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Abstract

The lifetime of wireless sensor networks can be increased
by minimizing the number of active nodes that provide com-
plete coverage, while switching off the rest. In this paper,
we propose a distributed and scalable node-scheduling al-
gorithm that conserves overall system energy by minimizing
the number of active nodes, localizing the execution to the
dying sensor(s), and minimizing the frequency of execution
by reacting only to the occurrence of a sensing hole. This ef-
fects an increased system lifetime while maintaining cover-
age over an application-defined threshold value. We com-
pare our algorithm to a network with a centralized node-
scheduling algorithm. Our results show equivalent cover-
age degree over a wide range of sensor networks.
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1. Introduction

The technological advancements in the areas of micro-
electro-mechanical systems, wireless communications and
digital microelectronics have ushered in the era of wire-
less sensor networks (WSN). The potential applications of
these WSNs are innumerable. Geographical applications in-
clude detecting environmental hazards, monitoring remote
terrain, wildlife observation and provide vigil over bat-
tlefield and disaster areas. Personal and societal applica-
tions include integrated patient monitoring, diagnostics and
drug administration, real-time traffic patterns and personal-
ized shopping amongst others. Other applications include
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robotic control in manufacturing process, warehouse inven-
tory and environmental control in public places [7][16].

The diversity in application and the variation in operat-
ing conditions necessitate the formulation of new system
design approaches. In particular, energy is a major design
bottleneck and power-aware system design techniques are
required at all levels of the system [3][12]. One of the criti-
cal design objectives is to increase the overall network life-
time [15]. It is highly impractical to achieve this by bat-
tery replacement/recharge as sensors are usually inacces-
sible. Instead, system energy conservation by reduction of
active nodes has been proposed [14][17]. The high degree
of redundancy is exploited to activate a reduced subset of
nodes that provide the same degree of coverage.

In this work, we propose a distributed node-scheduling
protocol that achieves all of the following goals. First, the
protocol maintains coverage over an application-specific
threshold value. Second, the number of scheduled nodes is
minimized. Third, the protocol is localized. It is executed
only at the point of the dying sensor. This precludes un-
necessary participation of most sensors that have not had a
change in their state in protocol execution, thereby saving
more energy. Fourth, the protocol is reactive. It is sched-
uled to execute only when a change in the network state
could potentially lead to a decrease in the coverage degree.
This is very important as computation (in finding the sched-
ule) and the ensuing communication (required for sending
the schedule), causes a drain in the overall system energy.
By minimizing the number of runs of the algorithm, we con-
tribute an additional degree of energy saving of the whole
system that helps in further extending the system lifetime.

The rest of the paper is organized as follows. In Section 2
we discuss previous work. In Section 3, we outline our pro-
posed protocol. In Section 4, we present our experimental
results. Finally, we present our conclusions in Section 5.
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2. Previous work

Conserving energy by minimizing active nodes to in-
crease system lifetime has been an active area of research.
There have been two objectives for node-scheduling: pro-
viding coverage and maintaining connectivity.

Several coverage algorithms have been proposed in lit-
erature. In [2], [11], the authors propose a linear program-
ming based technique for a choice of a minimal set of active
nodes. In [9], the authors combine computational geome-
try and graph theoretic techniques for coverage calculation.
The maximal breach path and the maximal support path
in a sensor network are computed using Voronoi diagram
and Delaunay Triangulation techniques. In [10], the same
problem has been solved by computing the minimal expo-
sure path. The authors in [5] discussed strategies for node
deployment that provide distributed detection. In [20], a
probing-based density control algorithm is proposed. Sleep-
ing nodes wake up occasionally to probe their local neigh-
borhood and start working if no live sensors are detected.
In [15], a coverage-preserving node-scheduling algorithm
is proposed. A basic model for coverage-based off-duty el-
igibility rule is presented which allows a sensor to see if its
sensing area is covered by the union of the sponsored sec-
tors of its neighbors.

Similarly, many algorithms have been proposed that
maintain connectivity. In [1], each node assesses its con-
nectivity and adapts its participation in the multi-hop
network topology based on the measured operating re-
gion. In [4], nodes are turned off based on the necessity for
neighbor connectivity. In [18], nodes turn off their commu-
nication unit when they are not involved in sending, for-
warding or receiving data phases. In [19], the proposed
algorithm uses geographic location information to di-
vide the sensing area into fixed square grids. Within each
grid, there is just one node that is awake and partici-
pates in data forwarding.

Some other algorithms have been proposed for node
scheduling which maintains both coverage and connectiv-
ity. In [21], the authors proposed an algorithm that allows a
configurable approach to maintain both coverage and con-
nectivity, without any guarantee on the degree. In [17], the
protocol can dynamically configure the network to provide
different degrees of coverage while maintaining connectiv-
ity. It proposed an eligibility rule in which sensors can turn
themselves off if all intersecting points between the borders
of its sensing radii are covered with the desired degree.

Finally, in addition to coverage and connectivity, some
work have considered the impact a node-scheduling algo-
rithm will have on other sensors in the network, notably
from a routing perspective. In [8], the algorithm considers
an additional set of routers over a minimum set of sensors
necessary to both cover a region and forward the data. In

[13], the algorithm used the concept of “application cost”,
which is based on a sensor’s as well as its neighbors’ resid-
ual energy, and used it to decide the set of active sensors.

While the above-mentioned algorithms achieve coverage
or connectivity or both, they run at random times. Depend-
ing on when this is invoked, it could result in either sensing
holes or unnecessary drain of energy. In addition, all sen-
sors execute the algorithm, thus causing a further reduction
of overall system energy. In our approach, we optimize the
location and frequency of execution. The protocol runs, at
the point where and at the instance when, the sensing hole
is about to appear. These optimizations are added advan-
tages inasmuch that we minimize the number of active sen-
sors and maintain both coverage and connectivity.

3. Technical approach

3.1. Preliminaries

We consider a sensor network withη sensor nodes de-
ployed over a continuous, arbitrary shaped areaA. Let F
be the set of sensor nodes,F = {s1, s2, . . . , sη}. Let si.area
be the finite, continuous and arbitrary-shaped area that can
be sensed by sensorsi.

We present a model to quantize a continuous region in
a 2-D space. A 2-D space is partitioned into an imaginery
grid with an arbitrarily chosen point of origin. Given the
grid, any arbitrary shaped area is represented as a set, con-
taining the coordinates of the cells that are fully or partially
covered by the area. The set representation allows many op-
erations on the area (e.g. overlap) to be expressed in terms
of set operations (e.g. intersection). This improves on space
and time complexity as sets can be efficiently represented
and manipulated in computer systems. Additionally, it elim-
inates the imposition of any restriction on the shape of the
sensing area or the deployment area. Further, the granular-
ity of the grid is application-specific and can be varied to
trade off between accuracy and computational complexity.

3.2. Problem formulation

The node-scheduling problem is to identify a minimal
subsetC of F that coversA. More specifically, computeC:

A ⊆
⋃

si ∈ C and
C ⊆ F and

|C| is minimal

si.area.

This problem closely resembles the set-covering prob-
lem which is a generalization of the NP-complete vertex-
cover problem and is therefore NP-hard[6]. There are
well-known centralized heuristics for the set-cover prob-
lem. However, none of those solutions scale well when ap-
plied to large sensor networks. As such, we propose a
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Figure 1. Coverage area with 5 sensors.

localized,reactive anddistributed network coverage proto-
col (LORD), that despite being a heuristic, scales extremely
well with the network size producing comparably good re-
sults. We compare our heuristic to an efficient centralized
approximation algorithm.

3.3. The LORD protocol

LORD consists of two phases, the set-up phase and the
steady phase. In the set-up phase,all the sensors individ-
ually run a heuristic algorithm to decide their initial state.
Every ON sensor continues running until it either dies or re-
ceives an intimation to be turned off. In the steady phase, all
dying sensorsrun a localized heuristic algorithm and nomi-
nate the sleeping sensors that can cover for themselves. The
simple protocol of neighbor set-up and immediate partici-
pation ensures that scalability, both in terms of the moni-
tored area and the number of sensors, can be achieved.

We will consider the example areaA as shown in Fig-
ure 1. We consider 5 nodes,s1 . . . s5, deployed overA.

Our protocol assumes a perfect and reliable communica-
tion layer. Communication is achieved by three primitives.
Sendallows communication between any two sensors in
the network.Broadcastallows communication between two
sensors who are one hop away. Two sensors whose sens-
ing areas overlap are considered to be one hop away from
each other and can communicate with each other directly
[15]. Receiveallows messages to be received at any sensor.
The primitives together implement a synchronization mech-
anism, the details of which have been excluded for brevity.

3.3.1. Set-up phase.When the network is being de-
ployed, the set-up phase runs at each sensorsi to determine
its initial state (Algorithm 2). The current state of a sen-
sor is denoted bysi.state, and is either OFF or ON.

Each sensor first builds up its list of neighbors,si.NL (Al-
gorithm 2, Line 5). A sensorsi is a neighbor of sensorsj ,
iff their sensing areas overlap.

si .NL =
⋃

si .area∩ sj .area 6= ∅
i 6= j

{sj}.

This is achieved by broadcasting a mesage containing its
sensing area and listening for similar messages. Every sen-
sor sj , from which si receives a message, is added to its
neighbor listsi.NL (Algorithm 1). The sensorsi saves all
its neighbors’ sensing areas as they are used subsequently
in the set-up phase as well as the steady phase. For exam-
ple,s1.NL = {s3,s4,s5}.

Algorithm 1 createneighborlist()
1: si.state← OFF
2: si.NL← ∅
3: broadcast(si.area)
4: while not timed out()do
5: sj .area← receive()
6: si.NL← si.NL∪ {sj}
7: save(sj .area)
8: end while

The sensorsi defers its decision on its intial state un-
til all sensorssj such thatsj ∈ si.NL and j < i have made
their decisions (Algorithm 2, Lines 13-26). This simple
heuristic serializes the decision making amongst sensors
thereby completely eliminating assumptions between sen-
sors on their respective states. The ordering amongst sen-
sors can be easily imposed by leveraging the underlying
grid, making it easily scalable to addition of new nodes. Si-
multaneously, the sensorsi also updates its Unique Area,
si.UA (Algorithm 2, Lines 20-21). At any timet, si.UA rep-
resents that part of the sensing area ofsi which is not cov-
ered by any of its “ON” neighbors.

si.UA = si .area−
⋃

sj ∈ si .NL and
sj .state= ON

sj .area

The sensorsi decides to turn itself ON iff its sensing area
covers some part of the coverage areaA that is not covered
by any other sensor at that instance of time, i.e.,si.UA > 0
(Algorithm 2, Lines 27-31). In our example,s1 ands2 can
make their decisions as soon as they build up their neigh-
bor lists. However,s3 has to wait for boths1 ands2, s4 has
to wait for s1, s2 ands3 etc. From our definition of Unique
Area, we note that all sensors froms1 to s4 have to turn
themselves ON whiles5 can turn itself OFF.

Once all the remaining neighbors of sensorsi have deter-
mined their states (Algorithm 2, Lines 33-41), it is possible
that sensorsi is redundant as all of its sensing area is cov-
ered by some combination of its neighbors. To eliminate this
redundancy, each ON sensorsi reevaluates its initial deci-
sion. Again, to remove ambiguity, sensorsi waits till all its
ON neighborssj such thatj < i have completed their reeval-
uation (Algorithm 2, Lines 42-50). This ensures that no two
sensors make any assumptions about the state of the other,
thereby eliminating the possibility of a sensing hole. Sen-



Algorithm 2 self determination()
1: tempLOW ← ∅
2: tempHIGH ← ∅
3: tempON← ∅
4: si .UA← si .area
5: createneighborlist()
6: for everysj in si.NL do
7: if j < i then
8: tempLOW ← tempLOW ∪ {sj}
9: else

10: tempHIGH ← tempHIGH ∪ {sj}
11: end if
12: end for
13: while |tempLOW| > 0 do
14: sj .state← receive()
15: if sj ∈ tempLOW then
16: tempLOW ← tempLOW - {sj}
17: else
18: tempHIGH ← tempHIGH - {sj}
19: end if
20: if sj .state= ON then
21: si .UA← si .UA - sj .area
22: if j < i then
23: tempON← tempON ∪ {sj}
24: end if
25: end if
26: end while
27: if |si.UA| > 0 then
28: si .state← ON
29: else
30: si .state← OFF
31: end if
32: broadcast(si.state)
33: while |tempHIGH| > 0 do
34: sj .state← receive()
35: if sj ∈ tempHIGH then
36: tempHIGH ← tempHIGH - {sj}
37: end if
38: if sj .state← ON then
39: si .UA← si .UA - sj .area
40: end if
41: end while
42: while |tempON| > 0 do
43: sj .state← receive()
44: if sj .state= OFFthen
45: si .UA← si .UA + sj .area
46: end if
47: if j < i then
48: tempON← tempON - {sj}
49: end if
50: end while
51: if si.state= ON and|si.UA| = 0 then
52: si .state← OFF
53: broadcast(si.state)
54: end if

sor si recomputes itssi.UA and if that is equal to zero,si

can turn itself off. (Algorithm 2, Lines 51-54). In our ex-
ample,s2, on reevaluation, finds thats2.UA is equal to zero
and hence, turns itself off. In our protocol, we assume that
all OFF sensors periodically wake up so that they canre-
ceivemessages from their ON neighbors [17].

By serializing this minimization step and restricting it
to ON sensors, it is guaranteed that the minimization al-
ways ends after one iteration as only the sensorssi for which
si.UA is greater than zero is on.

3.3.2. Steady phase.The steady phase algorithm is in-
voked, at and when, each sensorsi dies. We assume that
si can internally monitor its energy state and run its own
replacement algorithm before it dies completely. The algo-
rithm generates a set,si.replace, consisting of a minimum
number of sleeping neighbors, that can coversi.UA. In our
example,s3 dies att=3. Hence the steady phase algorithm
is invoked ats3 at t=3.

Algorithm 3 find replacement()
1: At: Each dying sensorsi

2: temp← ∅
3: si.replace← ∅
4: si.UA← si.area
5: for eachsj ∈ si.NL do
6: if sj .state= OFFthen
7: temp← temp∪ {sj}
8: else
9: si.UA← si.UA - sj .area

10: end if
11: end for
12: si.replace← computeMCS(si.UA, temp)
13: for eachsj ∈ si.replacedo
14: send(sj , “ON” );
15: end for

si.UA⊆
⋃

sj ∈ si.replaceand
sj .state= OFF and

si.replace⊆ si.NL and
|si.replace| is minimal

sj .area

The minimum set cover(MSC) algorithm [6] is used to gen-
erate a close approximate solution. It then sends a message
to all sj ∈ si.replace(Algorithm 3). In our example,s2 and
s5 are the sleeping neighbors ofs3. By running the MSC,
we computes3.replace= {s5}.

The waking up of one or more sensors could now gener-
ate redundant active sensors. Hence, the same reevaluation
as outlined in the in the set-up phase is run atonly the ON
neighbors of everysj ∈ si.replace, thereby turning OFF all
redundant sensors. In our example, the waking up of sen-
sor s5 as a replacement fors3 makes sensors4 redundant.
Hence, the sensors4 can turn itself off to conserve energy.
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Figure 2. System lifetime: random life.

By providing a strict upper bound (equal to the total
number of dying sensors) on the number of invocations of
the steady phase algorithm and by localizing the execution,
significant energy savings can be done by reducing both
communication and computation.

4. Experimental results

For our experiments, we consider an area 50m× 50m.
We set the granularity of the grid to 1 cm which produces
a quantization error of less than 1%. We consider circular
sensors placed randomly over this area. The sensing area of
each is equal to its communication area and both are set to
be a circle of radius 10m. This is done to simplify the ex-
periments and has no effect on the protocol. We deploy 80,
90, 100, 110, 120 and 130 sensors. We assume that the com-
munication is reliable and that all sensors lose their energy
at a uniform rate. Observing that certain applications might
require a “best-effort” coverage, we set a coverage thresh-
old T, that represents the percentage of the total number of
grids that can be covered by the available sensors.

We compare our algorithm to a highly efficient cen-
tralized MSC algorithm [6] that runs in an imaginary su-
per node which has unlimited power and complete global
knowledge. MSC is a greedy approximation algorithm with
a logarithmic ratio bound and returns a set cover not too
much larger than the optimal set cover.

Our comparisons are made on three points. First, we
compare the life of the network. This directly reflects the
energy saved. Second, we compare the cumulative commu-
nication cost, which is the number of message transmis-
sionsTx, over the entire life. WhileTx is the number of
hops between source and destination for MSC, it is the sum
of the neighbors of allsi that change state in LORD. Since
the payload of the transmitted message is constant in both
cases, we ignore this for our comparisons. Third, we com-
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Figure 4. Computation: random life.

pare the cumulative computation costs over the entire life.
Owing to the grid model, all computations in our system
are mere set operations. Assuming constant time for all set-
operations of same sizes, our computation costs can be ex-
pressed as the number of set operations.

Figures 2, 3, 4 represent the lifetime, communication
and computation costs of the two algorithms with each sen-
sor having different energy andT equal to 80%, 85%, 90%,
95% and 100% respectively.

It is observed that LORD provides the same degree of
coverage for comparable time duration. The communica-
tion costs of LORD is higher than MSC as the latter com-
municates only with the sensors that need to change state
while the former requires all sensors changing state to com-
municate with all of their respective neighbors. However,
more than 50% of LORD’s cost is incurred only once, dur-
ing the set-up phase (Figures 5), indicating that the over-
head during the steady phase is minimal, thereby ammor-
tizing the communication cost over the entire lifetime. This
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Figure 5. Communication overhead.

results in overall savings in system energy. The computa-
tion costs of MSC, however, exceeds that of LORD, since
MSC tries to generate a cover for the entire areaA, from the
list of all available sensors, while LORD generates a cover
for only the dying sensor from the list of its OFF neigh-
bors.

5. Conclusion

In this paper, we have presented a distributed, localized
and reactive protocol for node-scheduling in a sensor net-
work. The protocol has a two phase algorithm in which it
first decides the sensors that need to be turned on and then
it turns off any redundant active sensors, thereby minimiz-
ing the number of on sensors. We compared our algorithm
to a highly efficient centralized algorithm and have shown
that our results are comparably good. As future work, we in-
tend to incorporate other system dependent parameters, like
routing and communication, in our protocol.
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