Secure Embedded Processing through Hardware-assisted
Run-time Monitoring

Divya Arora’, Srivaths Ravi, Anand Raghunatharand Niraj K. Jh&
TDept. of Electrical Engineering, Princeton University, Princeton, NJ 08544
INEC Laboratories America, Princeton, NJ 08540
T{divya, jha }@princeton.edu #{sravi, anand }@nec-labs.com

Abstract— Security is emerging as an important concern in embedded of ways, e.g, through the execution of programs that originate from
system design. The security of embedded systems is often compromised duauntrusted or unknown sources, or through the corruption of binaries
to vulnerabilities in “trusted” software that they execute. Security attacks ~while they are being downloaded or stored on the embedded system.
exploit these vulnerabilities to trigger unintended program behavior, suich However, a recurring theme among many recent software security
as the leakage of sensitive data or the execution of malicious code. attacks is that they exploit weaknesses in “trusted” code (operating

In this work, we present a hardware-assisted paradigm to enhance system (OS), middleware, applications) that is already present in the
embedded system security by detecting and preventing unintended program System. For example, 66% of the vulnerabilities reported by CERT are
behavior. Specifically, we extract properties of an embedded program based on exploiting buffer overflow behavior in trusted programs [3].
through static program analysis, and use them as the bases for enforcing Such attacks are especially dangerous when they are used to subvert
permissible program behavior in real-time as the program executes. programs that have special privilegesg, access to sensitive data
We present an architecture for hardware-assisted run-time monitoring, Or system resources. In this work, we propose a hardware/software
wherein the embedded processor is augmented with a hardware monitor solution to address the above problem based on the paradigm of
that observes the processor's dynamic execution trace, checks whetherhardware-assisted run-time monitoring.
the execution trace falls within the allowed program behavior, and flags
any deviations from the expected behavior to trigger appropriate response A. Paper Overview and Contributions

meChan'Sg’Sﬁ Wwe prets%rjftfpropterltleslthatfcan belus.fd to.t‘;]"?‘pt“re permissible |, his paper, we address secure program execution by focusing on
hamely inter-procedural control flow, intra.procedural control flow, and e SPeCific problem of ensuring that the program does not deviate from
instruc{ion stf(‘eam integrity. We alsc’) res«fnt a systematic methc’Jdolo |ts_|ntended or “permlss!ble" behavior. We a_ddress this problem b_y
to design a Iication—sgec)ilf'ic hardware? monitors fgr any given embeddgé/ using the notion of a dedicated hardware monitor t_hat enforce_s permis-
g prh Ip o tha ot . ty 9 oot sible behavior as the program executes. We describe the architecture of
p;ot%ram. e Sve er\ﬁl uatle f e har w?re r‘;qg'(;eg‘e” f?v:‘” %er OLma”f(e a hardware monitor that can be connected to any embedded processor
ﬁ ardSvgrrgpicr;Sel en?(re%t:ateignusreus?; Se;ecrgmenr%rgal € de;O o ﬁgsv Z?]‘é :rirhi?l to observe its dynamic execution trace as it executes the program, check
tectural simul?ations using the Si?aneScalar frameworgk indic:ate that the whether the trace confo_rms to the defln_ltlon of permissible be_hawor,
roposed technique can thwart several common soﬁWare and physical and flag violations by_ triggering appropriate response me_chanls_ms.
gtta?:ks facilitatir? secure program execution with minimal overhegd)é We propose to define permissible behavior by identifying suitable
' 9 prog) program properties or invariants that are indicators of untampered
execution i.e., will be violated if a software attack occurs). We identify
. INTRODUCTION properties that capture both coarse-grained and fine-grained program
As embedded systems pervade various aspects of our lives, theylg@avior in a hierarchical manner, including (i) the inter-procedural
often required to deal with sensitive information or perform critice¢ontrol flow of a program, as represented by its function call graph,
functions, making security an important concern in embedded systéi the intra-procedural control flow for each function, represented by
design. Security has been the subject of extensive research in aheasic-block control-flow graph (CFG), and (iii) the integrity of the
context of general-purpose computing and communications systeffistruction stream within each basic block. _
leading to many advances such as cryptographic algorithms, securityVe propose techniques to extract the above properties from any
protocols, etc. [1], [2]. While such “functional” security measuresgiven program, and automatically synthesize a hardware monitor for it.
provide a strong basis for securing embedded systems, recent trendghi@ hardware monitor can be implemented as a programmable unit that
security attacks have made it abundantly clear that most attacks tagft be configured for each application that executes on the embedded
weaknesses in a system’s implementation. It is now well accepted tBggtem.)]
a secure system implementation is as critical to a system’s overalle have evaluated the area and delay overheads associated with the
security as the strength of the theoretical security measures employg@posed architecture using several embedded software benchmarks.
Consequently, recent years have seen an increasing awareness thadajgware implementations using a commercial design flow, and ar-
curity needs to be considered at various stages of the embedded sysfeitectural simulations using the SimpleScalar framework, demonstrate
design process, including system architecture and hardware/softwé@l the proposed hardware-assisted monitoring technigue can eliminate
implementation. a wide range of common software and physical attacks, facilitating
A notable trend in embedded systems has been a drastic incregggire program execution with minimal overheads.
in embedded software content in order to support increasing end-usefhe remainder of this paper is organized as follows. We present a
functionality and performance requirements (on an average, embedgeevey of relevant past work in Section II. Section Il describes a typical
software content has been increasing by 140% per year — ew#itware attack and motivates the need for the proposed technique.
faster than Moore’s law). It is therefore not surprising that the moSection 1V presents the details of the proposed hardware-assisted
common security attacks on embedded systems are software-base#)@iitoring architecture. Section V describes a systematic methodology
exploit weaknesses in embedded software. Together with increasifglesign hardware monitors for any given application. We present our
complexity, features such as network connectivity and extensibiligxperimental methodology and results in Section VI and conclude in
(ability to extend installed software or download new software onto tifgection VII.
embedded system) have only increased the vulnerabilities to software
attacks. Il. RELATED WORK
In this work, we address the problem of secure software execution iy yige range of techniques has been proposed to enhance software
embedded systems. Software security can be compromised in a var, Urity in the context of general-purpose computing systems. Most of
them address problems such as verifying the identity of the provider
Acknowledgments: This work was supported by NSF under Grant No. CCRf a program, checking the integrity of program binaries, ensuring
0326372. isolation between different programs running on a systett, These

1530-1591/05 $20.00 © 2005 IEEE

techniques are complementary to our work, which focuses on elimi-|File: wav.c previous | |[Memory | previous
nating unintended behavior in trusted programs that have already beepjnt st_wavstartread (ft_t ft) | . |stack frame | | growth |stack frame
authenticated, but may potentially contain vulnerabilities that can be|" ;.39 ¢ len: FP | arguments arguments
exploited for attacks. We examine research related to secure program char text [256]; ret. address r%%“:(fjffss
execution in three categories — static checking, software-based program - o saved FP Corr)upted ;
monitoring, and processor architectures for secure execution. e e (o oo™, : input

Static techniques include source code scan tools and code review /read len bytes into text [1 el
tools that attempt to strengthen security by eliminating vulnerabilities | st_reads (ft, text, len); text [256] | | Stack | ‘eode
during the software design phase [4], [5]. Studies have been performed, - SP growth
to model vulnerabilities that open doors for security exploits [6]. I N
Although these techniques are useful, the protection they offer is not (a) (b) (c)
complete, since they are typically rule-based and attempt to match the
target program with specific known classes of vulnerabilities. Fig. 1. A simple example of a “stack smashing” security attack

Software-based monitoring has also been explored along various di-
mensions. In [7], the authors provide formal specifications of security-
critical programs and check for access rights violations through an [1l. M OTIVATION
analysis of their execution traces. Efficient methods for automaticallyA large number of security breaches are effected by software exploits
embedding software security checks in a program, in order to perfothat take advantage of weaknesses present in “trusted” code. In this
security-related actionse(g, checksumming and repair) during exesection, we illustrate how a simple vulnerability in a benign application
cution are explored in [8]-[10]. In these studies, the focus is on tipeogram can be exploited to achieve undesirable side-effects, such
efficiency and stealth of the security checks. Program shepherding [4%]the execution of arbitrary malicious code, motivating the need for
proposes a software-based run-time environment that monitors congolutions such as the one proposed in this paper.
flow during program execution, and enforces user-specified securitye consider a program that is part of a popular audio format
policies, such as restricted code origins and control transfers. T¢wnversion utility, called the SoX (Sound eXchange) toolkit. Fig. 1(a)
main drawback of software schemes is that the security checks are g@essents a code snippet from a file that contains functions related to the
pieces of code which are themselves vulnerable to corruption. Alseading and writing of tav” files. The functionst_wavstartread()
the granularity of checking is limited due to the overhead imposed Bjiown in Fig. 1(a) read&n bytes from an input file into a local array
the additional code. text| |, where parameteten is read from the file header. Fig. 1(b)
The basic concept of using a hardware unit or co-processor dbows the layout of the stack frame for functishwavstartread(),
facilitate secure execution has roots dating back to tamper-resistatien the function is called during the program’s execution. The stack
cryptoprocessors that were used to store cryptographic keys draine contains copies of the function’s arguments, the return address
execute cryptographic algorithms [12], [13]. However, a significam the calling function, as well as storage space for local variables
difference in our work is that the monitor does not execute any prograuch as theext[] array. In order to execute a successful exploit, an
itself — it only ensures that the program running on the host processdtacker creates an inputav file that contains a payload of malicious
does not display unintended behavior. The application of a secwale and a large value dén (len > 256). When the program is
co-processor to perform intrusion detection (to monitor critical O8xecuted with this malicious input file, it causes a buffer overflow
data structures, check the integrity of files on disk, perform virder array text|], resulting in corruption of the local variables and
scanning,etc) was proposed in [14]. Recently, enhanced processitre function’s return address stored on the program stack. When the
architectures, such as XOM and AEGIS, have been proposed [15], [Tféfction st_wavstartread() returns, program flow is directed to the
which attempt to provide code integrity and privacy in the presencerrupted return address. Through appropriate construction of the input
of untrusted memory. The authors of XOM use the ideas of eXecuféde, the corrupted return address can easily be made to point to the
Only-Memory (allowing instructions to be executed but not modifiedtart of the malicious code to be executed.
ciphered-code execution (decrypting code on-the-fly), and tagged datsiVhile the vulnerability in the above example was a lack of input
(associating a process identifier tag with all architectural data) validation, vulnerabilities in large, complex programs can be much
achieve these goals. However, these techniques do not safeguardnare subtle and difficult to catch. Numerous variants of similar exploits
application from its own vulnerabilities. In [17], the authors propos@eturn-into-libc, format string attacks, heap overflow) on security-
a hardware-supported scheme to track the use of input data that @itical programs have been reported in the literature [3], [5]. In
captured from untrusted input channels, and ensure that such dataaaldition, embedded systems are also highly susceptible to physical
never used to affect program control flow. In addition to the abowtacks that involve tampering with system properties such as voltage
general techniques, a numberaifack-specifianechanisms have beenlevels, clock frequency, and memory contents. Irrespective of how they
developed [18]-[20], mostly in response to the increasing number afginate, most attacks eventually manifest themselves as a subversion
exploits involving buffer overflows and format string vulnerabilities. of “normal” program execution - violation of control flow behavior,
Our work can be differentiated from previous work along severakecution of corrupted instruction sequencets, Instead of trying to
dimensions, including the overall approach to enforcing security, Bock all sources of attack, we concentrate on defining permissible
well as the hardware/software architecture used to implement it: program behﬁvior and hmonito;}ingdpr](‘)grarﬂ_ execution toﬂcatch thfe_se
« Our approach does not require users to explicitly specify secur errations. However, the overhead of tracking execution flow at a fine
policies — instead, properties indicative of permissible progra anularity makes a software-based solution infeasible, and presents a

behavior are extracted from the application itself. The extract mpelling case for designing an efficient, hardware-assisted run-time

properties are application-specific, yet our approach has wi nitor.
%%Fglr(p:)?)?gltgdS}ﬁt%eeatrt]:%n%?l%?stts)oolfﬂ%wvmg the properties can be IV: HARI})WARE-ASSI?TEDMONITC?RING ARCHITECTURE
« Unlike the purely static or purely dynamic approaches describedIn this section, we provide an overview of the proposed hardware-
above, we partition the burden of ensuring security between sta#igsisted monitoring architecture. We then describe in detail the prop-
analysis and dynamic (run-time) monitoring and enforcement. erties that model permissible program behavior and the design of the
« The use of hardware-assisted monitoring enables the checkiresponding hardware monitors that check them.
of fine-grained, application-specific properties, resulting in higher .)
levels of security and lower detection latencies, while incurring- Architecture Overview
minimal delay overheads. o) Fig. 2 shows the conceptual block diagram of the proposed
« The proposed hardware-assisted monitoring architecture does @idware-assisted monitoring architecture. For ease of illustration, we
require any changes to the embedded processor, and hence d@ict the embedded processor as an in-order five-stage pipdlime
be directly applied to existing embedded systems. inputs to the monitor include the program counter (PC) and instruction
Due to the above factors, we believe that our technique offers a
practical approach to counter a broad range of attacks including, fofThe proposed technique is fairly independent of the processor microar-
example, buffer overflows, spurious control transfers, and run-tinskitecture, and can be easily adapted to more complex architectures such as
code corruption. superscalar and VLIW.

register (IR) of the completing instruction, and the pipeline statdyocedure 1FSM extraction for inter-procedural control flow checking
from the pipeline control unit. Effectively, the monitor is provided 1: Inputs: Function Call Grapty(F, E)
with a cycle-by-cycle trace of the executing instructions and theip: F — set of all functionsf;, 1 <i < N
program addresses. The monitor's outputs includgtadl signal and 3: E «— set of directed edges;; € £ <= f; includes a direct or indirect
aninvalid signal. When the monitor detects a violation of permissible call to fi
program behavior, it asserts tivevalid signal, which results in a non- 4: output: FSM g, S, T, s, A), where Z: input alphabetS: set of statesT":
maskable interrupt to the processor. This signal can be used to triggers x z — S: transition function,s: initial state, A: accept states
a response mechanism, such as termination of the program or transefs «— index(main)
of the processor to a secure mode. Htall signal is asserted if the 6: for all f; € F do
monitor is unable to keep pace with processor execution (this happens Add statei to S and A
in very rare cases). This is handled as a normal processor stall, agd for all f; : e;; € E do
all the pipeline stages are “frozen” until the stall signal is de-asserted; Add the following transitions ta™:
The three sub-blocks within the monitor handle checking of the three: Zo = CALL, Z; = j — Nextstate[i] = j
different classes of program properties mentioned earlier. The design Zo = RETURN, Z =i — Nextstate[j] =4
of these sub-blocks is described in detail later in this section. 12: for all i : Nextstate[i] = unassignedio
13: Nextstatdi]| = N + 1 /* INVALID STATE*/

Processor pipeline

L1 pipeline
cache H control in the table, expressed as a tuplaw; (index, of fset, so, s1), where
; of fset is the address offset df; from the start of the function and
Instruction iA(dP‘ngS proc. s0, 51 are indices of its possible successors. Procedure 2 describes how
state to create the basic block information table. If the code does not contain
[inter—procedural control flow checker] any indirect jumps, each basic block can have at most two successors
stall/invalid listed in fieldsso, s1 (corresponding to the branch at the end of the
[intra—procedural control flow checker) basic block being taken or not taken). The procedure shows how a
- — - single level of indirect jumpse(g, switch statements) is handled. Field
(__ instruction integrity checker) s in this case carries a special code to denote an indirect jump and

s1 contains the number of possible jump targets, which appear in the

]) o] rows immediately following the current row. Hence, a jump to the
Fig. 2. Proposed hardware-assisted monitoring architecture: Conceptual bifigkds in any of these rows is considered valid.

diagram

Monitor

. o) Procedure 2 Transition table generation for intra-procedural control flow
B. Modeling Permissible Program Behavior checking

There are several factors to be considered when selecting programinputs: Control Flow Grapl(B, E)
properties to be monitored. They should be accurate indicators of B« set of all basic blocks;, 1 <i <n
invalid behaviorj.e., very likely to be violated when system security is 3: £ — set of directed edges;; € E <= b, is a successor df;
compromised. They should also be easily derivable through automai€ output: 7 = {rowg,rows,...,row,} where row; is a tuple
program analysis for a wide range of programs. They should lend (index, of f set, so, 51)
themselves to a concise representation for scalability to large progranss.for all b, € B do
Finally, the hardware overheads involved in checking them at run-timg 0w, .index = i
should be reasonable. Based on these considerations, we have chogen g, .offset = addresgb;) — function start address
three key properties to provide protection at varying granularities: if »; ends with indirect jumghen

which we describe next. o Targets— b; : e;; € E

1) Inter-procedural control flow:At the highest level of granularity, 10: row;.so = Special code
we verify the correctness of a program’s inter-procedural control flow - row;.s1 = ||Targets||
It is common to represent inter-procedural control flow usifigretion 12: Process alb; : b; € Targets
call graph For the purpose of hardware implementation, a function calb: else ifb; ends with a direct conditional jumien
graph of a program withV functions is translated into a finite-states4- row;.so = j : b; is the branch-not-taken target
machine (FSM) withN + 1 states — one state corresponding to eacts: row;.s1 = k : by, is the branch-taken target
function in the program, and an additionsivALID state. The functions 16: else
are associated with a unique index frdnto N. For convenience, the 17: row;.so = NULL unconditional jump*/

FSM state corresponding to a function is also labeled with the sang row;.s1 = k : by, is the jump target
index. A transition between two states in the FSM (exceptiiveLiD
state) represents a valid control transfer (call or return) between the

corresponding functions. Any invalid call or return transitions the FSM Nested switch statements are handled by directing the compiler to
to the INVALID state. The input alphabef of the FSM consists of compile them as a sequenceifethen-elsestatements. To facilitate easy
two distinct inputs:Z, = {0,1}, which is set to0 or 1 depending detection of end of basic blocks in hardware, the procedure requires
on whether the executing instruction is a function call or return, arlat all basic blocks end with an explicit control transfer instruction.

Z1 = {1,2,...,N}, which is the index of the target function of Hence, extra jump instructions (to the next basic block) are appended
the call/return. Procedure 1 describes how the FSM is automaticityfall-through blocks. Our experiments indicate that this does not lead
extracted from the function call graph. to significant overheads in terms of code size increas&%). In our

By default, all user-defined and library functions that are part of thevestigations, intra-procedural control flow checks are performed for
application program are included in the function call graph. Potentiallyasic blocks in all user-functions. In practice, these fine-grained checks
this can be done for system calls (OS functions) as well. Alternativelppay be restricted to only security-sensitive parts of the application.
if the kernel is assumed to be secure, system calls can be treated as le8f Integrity of the executed instruction strean8ome security
functions in the function call graph. The extraction of the function cadittacks may not result in a control flow violatioe,g, alteration
graph should also include indirect function calls with function pointersf a basic block in the program code segment during execution. In
by adding an edge from the calling function to each function whosder to detect such attacks, we explore a complementary approach by
address can be assigned to the function pointer. checking the integrity of the dynamic instruction stream with the aid of

2) Intra-procedural control flow:A logical succession to the abovecryptographic hash functions. Given a messagad its cryptographic
scheme is to also track control flowithin each function in the hashH(z), it is computationally infeasible to find another message
program. The control flow within a function can be represented usiggsuch thaty # z and H(y) = H(z). Hence, given a sequence
the function’s CFG, and translated into an FSM, or equivalently, a basit instructions, it is extremely hard for an adversary to find another
block information table. Each basic blobk has a corresponding row sequence of instructions such that both hash to the same value. Hash

values of each basic block in the program are computed beforehandn hardware, each of the two lookup tables can be directly imple-
loaded into the hardware monitor when the application is loadedented using aontent addressable memd@AM), which is basically
for execution, and subsequently checked during program executianread-writable memory with additional logic circuitry (comparators)
Hashing is computationally intensive and requires dedicated higl-provide fast table look-up.
speed hardware to keep up with the processor pipeline. MoreoverThe function indices output frorif’ A B+ andT AB,..; are input
most well-known hash algorithms map a variable-sized input tota the FSMFEF'SM;p, which keeps track of program control flow by
fixed-sized output (16-20 Bytes). To keep the monitor’s hardwasxecuting corresponding state transitions. At each state transition, the
requirements low, a user-specified number of bits of the pre-compute8M checks whether the incoming function index is equal to the index
hash value are randomly selected at program start-up and loaded oft@ne of the valid next states. If so, it executes the state transition.
the monitor for checking. It is worth noting that the proposed techniqdée invalid detection circuitry is signaled in case there is no match
is complementary to static hash checking, since it detects programaddress look-up, or if there is an FSM transition into tRgALID
corruption during execution. state.

2) Intra-procedural control flow checkerThe intra-procedural con-
trol flow checker consists of a basic block taliled By, which stores

INTER-PROC. CONTROL FLOW CHECKER

from no match (to invalid detection) the information necessary to track control flow within each function.
TABstare | TAB,o | The basic blocks are grouped according to the function that they belong
BC | |can Adar| State| ptr. to : Ret. Addr] State] relien | to. The function start address tablEAB:ar:, Which is part of the
- Index | BB #0 | Index | BB# _ h . ! Y
- | \ R inter-procedural control flow checker, is augmented with an additional

field that is a pointer to a location I A By,. This additional field tells

y FSM rp the intra-procedural control flow checker where it should start when a
[iNtrRA-PROC. CONTROL FLOW CHECKER | | I— function is called. When control enters a function, the function start
|/ Jnvalid address is copied into a special register and used to calculate offsets for
| [BBoffset S| & ; all future branches within the function. In addition, on each function
j call, the basic block index within the calling function is also saved in
v [T AB,.t, and restored upon return.
[(Checker) (mmmﬂ‘*ﬂ Stall detection 3) Instruction integrity checkertn order to check instruction stream
integrity, each row in the basic block tabl€ABss, is augmented to
NS TRUCTION INTEGRITY CHECRER stall contain another field that stores the statically-computed cryptographic
Buffors ’ hash of the instruction sequence in the basic block. During program
Hash E execution, the monitor buffers the instruction stream corresponding to
engine invalid a basic block until a branch/jump instruction is encountered. At this
Control)= =(Checker)| point, it switches to an empty buffer and signals the hardware hash unit
L to stall detection) o, - to compute the hash of the buffered basic block. The computed hash
proe value is then compared against the value store@ iB,,. When the
Fig. 3. Architectural details of the run-time monitor buffers are full, the processor is stalled in order to allow the instruction

integrity checker to catch up.
Many popular hash algorithms, such as MD4, MD5, and SHA-1 [1],
C. Architectural Details incur a high latency, since the input is processed through several rounds

. wherein the result of thé" round is input to the + 1** round. Data
Fig. 3 shows the detailed architecture of the monitor. The monitggjongencies within a round limit the amount of parallelism that can

is delineated into its three major constituent sub-blocks — the intgfz"; chieved by adding more hardware. Moreover, if the input size is

Eﬂiiig?raa{nﬁo{‘ﬁff'bggg bﬁg(ejﬁlﬁee(}efhiﬁS':plﬁ[jatli-(?rqoi?’letg;{%l/ gﬂggﬁérﬂmreater than 512 bits, the output from the last round is fed back to the
: - A

though the three checks are logically independent, in the implemé, ist round and included in further computation. We break this feedback

" h 0o by imposing a limitl,,,,,, on the maximum basic block length.
tation described here, the three sub-blocks share hardware and h%}éc blocks that exceed this limit are split into sub-blocks of length
communicate with each other.

. < lmaz and an XOR of the hash values of all constituent sub-blocks is

1) Inter-procedural control flow checkeiThe inter-procedural con- checked. This allows us to pipeline the hashing unit at a fine-grained
trol flow checker consists of two look-up table$,ABsw.: and |ayel (each round is a pipeline stage). In practice, this implies that the
T AB:e, that store function start and return addresses, respectivgl¥rgware monitor stalls the processor only in very rare cases, leading
and an FSMF'SM;p that verifies the validity of function calls and 1 minimal performance impact, as demonstrated in our experimental

returns. results.
The function start address tabl&,AB.q¢, takes an instruction

address as input. If the instruction address corresponds to the start of a V. DESIGN FLOW
function, it asserts a match signal, and outputs a unique function index.)
The number of entries iff AB;:qr+ €quals the number of functions in Fig. 4 shows the compilation and execution flow for hardware-
the application program. The contents of this table are generateddsgisted run-time monitoring. Given an application and user-specified
enhancing the compiler tool flow and the run-time application loadeyptions, program models, namely the function call graph and CFGs
as described in Section V. for each function, are extracted during compilation. Depending on
The return address tabl&AB,.;, performs a similar mapping from the security requirements, the user can specify options to define the
instruction addresses that correspond to return locations, to the indeg@nularity of checkse(g, the depth to which the function call graph
the function that they are located iing(, the calling function). However, is tracked, selected functions for which intra-procedural checking and
there is a notable difference in how its contents are generatdd,... hash checking are donetc). Function addresses, basic block offsets,
is updated dynamically by the monitor hardware as the prograand hashes are computed after linking. The extracted information is
executes. At any point in time, it contains an entry corresponding t@nslated into the data required to configure the hardware monitor
the return location for each function that has been called but not {&SM state table, function start address table, basic block table, hash
returned. Note that the number of distinct return locations is boundealues), and appended to the program’s binary code.
by the number of function call instances, which is, in general, larger Configuration of the security monitor is performed when the ap-
than the number of functions in a program. The return address tapleation is loaded for execution. Security technologies such as ARM
is similar to the use of a hardware return address stack on whi€tustZone [21] can be used to provide a secure mode during configura-
return addresses are pushed on a call and popped on a return. fidre while the remaining application is run in a non-secure mode. The
only difference is that recursive functions are handled more efficienttpntents of lookup table§ AB;:ort, T ABret, andT ABy, are loaded
— only one entry is maintained for each distinct call site. For examplieto the monitor, and the FSM in the monitor is configured. There
if the call sequence i — A — A--- — A — B, the table could are multiple implementation options for the FSMs in the hardware
contain only two return addresses for functidn— one entry for the monitor, including reconfigurable logi@(g.,FPGA cores), or explicit
return address corresponding to the dall— A, and a second entry state-table based implementations using memories. After configuration
for the return address corresponding to the cal- A. of the monitor, the loader initiates application execution.

TABLE |
AREA OVERHEADS FOR HARDWAREASSISTED RUNTIME MONITORING

COMPILE TIME

LOAD TIME

| Benchmark #Fns| #Fn | #Basic| AO% | AO% AO% level3
calls | blocks | levell| level2
! unpipe | pipe
| rawdaudio 7 6 27 0.16 | 0.22 1.46 3.10
! epic 71 | 122 | 901 0.68 | 1.65 | 3.15 | 4.78
! g721decode || 24 | 64 | 298 | 029 | 1.83 | 2.19 | 3.83
! addresses toast (gsm) || 137 | 229 | 1130 | 1.20 | 3.14 | 4.88 | 6.52
Object function) ! mpeg2encode| 116 | 223 | 2114 | 0.98 | 5.17 | 7.43 | 9.07
file | | [Check ntegrity pegwit 124 | 293 | 1275 | 1.08 | 3.06 | 4.80 | 6.44
: ! | (binary hash) susan 38 | 64 | 563 041 | 145 | 295 | 459
| rasta 111 | 246 | 1357 | 096 | 2.98 | 4.73 | 6.36
| £ |
@ Binary | Extract & load the last column AO% level3 represents the case when an instruction
I | configuration integrity checker is also employed in addition to control flow checkers.
Extract basic | | The two minor columns ynpipe and pipe) under the last column
block offsets | &~ represent the cases when the hash engine within the instruction integrity
RUN TIME checker is un-pipelined and pipelined, respectively. The table indicates

that for all the benchmarks considered, inter-procedural checking alone
can be implemented with a maximum area overhead of 1.20% and an
average overhead of 0.72%. Adding intra-procedural checking raises
the maximum overhead to 5.17% and average overhead to 2.44%.
For the case with the highest hardware requirements (inter- and
intra-procedural control flow checking together with pipelined hash
checking), the maximum overhead is 9.07% and the average overhead
The flow described in this section can be extended to the case wiep-29%: Clearly, the area overhead is quite low in all cases, when
the application uses dynamically-linked libraries. For such applicationééwed as a percentage of the area of the processor. When employed
addresses of the functions contained in the dynamic libraries part of a system-on-chip that includes an embedded processor and
available only when the application is loaded or when the function &her components, the relative area overheads are likely to be much
invoked (“lazy evaluation”). Addresses of such functions are marke@Ver.
null in the function start address table when the program is compiled.

Compute basic| |
; block hashes | |

Execute
@ e application

Fig. 4. Design flow for hardware-assisted run-time monitoring

The dynamic loader is responsible for updating these addresses and TABLE Il
loading them into the function start address table in the hardware ARCHITECTURAL PARAMETERS USED IN SIMULATIONS
monitor. ' .
[Parameter [Config[[Parameter | Config)
VI. EXPERIMENTAL RESULTS L1 I-Cache 16kB L1 D-Cache 16kB
In this section, we present the hardware (area) overheads incurred Eetch quepdehsme ? :Ss“e width 2 .
by the proposed hardware-assisted monitoring architecture, as well as |- <2mmit widt ssue inorder
the impact of hardware-based monitoring on performance (program | Call addr. CAM la- | 10 ns || Return addr. CAM| 5 ns
execution time). For the purpose of our experiments, we selected | €Ny latency
applications from the MediaBench [22] and MiBench benchmark [23] | Intra-procedural 5ns || Intra-procedural 40 ns
suites, which represent typical workloads for embedded processors. | l0okup - latency lookup ~ latency
The information necessary to generate the hardware monitor was | (On-chip RAM) (Off-chip RAM)
extracted using the GNU compilgcc . We developed tools to post- Hash engine clock 4 ns || Processor clock pe; 10 ns
process this information and generate the contents of the memories in [_Period riod
the hardware monitor, as well as Verilog hardware descriptions of the
monitor's FSM and control logic. B. Performance Impact

We evaluated the performance impact of the proposed architecture
A. Area Overheads using the SimpleScalar 3.0/PISA architectural simulation toolset [27].

The key functional blocks in the monitor can be categorized intbhe micro-architectural parameters of SimpleScalar were configured
the FSM and CAMs that are part of the inter-procedural checkes, model a typical embedded processor such as the ARM920T. The
SRAM for the intra-procedural checker, the buffers and hardware hasévameters used for the simulated processor are shown in Table II. We
engine for the instruction integrity checker, and miscellaneous contkalilt our simulator within the framework of the existing cycle-accurate
logic. For estimating the area of hash engines, we implemented Verilsighulator sim-outorder and used it to evaluate program execution
RTL descriptions of two commonly used hash algorithms, MD4 argtatistics when the monitor is running in parallel and performing
MD5 [1]. The hash engines and the FSM (for each application) wevarious checks. The clock frequency of hash engines was determined
synthesized into technology-mapped gate-level netlists using Synopgsn the hardware implementations, as discussed in the previous
Design Compiler [24] with NEC'9).13. CB-130M CMOS standard subsection. Each benchmark was simulated for five million instruc-
cell library. Memory models from [25] were used to estimate the areéi@ns. We considered two different implementation scenarios for the
of the CAM and SRAM. In order to compute area overheads, we usg@mories that are part of the hardware monitor — in one case, we
as the base case an ARM920T 32-bit processor core that has sepaiggemed that they were implemented as on-chip memories, and in the
16kB instruction and data caches, runs at 250MHz , and occupiessatond case, we assumed that they were implemented off-chip. The
area of4.7mm? in a 0.13u technology [26]. main difference between these cases is the access latency.

Table | reports the area overheads for different benchmarks, for thred-or inter- and intra-procedural checks, we experimented with two
monitoring scenarios that correspond to increasing levels of securiifferent modes for flagging invalid behavior. In tlietectionmode,
The second, third, and fourth columns list the number of functiorBe processor is allowed to continue while the monitor is running and is
(#Fng, the number of function call locationstn callg, and the stalled only if a control instruction (call/branch) completes before the
number of basic blocks#Basic blocklsin each benchmark program. previous control instruction has been verified. In gieventionmode,
The fifth column (labeledAO% level) reports the total percentageno new instruction is allowed to commit after a control instruction
area overhead when only the inter-procedural control flow checkerustil the latter has been checked. For dynamic hashing, the latency of
used. The sixth colummQ% level reports the total percentage arednash computation does not permit stalling the processor for each basic
overhead when both inter- and intra-procedural checkers are used, blodk. Therefore, the processor and hashing units are allowed to run

Average CPI
o

S & F P S S
o) Q S
R @ \?Fé’ .\6‘2’00 & é\c}’ &o" &F
A & &
e ° & &
Benchmark

Doriginal Ewith monitor (detection mode) Owith monitor (prevention mode) ‘

(@)
7
6
5 Doriginal
T 4 B md5(unpipelined)
© 3 O md4(unpipelined)
2 DOpipelined hash
1
0
<& © @ @ @ 3 S
3 & (\006 %Qoe> & c}oe> c)ob &
ks & & S F <
PN N % 9
AR & S
&8 & &
Benchmark

In summary, the results demonstrate that the proposed hardware-
assisted run-time monitoring technique is viable and imposes minimal
area and execution time overheads.

VII. CONCLUSIONS

In this paper, we presented a scalable, application-specific method-
ology to safeguard the execution of programs running on embedded
processors. We formulated a hierarchical run-time monitoring frame-
work including program attributes such as inter-procedural control
flow, intra-procedural control flow and instruction contents within a
basic block, which provides protection at different granularities for
applications and systems with diverse security requirements. Run-time
monitoring is performed by a configurable hardware monitor to ensure
minimal performance degradation. Our studies reveal that the proposed
architecture is capable of facilitating secure execution of programs in
the face of a wide variety of security threats. We believe that such
techniques will be useful in addressing the increasing security concerns
in embedded system design.

REFERENCES

[1] B. Schneier,Applied Cryptography: Protocols, Algorithms and Source Code in C
John Wiley and Sons, 1996.

[2] W. Stallings,Cryptography and Network Security: Principles and Practiderentice
Hall, 1998.

[3] Vulnerability Notes Database CERT coordination centerh{tp://www.kb.
cert.org/vuls/).

[4] M. Howard and D. LeBlancWriting Secure Code Microsoft Press, 2002.
G. Hoglund and G. McGrawExploiting Software: How to Break Code Addison-

Fig. 5. Performance analysis of (a) intra-procedural control flow checking an&S] Wesley, 2004.

(b) dynamic hash checking

in parallel and the former is stalled only if the instruction buffer in the

hash unit becomes full.

[6] S. Chen, Z. Kalbarczyk, J. Xu, and R. K. lyer, “A data-driven finite state machine
model for analyzing security vulnerabilities,” iRroc. Int. Conf. on Dependable
Systems Networks June 2003, pp. 605-614.

[7] C. Ko, M. Ruschitzka, and K. Levitt, “Execution monitoring of security-critical
programs in distributed systems: A specification-based approactPtdn. IEEE

When on-chip memories were used for the hardware monitor's symp. on Securit Privacy, May 1997, pp. 175-187.
CAMs and SRAM, performance degradation for inter-proceduralg] B. Home, L. R. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic self-checking

checks was found to be negligible: (1%) for all benchmarks tested,

techniques for improved tamper resistance,Pioc. Wkshp. on Securit§ Privacy

for both detection and prevention modes. This is expected since most in Digital Rights Managemenfov. 2001, pp. 141-159. »
applications have sparse call graphs and their FSMs can be synthesiZ@idH. Chang and M. J. Atallah, “Protecting software code by guardsiRenised Papers
to operate at or above processor speeds. The same is true for intra- fom the ACM CCS-8 Wkshp. on SecusityPrivacy in Digital Rights Management

procedural checks, assuming an on-chip SRAM is used to store
FSM state table for each function.

IHS] Nov. 2001, pp. 160-175.

Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski, “Oblivious
hashing: A stealthy software integrity verification primitive,”fmoc. Int. Wkshp. on

When off-chip memories were used, as expected, we observed |yiormation Hiding Oct. 2002, pp. 400-414.

slightly higher performance penalties. Fig. 5(a) plots the average cyclgg v. kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution via program
per instruction (CPI) for all benchmarks, for both the detection and ~ shepherding,” ifProc. USENIX Security SympAug. 2002, pp. 191—206.

prevention modes. The figure demonstrates that even in this case,

[tl2e M. Kuhn, The TrustNo 1 Cryptoprocessor Concept CS555 Report, Purdue

impact is fairly small (average of 1.77% for detection mode and 4.94% University (ttp://www.cl.cam.ac.uk/"mgk25/), Apr. 1997.
for prevention mode). [13] Secure CoprocessingIBM Inc. (http://www.research.ibm.com/scop/).
[14] X. Zhang, L. Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure coprocessor-based
intrusion detection,” irProc. ACM SIGOPS European Wkshfept. 2002.
6 [15] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and
s M. Horowitz, “Architectural support for copy and tamper resistant software,” in
5. Y \ —&—adpcm Proc. Int. Conf. on Architectural Support for Programming Languages and Operating
2. —®—g721encode SystemsNov. 2000, pp. 168-177.
£ e gsm [16] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
g 2 M mpeg2encode
] HERERER R | | Architecture for tamper-evident and tamper-resistant processingfde. Int. Conf.
1 on Supercomputinglune 2003, pp. 160-171.
0

100 90 80 70 60 50 40 30 20 10 o
Basic blocks hashed (%)

Fig. 6. Performance estimation when the percentage of basic blocks hasr[m

is varied

[17] G. E. Suh, J. Lee, and S. Devadas, “Secure program execution via dynamic
information flow tracking,” Dept. of EECS, MIT, Tech. Rep., July 2003.
Non-Executable User Stackttp://www.openwall.com/linux

C. Cowaret al, “Stackguard: Automatic adaptive detection and prevention of buffer-
overflow attacks,” inProc. USENIX Security Symplan. 1998, pp. 63-77.

J. P. McGregor, D. K. Karig, Z. Shi, and R. B. Lee, “A processor architecture defense
against buffer overflow attacks,” iffroc. Int. Conf. on Information Technology:

[18
[19

Fig. 5(b) illustrates the impact of instruction integrity checking on Research and Educatiprug. 2003, pp. 243-250.
CPI, for different hash algorithms and their implementations. As ex21] ARM TrustZone Technology Overview http://www.arm.com/products/
pected, the performance penalty for an un-pipelined MD5 hash engine, CPUs/arch-trustzone.html

with a latency of 64 clock cycles, is substantial. The performan
penalty using an un-pipelined MD4 engine (latency of 48 cycles)

déi] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for

evaluating and synthesizing multimedia and communicatons systemBfom Int.

IS Symp. on MicroarchitectureDec. 1997, pp. 330-335.

Iowe_r, but St'”. cc_)nS|derabIe. However, with P'Pe“f_"”& the penalty Caﬁ?»] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
be virtually eliminated, as shown by the last bar in the graph. In moSt™ grown, “Mibench: A free, commercially representative embedded benchmark suite,”
cases, the original CPI is maintained with the use of pipelined hash in Proc. Annual Wkshp. on Workload Characterizati@ec. 2001, pp. 3-14.
engines. With the use of pipelining, there is negligible performande4] Synopsys. http://www.synopsys.com

difference between the MD4 and MD5 algorithms.

[25] J. M. Mulder, N. T. Quach, and M. J. Flynn, “An area model for on-chip memories

F|g 6 shows how the average CPI is affected by Varying the number and its application,JEEE J. Solid-State Circuifsvol. 26, no. 2, pp. 98-106, Feb.

of basic blocks that are hash-checked when an un-pipelined MD4 h
engine is used. In most casés)-60% of basic blocks can be hash-

checked without any observable decline in performance, even with&ﬁp

a pipelined implementation.

1991.
a}?& ARM920T Embedded Processor Canép://www.arm.com

D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Computer
Sciences Department, University of Wisconsin, Tech. Rep., June 1997.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

