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I. Introduction

In this paper, we study a communication/sensing network that
comprises of large number of radio enabled sensors. These sensors are
either randomly or deterministically placed within a certain region to
monitor events that are spatially and temporally independent of each
other. Possible applications include: habitat and climate monitoring,
diagnosing faults in industrial supply lines, measuring data such as
traffic-intensity, detecting human/vehicular intrusion, etc. The sensor
nodes in these networks are powered by a battery with limited power,
which is dissipated during the data transmission/reception. A cheap
and effective approach is to replace the sensor nodes in due course
instead of replenishing of their batteries. Thus, the objective is to
find the replacement timeTr such that none of the sensor nodes
run out of their batteries (disconnected) beforeTr. An alternative
way of formulating this problem is to find thelifetime T of the
network, which is defined as the time after which the first node in
the network disconnects. Studies evaluating the lifetime model of the
sensor networks have been done before in [1], [2], [4]. However,
the primary difference between previous approaches and our work is
that we specifically model a data generation process at an individual
sensor node, where each node covers certain area and the amount of
data generated at a node is proportional to its coverage area.

II. Model Preliminaries

We present a routing abstraction where the network is divided into
n number of bins of equal size. Further, we impose a restriction that
nodes that are placed in theith bin can forward traffic to the nodes
that are within their transmission radius and are nodes in thei− 1th

bin. The length of the binb is chosen such thatr = b(1 + ε), where
ε depends on the node densityδ and is given as follows.

Lemma 1:The densityδ of nodes in any bin in the network should
atleast be equal to 1

(1−ε)A
for the network to be connected with

probability equal toe
− ε2

2(1−ε) , whereε lies between 0 and 1.

A. Mathematical Formulation

Consider that the density of the nodes in theith bin is equalωi :
n∑

i=1

ωi = 1. Let m denote the total number of nodes in the network,

each with initial battery energy equal toB. Then the total initial
energy is denoted byP , which is equal tomB. Therefore, the energy
in the ith bin is equal toωiP .

With the passage of time, energy is dissipated at regular intervals
from each energy-unit until a routing hole appears after timeT , which
is known as the disconnection time or the lifetime of the network.
Let γ be the energy dissipated per data transmission andRi(t) be
the residual energy at theith energy-unit EUi, which is given as:

Ri(t) = ωiP − γi

n∑
j=i

ei(t), (1)

whereei(t) represents the amount of data generated at the EUi by
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Fig. 1. A linear network of sensor nodes, when the node placement is (a)
random, (b) deterministic, and (c) when each bin is considered a separate
energy unit. The variableωi represents the fraction of nodes in theith bin
andP represents the sum of initial energy at all the nodes in the network.

time t. Let Ti denote the disconnection time of individual energy-
units. The time when the residual energy at EUi reaches zero, which
can be written as:

Ti = inf(t : Ri(t) = 0). (2)

and the lifetime of the network, which is equal to the time when the
residual energy at any one of the energy-units reaches zero is given
as:

T = min({Ti}n
i=1). (3)

For the planar network, we consider a circular region divided into
n annular regions and the DCR is placed at the center. Now, each
annular region can be considered as a bin. Unlike linear network, the
size of the bins unequal and is proportional to the area of theith

annular region. Thus, if the size of the first bin iss, then the size of
the ith bin is equal toi2 − (i− 1)2 = 2i− 1 timess.

B. Data Generation Model

Remember that each sensor node periodically senses for informa-
tion within its coverage area and that data is generated only when
a relevant event occurs within the coverage area of that node. We
assume that an event can occur at any point in the network with
equal probability, which implies that the rate of data generation
at each point in the network is same. In addition, we assume
that the occurrence of every event is both temporally and spatially
independent of all the other events in the network. Under these
assumptions, the data generation process at an individual sensor node
is Poisson and hence the time interval between two successive data
generation events is an exponentially distributed random variable.

Lemma 2:The inter-data generation time at each sensor node is
an exponentially distributed random variable with mean proportional
to its area of coverage.
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Lemma 3:The loadµi(t) =
n∑

j=i

ei(t) at the ith energy unit is a

Poisson process, which is given as:

Pr(µi(t) = x) =
e−µi(µi)

x

x!
, (4)

whereµi =
n∑

j=i

λj represents the rate of traffic forwarding at EUi.

III. Lifetime Model

In this section, we formulate the node placement problem as the
lifetime optimization problem via optimal energy allocation. We then
solve the optimization problem to derive expected lifetime under
an optimal allocation scheme and thereafter calculate the CDF of
lifetime to derive the probability of disconnection.

A. Problem Formulation

Lemma 4:The residual energyRi(t) at theith energy-unit EUi is
a Pure-Death Continuous Time Markov Chain (CTMC) [3] and the

rate of energy dissipation is equal toµi =
n∑

j=i

λj

Lemma 5:The probability distribution of the hitting timeTi of
the CTMC Ri(t) is an Erlang distribution, where the PDF is given
as:

fi(x) =
µki

i e−µixxki−1

(ki − 1)!
, (5)

and the CDF is given as:

Pr(Ti < x) = Fi(x) = 1−
ki−1∑
j=o

e−µix(µix)j

j!
, (6)

whereki = ωiP
γ

.

B. Expected Lifetime

Lemma 6:The energy allocation vector{ωi}n
i=1 in proportional

allocation strategy for a linear network is given as:

ωi =
2(n− i + 1)

n(n + 1)
, (7)

and for a planar network is given as:

ωi =
6(n2 − (i− 1)2)

n(n + 1)(4n− 1)
(8)

Next, a fundamental question that needs to be answered is whether
the proportional allocation strategy is an optimal allocation strategy:
Does proportional allocation maximizesE[T ]? To answer this ques-
tion, we will introduce a random variableT ′ that is stochastically
larger thanT , written T ′ ≥st T ,which implies that:

Pr{T ′ > x} ≥ Pr{T > x} for all x

Lemma 7:The expected value of the stochastically larger random
variableT ′ in a linear network is given as:

E[T ′] =
2P

n(n + 1)γλ
(9)

Lemma 8:The expected value of the stochastically larger random
variableT ′ in a linear network is given as:

E[T ′] =
P

n3λγ
(10)

We validated our results with simulations shown in Figure 2, where
we show that even though our model is upper-bound on the expected
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Fig. 2. Comparison of analytical model with simulation results of expected
lifetime for a linear network (right) and a planar network (left).
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Fig. 3. Comparison of simulation results with model of CDFG(x) of lifetime
in a linear network (left) and in a planar network(right).

lifetime, it closely follows the simulation results. This allows us to
assume that proportional allocation is a near optimal allocation policy.

C. Disconnection Probability

Note that even if the replacement timeTr is set equal to the
expected lifetimeE[T ], there is always a positive probability that
the network may be disconnected before replacement. To evaluate
such probability, we need to evaluate the probability distribution of
T .

Lemma 9:The CDF of the lifetimeT is approximated as:

Pr(T < x) = G(x) = 1−
ωnP

γ
−1∑

j=o

e−λnx(λnx)j

j!
, (11)

whereλn = λ and ωn = 2
n(n+1)

for a linear network; and for a

planar networkλn = (2n− 1)λ andωn = 6(2n−1)
n(n+1)(4n−1)

.
We verified the approximate CDF, as given in (11) with the sample

CDF based on our simulation results. Figure 3 (left) depicts the results
for a linear network and Figure 3 (right) for a planar network.

IV. Conclusion and Future Work

In this paper, we provide a mathematical analysis for the lifetime
of a sensor network, when data-generation at individual sensor node
is a random process. We showed that the mathematical results for
expected lifetime and its probability distribution closely validate the
simulations results, both in linear and planar networks.
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