisthen the size of
the it bin is equal toi — (i — 1)2 = 2i — 1 timess.

A. Mathematical Formulation B. Data Generation Model

_Consider that the density of the nodes in e bin is equaly; - Remember that each sensor node periodically senses for informa-
> w; = 1. Let m denote the total number of nodes in the networkjon within its coverage area and that data is generated only when
a relevant event occurs within the coverage area of that node. We
assume that an event can occur at any point in the network with
equal probability, which implies that the rate of data generation
%t each point in the network is same. In addition, we assume
Rt the occurrence of every event is both temporally and spatially
is K he di . . he lifeti f th independent of all the other events in the network. Under these
fet :0\8'2 t?fa ter?er;cz?sr;?gg:j t;)n;(: c(i)e:t; ?ralnz::wniqsesign ;a[e( dr)wet:\évor- 'ssumptions, the data gene_ratio_n process at an individual sensor node
is Poisson and hence the time interval between two successive data

the residual energy at the" energy-unit EU, which is given as:  ganeration events is an exponentially distributed random variable.
Ri(t) = wiP — v Zei(t), 1) Lemma 2:_The |r_1ter-data generation time at_each sensor no_de is
an exponentially distributed random variable with mean proportional

to its area of coverage.
wheree;(t) represents the amount of data generated at the iU
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Zeﬁlch with initial battery energy equal t8. Then the total initial
energy is denoted b¥, which is equal ton B. Therefore, the energy
in the i bin is equal tow; P.

With the passage of time, energy is dissipated at regular interv:
from each energy-unit until a routing hole appears after imevhich

g=i



LE+05

Lemma 3:The loadyu;(t) = > ei(t) at theith energy unit is a 1E+05

. . . L J= 1E+04 LE+04
Poisson process, which is given as:
—1E+03 —1E+03
e i ()" = =
) = ) = o\ W w
Pr(ul (t) - m) - ! ’ (4) 1E+02 simulations LEvoz simulations
n 1E+01 = model 1E+01 = model
wherep; = > A; represents the rate of traffic forwarding at EU 1E+00 A ‘ LE+00 ‘ ‘
=i 5.E+03 5.E+05 0.E+00 5.E+05 1E+06

Total Initial Energy(P) Total Initial Energy (P)

I1l. Lifetime Model

In this section, we formulate the node placement problem as tﬁgﬁ
lifetime optimization problem via optimal energy allocation. We then
solve the optimization problem to derive expected lifetime under

2. Comparison of analytical model with simulation results of expected
me for a linear network (right) and a planar network (left).

an optimal allocation scheme and thereafter calculate the CDF of simulations simulations
lifetime to derive the probability of disconnection. ® model 0g{ ™ model
0.8 1
A. Problem Formulation 06 1
106 | L
a 8
Lemma 4:The residual energy; () at the;th energy-unit EY is Q.4 | 04

a Pure-Death Continuous Time Markov Chain (CTMC) [3] and the 02 | 02 |
. ) ) ) n . -
rate of energy dissipation is equal g = Z Aj 0 o - |
= 0 50 100 50 0 50 100 150
lifetime lifetime

Lemma 5:The probability distribution of the hitting tim&’; of

the CTMC R;(t) is an Erlang distribution, where the PDF is giVer\:ig. 3. Comparison of simulation results with model of COFx) of lifetime

as: Hkie—uq,zxk1,—1 in a linear network (left) and in a planar network(right).
1

Ji(z) = CEE ®)

and the CDF is given as: lifetime, it closely follows the simulation results. This allows us to

assume that proportional allocation is a near optimal allocation policy.

ki—1 By )
e (i)’
Pr(T; <z)=Fi(z)=1-— TR (6)
jz:; J! C. Disconnection Probability
_ wP Note that even if the replacement tinié. is set equal to the
wherek; = . e . X " -
v expected lifetimeE[T], there is always a positive probability that

the network may be disconnected before replacement. To evaluate
such probability, we need to evaluate the probability distribution of
T.

Lemma 9: The CDF of the lifetimel" is approximated as:

B. Expected Lifetime

Lemma 6:The energy allocation vectofw;};-; in proportional
allocation strategy for a linear network is given as:

w; = M (7) #71 e—)xnz(A x)j
n(n+1) ’ Pr(T <z)=G(z) =1- 5! —, (11)
and for a planar network is given as: j=o
6(n? — (i — 1)%) @) where \,, = X andw, = ﬁ for a Iinee:jr@getlv)vork; and for a

Wi = n(n+1)(4n — 1) planar ne_t\_/vork/\n =(2n - A andw, = s

Next, a fundamental question that needs to be answered is whethef’@ Verified the approximate CDF, as given in (11) with the sample
the proportional allocation strategy is an optimal allocation strateg DF b_ased on our3|mulat|9n results_. Figure 3 (left) depicts the results
Does proportional allocation maximizég[T]? To answer this ques- or a linear network and Figure 3 (right) for a planar network.
tion, we will introduce a random variabl&’ that is stochastically V. Conclusion and Future Work

. , L )
larger than', written T" >t T which implies that: In this paper, we provide a mathematical analysis for the lifetime

Pr{T’ >z} > Pr{T > 2} forallz of a sensor network, when data-generation at individual sensor node
_ . is a random process. We showed that the mathematical results for
Lemma 7:The expected value of the stochastically larger randogy e cted lifetime and its probability distribution closely validate the

. L . o ;
variableT" in a linear network is given as: simulations results, both in linear and planar networks.
2P
ET] = ———— (9) References
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