
Secure Embedded Processing through Hardware-assisted
Run-time Monitoring

Divya Arora†, Srivaths Ravi‡, Anand Raghunathan‡ and Niraj K. Jha†
†Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544

‡NEC Laboratories America, Princeton, NJ 08540
†{divya, jha }@princeton.edu ‡{sravi, anand }@nec-labs.com

Abstract— Security is emerging as an important concern in embedded
system design. The security of embedded systems is often compromised due
to vulnerabilities in “trusted” software that they execute. Security attacks
exploit these vulnerabilities to trigger unintended program behavior, such
as the leakage of sensitive data or the execution of malicious code.

In this work, we present a hardware-assisted paradigm to enhance
embedded system security by detecting and preventing unintended program
behavior. Specifically, we extract properties of an embedded program
through static program analysis, and use them as the bases for enforcing
permissible program behavior in real-time as the program executes.
We present an architecture for hardware-assisted run-time monitoring,
wherein the embedded processor is augmented with a hardware monitor
that observes the processor’s dynamic execution trace, checks whether
the execution trace falls within the allowed program behavior, and flags
any deviations from the expected behavior to trigger appropriate response
mechanisms. We present properties that can be used to capture permissible
program behavior at different levels of granularity within a program,
namely inter-procedural control flow, intra-procedural control flow, and
instruction stream integrity. We also present a systematic methodology
to design application-specific hardware monitors for any given embedded
program. We have evaluated the hardware requirements and performance
of the proposed architecture for several embedded software benchmarks.
Hardware implementations using a commercial design flow, and archi-
tectural simulations using the SimpleScalar framework, indicate that the
proposed technique can thwart several common software and physical
attacks, facilitating secure program execution with minimal overheads.

I. I NTRODUCTION

As embedded systems pervade various aspects of our lives, they are
often required to deal with sensitive information or perform critical
functions, making security an important concern in embedded system
design. Security has been the subject of extensive research in the
context of general-purpose computing and communications systems,
leading to many advances such as cryptographic algorithms, security
protocols, etc. [1], [2]. While such “functional” security measures
provide a strong basis for securing embedded systems, recent trends in
security attacks have made it abundantly clear that most attacks target
weaknesses in a system’s implementation. It is now well accepted that
a secure system implementation is as critical to a system’s overall
security as the strength of the theoretical security measures employed.
Consequently, recent years have seen an increasing awareness that se-
curity needs to be considered at various stages of the embedded system
design process, including system architecture and hardware/software
implementation.

A notable trend in embedded systems has been a drastic increase
in embedded software content in order to support increasing end-user
functionality and performance requirements (on an average, embedded
software content has been increasing by 140% per year — even
faster than Moore’s law). It is therefore not surprising that the most
common security attacks on embedded systems are software-based, or
exploit weaknesses in embedded software. Together with increasing
complexity, features such as network connectivity and extensibility
(ability to extend installed software or download new software onto the
embedded system) have only increased the vulnerabilities to software
attacks.

In this work, we address the problem of secure software execution in
embedded systems. Software security can be compromised in a variety

Acknowledgments: This work was supported by NSF under Grant No. CCR-
0326372.

of ways, e.g., through the execution of programs that originate from
untrusted or unknown sources, or through the corruption of binaries
while they are being downloaded or stored on the embedded system.
However, a recurring theme among many recent software security
attacks is that they exploit weaknesses in “trusted” code (operating
system (OS), middleware, applications) that is already present in the
system. For example, 66% of the vulnerabilities reported by CERT are
based on exploiting buffer overflow behavior in trusted programs [3].
Such attacks are especially dangerous when they are used to subvert
programs that have special privileges,e.g., access to sensitive data
or system resources. In this work, we propose a hardware/software
solution to address the above problem based on the paradigm of
hardware-assisted run-time monitoring.

A. Paper Overview and Contributions

In this paper, we address secure program execution by focusing on
the specific problem of ensuring that the program does not deviate from
its intended or “permissible” behavior. We address this problem by
using the notion of a dedicated hardware monitor that enforces permis-
sible behavior as the program executes. We describe the architecture of
a hardware monitor that can be connected to any embedded processor
to observe its dynamic execution trace as it executes the program, check
whether the trace conforms to the definition of permissible behavior,
and flag violations by triggering appropriate response mechanisms.

We propose to define permissible behavior by identifying suitable
program properties or invariants that are indicators of untampered
execution (i.e., will be violated if a software attack occurs). We identify
properties that capture both coarse-grained and fine-grained program
behavior in a hierarchical manner, including (i) the inter-procedural
control flow of a program, as represented by its function call graph,
(ii) the intra-procedural control flow for each function, represented by
a basic-block control-flow graph (CFG), and (iii) the integrity of the
instruction stream within each basic block.

We propose techniques to extract the above properties from any
given program, and automatically synthesize a hardware monitor for it.
The hardware monitor can be implemented as a programmable unit that
can be configured for each application that executes on the embedded
system.

We have evaluated the area and delay overheads associated with the
proposed architecture using several embedded software benchmarks.
Hardware implementations using a commercial design flow, and ar-
chitectural simulations using the SimpleScalar framework, demonstrate
that the proposed hardware-assisted monitoring technique can eliminate
a wide range of common software and physical attacks, facilitating
secure program execution with minimal overheads.

The remainder of this paper is organized as follows. We present a
survey of relevant past work in Section II. Section III describes a typical
software attack and motivates the need for the proposed technique.
Section IV presents the details of the proposed hardware-assisted
monitoring architecture. Section V describes a systematic methodology
to design hardware monitors for any given application. We present our
experimental methodology and results in Section VI and conclude in
Section VII.

II. RELATED WORK

A wide range of techniques has been proposed to enhance software
security in the context of general-purpose computing systems. Most of
them address problems such as verifying the identity of the provider
of a program, checking the integrity of program binaries, ensuring
isolation between different programs running on a system,etc. These

1530-1591/05 $20.00 © 2005 IEEE

techniques are complementary to our work, which focuses on elimi-
nating unintended behavior in trusted programs that have already been
authenticated, but may potentially contain vulnerabilities that can be
exploited for attacks. We examine research related to secure program
execution in three categories – static checking, software-based program
monitoring, and processor architectures for secure execution.

Static techniques include source code scan tools and code review
tools that attempt to strengthen security by eliminating vulnerabilities
during the software design phase [4], [5]. Studies have been performed
to model vulnerabilities that open doors for security exploits [6].
Although these techniques are useful, the protection they offer is not
complete, since they are typically rule-based and attempt to match the
target program with specific known classes of vulnerabilities.

Software-based monitoring has also been explored along various di-
mensions. In [7], the authors provide formal specifications of security-
critical programs and check for access rights violations through an
analysis of their execution traces. Efficient methods for automatically
embedding software security checks in a program, in order to perform
security-related actions (e.g., checksumming and repair) during exe-
cution are explored in [8]–[10]. In these studies, the focus is on the
efficiency and stealth of the security checks. Program shepherding [11]
proposes a software-based run-time environment that monitors control
flow during program execution, and enforces user-specified security
policies, such as restricted code origins and control transfers. The
main drawback of software schemes is that the security checks are also
pieces of code which are themselves vulnerable to corruption. Also,
the granularity of checking is limited due to the overhead imposed by
the additional code.

The basic concept of using a hardware unit or co-processor to
facilitate secure execution has roots dating back to tamper-resistant
cryptoprocessors that were used to store cryptographic keys and
execute cryptographic algorithms [12], [13]. However, a significant
difference in our work is that the monitor does not execute any program
itself — it only ensures that the program running on the host processor
does not display unintended behavior. The application of a secure
co-processor to perform intrusion detection (to monitor critical OS
data structures, check the integrity of files on disk, perform virus
scanning,etc.) was proposed in [14]. Recently, enhanced processor
architectures, such as XOM and AEGIS, have been proposed [15], [16],
which attempt to provide code integrity and privacy in the presence
of untrusted memory. The authors of XOM use the ideas of eXecute-
Only-Memory (allowing instructions to be executed but not modified),
ciphered-code execution (decrypting code on-the-fly), and tagged data
(associating a process identifier tag with all architectural data) to
achieve these goals. However, these techniques do not safeguard an
application from its own vulnerabilities. In [17], the authors propose
a hardware-supported scheme to track the use of input data that are
captured from untrusted input channels, and ensure that such data are
never used to affect program control flow. In addition to the above
general techniques, a number ofattack-specificmechanisms have been
developed [18]–[20], mostly in response to the increasing number of
exploits involving buffer overflows and format string vulnerabilities.

Our work can be differentiated from previous work along several
dimensions, including the overall approach to enforcing security, as
well as the hardware/software architecture used to implement it:

• Our approach does not require users to explicitly specify security
policies — instead, properties indicative of permissible program
behavior are extracted from the application itself. The extracted
properties are application-specific, yet our approach has wide
applicability since the process of deriving the properties can be
incorporated into a compiler tool flow.

• Unlike the purely static or purely dynamic approaches described
above, we partition the burden of ensuring security between static
analysis and dynamic (run-time) monitoring and enforcement.

• The use of hardware-assisted monitoring enables the checking
of fine-grained, application-specific properties, resulting in higher
levels of security and lower detection latencies, while incurring
minimal delay overheads.

• The proposed hardware-assisted monitoring architecture does not
require any changes to the embedded processor, and hence can
be directly applied to existing embedded systems.

Due to the above factors, we believe that our technique offers a
practical approach to counter a broad range of attacks including, for
example, buffer overflows, spurious control transfers, and run-time
code corruption.

{
 uint32_t len;

 ...

int st_wavstartread (ft_t ft)

}

FP

SP

previousFile: wav.c

(c)(b)(a)

 len = findChunk (ft,"data");

 st_reads (ft, text, len);
 ...

 char text [256];

 //read len bytes into text []

stack frame

ret. address

saved FP

text [256]

Memory
growth

input

arguments
stack frame

previous

ret. address
corrupted

code

arguments

Stack
growth

 //get length of data from header Corrupted

attack

Fig. 1. A simple example of a “stack smashing” security attack

III. M OTIVATION

A large number of security breaches are effected by software exploits
that take advantage of weaknesses present in “trusted” code. In this
section, we illustrate how a simple vulnerability in a benign application
program can be exploited to achieve undesirable side-effects, such
as the execution of arbitrary malicious code, motivating the need for
solutions such as the one proposed in this paper.

We consider a program that is part of a popular audio format
conversion utility, called the SoX (Sound eXchange) toolkit. Fig. 1(a)
presents a code snippet from a file that contains functions related to the
reading and writing of “wav” files. The functionst wavstartread()
shown in Fig. 1(a) readslen bytes from an input file into a local array
text[], where parameterlen is read from the file header. Fig. 1(b)
shows the layout of the stack frame for functionst wavstartread(),
when the function is called during the program’s execution. The stack
frame contains copies of the function’s arguments, the return address
in the calling function, as well as storage space for local variables
such as thetext[] array. In order to execute a successful exploit, an
attacker creates an inputwav file that contains a payload of malicious
code and a large value oflen (len > 256). When the program is
executed with this malicious input file, it causes a buffer overflow
for array text[], resulting in corruption of the local variables and
the function’s return address stored on the program stack. When the
function st wavstartread() returns, program flow is directed to the
corrupted return address. Through appropriate construction of the input
file, the corrupted return address can easily be made to point to the
start of the malicious code to be executed.

While the vulnerability in the above example was a lack of input
validation, vulnerabilities in large, complex programs can be much
more subtle and difficult to catch. Numerous variants of similar exploits
(return-into-libc, format string attacks, heap overflow) on security-
critical programs have been reported in the literature [3], [5]. In
addition, embedded systems are also highly susceptible to physical
attacks that involve tampering with system properties such as voltage
levels, clock frequency, and memory contents. Irrespective of how they
originate, most attacks eventually manifest themselves as a subversion
of “normal” program execution - violation of control flow behavior,
execution of corrupted instruction sequences,etc. Instead of trying to
block all sources of attack, we concentrate on defining permissible
program behavior and monitoring program execution to catch these
aberrations. However, the overhead of tracking execution flow at a fine
granularity makes a software-based solution infeasible, and presents a
compelling case for designing an efficient, hardware-assisted run-time
monitor.

IV. H ARDWARE-ASSISTEDMONITORING ARCHITECTURE

In this section, we provide an overview of the proposed hardware-
assisted monitoring architecture. We then describe in detail the prop-
erties that model permissible program behavior and the design of the
corresponding hardware monitors that check them.

A. Architecture Overview
Fig. 2 shows the conceptual block diagram of the proposed

hardware-assisted monitoring architecture. For ease of illustration, we
depict the embedded processor as an in-order five-stage pipeline1. The
inputs to the monitor include the program counter (PC) and instruction

1The proposed technique is fairly independent of the processor microar-
chitecture, and can be easily adapted to more complex architectures such as
superscalar and VLIW.

register (IR) of the completing instruction, and the pipeline status
from the pipeline control unit. Effectively, the monitor is provided
with a cycle-by-cycle trace of the executing instructions and their
program addresses. The monitor’s outputs include astall signal and
an invalid signal. When the monitor detects a violation of permissible
program behavior, it asserts theinvalid signal, which results in a non-
maskable interrupt to the processor. This signal can be used to trigger
a response mechanism, such as termination of the program or transfer
of the processor to a secure mode. Thestall signal is asserted if the
monitor is unable to keep pace with processor execution (this happens
in very rare cases). This is handled as a normal processor stall, and
all the pipeline stages are “frozen” until the stall signal is de-asserted.
The three sub-blocks within the monitor handle checking of the three
different classes of program properties mentioned earlier. The design
of these sub-blocks is described in detail later in this section.

IF EX WBID

stall/invalid
intra−procedural control flow checker

inter−procedural control flow checker

instruction integrity checker

Processor pipeline

proc.
state

MEM

Instruction
(IR)

L1
instr.
cache

pipeline

(PC)
Address

Monitor

control

Fig. 2. Proposed hardware-assisted monitoring architecture: Conceptual block
diagram

B. Modeling Permissible Program Behavior
There are several factors to be considered when selecting program

properties to be monitored. They should be accurate indicators of
invalid behavior,i.e., very likely to be violated when system security is
compromised. They should also be easily derivable through automatic
program analysis for a wide range of programs. They should lend
themselves to a concise representation for scalability to large programs.
Finally, the hardware overheads involved in checking them at run-time
should be reasonable. Based on these considerations, we have chosen
three key properties to provide protection at varying granularities,
which we describe next.

1) Inter-procedural control flow:At the highest level of granularity,
we verify the correctness of a program’s inter-procedural control flow.
It is common to represent inter-procedural control flow using afunction
call graph. For the purpose of hardware implementation, a function call
graph of a program withN functions is translated into a finite-state
machine (FSM) withN + 1 states – one state corresponding to each
function in the program, and an additionalINVALID state. The functions
are associated with a unique index from1 to N . For convenience, the
FSM state corresponding to a function is also labeled with the same
index. A transition between two states in the FSM (except theINVALID
state) represents a valid control transfer (call or return) between the
corresponding functions. Any invalid call or return transitions the FSM
to the INVALID state. The input alphabetZ of the FSM consists of
two distinct inputs:Z0 = {0, 1}, which is set to0 or 1 depending
on whether the executing instruction is a function call or return, and
Z1 = {1, 2, . . . , N}, which is the index of the target function of
the call/return. Procedure 1 describes how the FSM is automatically
extracted from the function call graph.

By default, all user-defined and library functions that are part of the
application program are included in the function call graph. Potentially,
this can be done for system calls (OS functions) as well. Alternatively,
if the kernel is assumed to be secure, system calls can be treated as leaf
functions in the function call graph. The extraction of the function call
graph should also include indirect function calls with function pointers,
by adding an edge from the calling function to each function whose
address can be assigned to the function pointer.

2) Intra-procedural control flow:A logical succession to the above
scheme is to also track control flowwithin each function in the
program. The control flow within a function can be represented using
the function’s CFG, and translated into an FSM, or equivalently, a basic
block information table. Each basic blockbi has a corresponding row

Procedure 1FSM extraction for inter-procedural control flow checking

1: Inputs: Function Call GraphG(F, E)
2: F ← set of all functionsfi, 1 ≤ i ≤ N
3: E ← set of directed edgeseij ∈ E ⇐⇒ fi includes a direct or indirect

call to fj

4: Output: FSM (Z, S, T, s, A), whereZ: input alphabet,S: set of states,T :
S × Z → S: transition function,s: initial state,A: accept states

5: s← index(main)
6: for all fi ∈ F do
7: Add statei to S andA
8: for all fj : eij ∈ E do
9: Add the following transitions toT :

10: Z0 = CALL, Z1 = j 7→ Nextstate[i] = j
11: Z0 = RETURN , Z1 = i 7→ Nextstate[j] = i
12: for all i : Nextstate[i] = unassigneddo
13: Nextstate[i] = N + 1 /* INVALID STATE*/

in the table, expressed as a tuplerowi(index, offset, s0, s1), where
offset is the address offset ofbi from the start of the function and
s0, s1 are indices of its possible successors. Procedure 2 describes how
to create the basic block information table. If the code does not contain
any indirect jumps, each basic block can have at most two successors
listed in fieldss0, s1 (corresponding to the branch at the end of the
basic block being taken or not taken). The procedure shows how a
single level of indirect jumps (e.g., switch statements) is handled. Field
s0 in this case carries a special code to denote an indirect jump and
s1 contains the number of possible jump targets, which appear in the
rows immediately following the current row. Hence, a jump to thes1

fields in any of these rows is considered valid.

Procedure 2 Transition table generation for intra-procedural control flow
checking

1: Inputs: Control Flow GraphG(B, E)
2: B ← set of all basic blocksbi, 1 ≤ i ≤ n
3: E ← set of directed edgeseij ∈ E ⇐⇒ bj is a successor ofbi

4: Output: T = {row0, row1, . . . , rown} where rowi is a tuple
(index, offset, s0, s1)

5: for all bi ∈ B do
6: rowi.index = i
7: rowi.offset = address(bi) − function start address
8: if bi ends with indirect jumpthen
9: Targets← bj : eij ∈ E

10: rowi.s0 = Special code
11: rowi.s1 = ‖Targets‖
12: Process allbj : bj ∈ Targets
13: else if bi ends with a direct conditional jumpthen
14: rowi.s0 = j : bj is the branch-not-taken target
15: rowi.s1 = k : bk is the branch-taken target
16: else
17: rowi.s0 = NULL /*unconditional jump*/
18: rowi.s1 = k : bk is the jump target

Nested switch statements are handled by directing the compiler to
compile them as a sequence ofif-then-elsestatements. To facilitate easy
detection of end of basic blocks in hardware, the procedure requires
that all basic blocks end with an explicit control transfer instruction.
Hence, extra jump instructions (to the next basic block) are appended
to fall-through blocks. Our experiments indicate that this does not lead
to significant overheads in terms of code size increase (≤ 1%). In our
investigations, intra-procedural control flow checks are performed for
basic blocks in all user-functions. In practice, these fine-grained checks
may be restricted to only security-sensitive parts of the application.

3) Integrity of the executed instruction stream:Some security
attacks may not result in a control flow violation,e.g., alteration
of a basic block in the program code segment during execution. In
order to detect such attacks, we explore a complementary approach by
checking the integrity of the dynamic instruction stream with the aid of
cryptographic hash functions. Given a messagex and its cryptographic
hashH(x), it is computationally infeasible to find another message
y such thaty 6= x and H(y) = H(x). Hence, given a sequence
of instructions, it is extremely hard for an adversary to find another
sequence of instructions such that both hash to the same value. Hash

values of each basic block in the program are computed beforehand,
loaded into the hardware monitor when the application is loaded
for execution, and subsequently checked during program execution.
Hashing is computationally intensive and requires dedicated high-
speed hardware to keep up with the processor pipeline. Moreover,
most well-known hash algorithms map a variable-sized input to a
fixed-sized output (16-20 Bytes). To keep the monitor’s hardware
requirements low, a user-specified number of bits of the pre-computed
hash value are randomly selected at program start-up and loaded into
the monitor for checking. It is worth noting that the proposed technique
is complementary to static hash checking, since it detects program
corruption during execution.

TAB start retTAB

TAB bb

FSM IP

s1s0

proc.
from

Ret. Addr.

INTRA−PROC. CONTROL FLOW CHECKER

Control

Hash

PC

IR

Call Addr. State ptr. to State

engine
Hash

Control
(to stall detection)

Buffers

BB #0Index Index
return

BB#

Stall detection

transition

proc.
to

Invalid detection

invalid

stall

no match (to invalid detection)

invalid

BB offset

INTER−PROC. CONTROL FLOW CHECKER

INSTRUCTION INTEGRITY CHECKER

Checker

Checker

Fig. 3. Architectural details of the run-time monitor

C. Architectural Details

Fig. 3 shows the detailed architecture of the monitor. The monitor
is delineated into its three major constituent sub-blocks — the inter-
procedural control flow checker, the intra-procedural control flow
checker, and the basic block level instruction integrity checker. Al-
though the three checks are logically independent, in the implemen-
tation described here, the three sub-blocks share hardware and hence
communicate with each other.

1) Inter-procedural control flow checker:The inter-procedural con-
trol flow checker consists of two look-up tables,TABstart and
TABret, that store function start and return addresses, respectively,
and an FSMFSMIP that verifies the validity of function calls and
returns.

The function start address table,TABstart, takes an instruction
address as input. If the instruction address corresponds to the start of a
function, it asserts a match signal, and outputs a unique function index.
The number of entries inTABstart equals the number of functions in
the application program. The contents of this table are generated by
enhancing the compiler tool flow and the run-time application loader,
as described in Section V.

The return address table,TABret, performs a similar mapping from
instruction addresses that correspond to return locations, to the index of
the function that they are located in (i.e., the calling function). However,
there is a notable difference in how its contents are generated.TABret

is updated dynamically by the monitor hardware as the program
executes. At any point in time, it contains an entry corresponding to
the return location for each function that has been called but not yet
returned. Note that the number of distinct return locations is bounded
by the number of function call instances, which is, in general, larger
than the number of functions in a program. The return address table
is similar to the use of a hardware return address stack on which
return addresses are pushed on a call and popped on a return. The
only difference is that recursive functions are handled more efficiently
— only one entry is maintained for each distinct call site. For example,
if the call sequence isB → A → A · · · → A → B, the table could
contain only two return addresses for functionA — one entry for the
return address corresponding to the callB → A, and a second entry
for the return address corresponding to the callA → A.

In hardware, each of the two lookup tables can be directly imple-
mented using acontent addressable memory(CAM), which is basically
a read-writable memory with additional logic circuitry (comparators)
to provide fast table look-up.

The function indices output fromTABstart andTABret are input
to the FSMFSMIP , which keeps track of program control flow by
executing corresponding state transitions. At each state transition, the
FSM checks whether the incoming function index is equal to the index
of one of the valid next states. If so, it executes the state transition.
The invalid detection circuitry is signaled in case there is no match
in address look-up, or if there is an FSM transition into theINVALID
state.

2) Intra-procedural control flow checker:The intra-procedural con-
trol flow checker consists of a basic block table,TABbb, which stores
the information necessary to track control flow within each function.
The basic blocks are grouped according to the function that they belong
to. The function start address table,TABstart, which is part of the
inter-procedural control flow checker, is augmented with an additional
field that is a pointer to a location inTABbb. This additional field tells
the intra-procedural control flow checker where it should start when a
function is called. When control enters a function, the function start
address is copied into a special register and used to calculate offsets for
all future branches within the function. In addition, on each function
call, the basic block index within the calling function is also saved in
TABret, and restored upon return.

3) Instruction integrity checker:In order to check instruction stream
integrity, each row in the basic block table,TABbb, is augmented to
contain another field that stores the statically-computed cryptographic
hash of the instruction sequence in the basic block. During program
execution, the monitor buffers the instruction stream corresponding to
a basic block until a branch/jump instruction is encountered. At this
point, it switches to an empty buffer and signals the hardware hash unit
to compute the hash of the buffered basic block. The computed hash
value is then compared against the value stored inTABbb. When the
buffers are full, the processor is stalled in order to allow the instruction
integrity checker to catch up.

Many popular hash algorithms, such as MD4, MD5, and SHA-1 [1],
incur a high latency, since the input is processed through several rounds
wherein the result of theith round is input to thei + 1th round. Data
dependencies within a round limit the amount of parallelism that can
be achieved by adding more hardware. Moreover, if the input size is
greater than 512 bits, the output from the last round is fed back to the
first round and included in further computation. We break this feedback
loop by imposing a limitlmax on the maximum basic block length.
Basic blocks that exceed this limit are split into sub-blocks of length
≤ lmax and an XOR of the hash values of all constituent sub-blocks is
checked. This allows us to pipeline the hashing unit at a fine-grained
level (each round is a pipeline stage). In practice, this implies that the
hardware monitor stalls the processor only in very rare cases, leading
to minimal performance impact, as demonstrated in our experimental
results.

V. DESIGN FLOW

Fig. 4 shows the compilation and execution flow for hardware-
assisted run-time monitoring. Given an application and user-specified
options, program models, namely the function call graph and CFGs
for each function, are extracted during compilation. Depending on
the security requirements, the user can specify options to define the
granularity of checks (e.g., the depth to which the function call graph
is tracked, selected functions for which intra-procedural checking and
hash checking are done,etc.). Function addresses, basic block offsets,
and hashes are computed after linking. The extracted information is
translated into the data required to configure the hardware monitor
(FSM state table, function start address table, basic block table, hash
values), and appended to the program’s binary code.

Configuration of the security monitor is performed when the ap-
plication is loaded for execution. Security technologies such as ARM
TrustZone [21] can be used to provide a secure mode during configura-
tion, while the remaining application is run in a non-secure mode. The
contents of lookup tablesTABstart, TABret, andTABbb are loaded
into the monitor, and the FSM in the monitor is configured. There
are multiple implementation options for the FSMs in the hardware
monitor, including reconfigurable logic (e.g.,FPGA cores), or explicit
state-table based implementations using memories. After configuration
of the monitor, the loader initiates application execution.

Linker

Binary

2 31

Extract & load

Source

1

1

block hashes
Compute basic

2

from symbol table

proc. FSM
Synthesize inter−

Extract fn addresses

function
CFGs

application
Execute

RUN TIME

monitor
configuration

Check integrity
(binary hash)

Load−time
addresses

Enhanced
binary

Compiler front end

Compiler back end

Object
file

Extract basic
block offsets

2

3

COMPILE TIME LOAD TIME

call graph
Application

options
User

Fig. 4. Design flow for hardware-assisted run-time monitoring

The flow described in this section can be extended to the case when
the application uses dynamically-linked libraries. For such applications,
addresses of the functions contained in the dynamic libraries are
available only when the application is loaded or when the function is
invoked (“lazy evaluation”). Addresses of such functions are marked
null in the function start address table when the program is compiled.
The dynamic loader is responsible for updating these addresses and
loading them into the function start address table in the hardware
monitor.

VI. EXPERIMENTAL RESULTS

In this section, we present the hardware (area) overheads incurred
by the proposed hardware-assisted monitoring architecture, as well as
the impact of hardware-based monitoring on performance (program
execution time). For the purpose of our experiments, we selected
applications from the MediaBench [22] and MiBench benchmark [23]
suites, which represent typical workloads for embedded processors.
The information necessary to generate the hardware monitor was
extracted using the GNU compilergcc . We developed tools to post-
process this information and generate the contents of the memories in
the hardware monitor, as well as Verilog hardware descriptions of the
monitor’s FSM and control logic.

A. Area Overheads

The key functional blocks in the monitor can be categorized into
the FSM and CAMs that are part of the inter-procedural checker,
SRAM for the intra-procedural checker, the buffers and hardware hash
engine for the instruction integrity checker, and miscellaneous control
logic. For estimating the area of hash engines, we implemented Verilog
RTL descriptions of two commonly used hash algorithms, MD4 and
MD5 [1]. The hash engines and the FSM (for each application) were
synthesized into technology-mapped gate-level netlists using Synopsys
Design Compiler [24] with NEC’s0.13µ CB-130M CMOS standard
cell library. Memory models from [25] were used to estimate the area
of the CAM and SRAM. In order to compute area overheads, we used
as the base case an ARM920T 32-bit processor core that has separate
16kB instruction and data caches, runs at 250MHz , and occupies an
area of4.7mm2 in a 0.13µ technology [26].

Table I reports the area overheads for different benchmarks, for three
monitoring scenarios that correspond to increasing levels of security.
The second, third, and fourth columns list the number of functions
(#Fns), the number of function call locations (#Fn calls), and the
number of basic blocks (#Basic blocks) in each benchmark program.
The fifth column (labeledAO% level1) reports the total percentage
area overhead when only the inter-procedural control flow checker is
used. The sixth column (AO% level2) reports the total percentage area
overhead when both inter- and intra-procedural checkers are used, and

TABLE I
AREA OVERHEADS FOR HARDWARE-ASSISTED RUN-TIME MONITORING

Benchmark #Fns #Fn
calls

#Basic
blocks

AO%
level1

AO%
level2

AO% level3

unpipe pipe
rawdaudio 7 6 27 0.16 0.22 1.46 3.10
epic 71 122 901 0.68 1.65 3.15 4.78
g721decode 24 64 298 0.29 1.83 2.19 3.83
toast (gsm) 137 229 1130 1.20 3.14 4.88 6.52
mpeg2encode 116 223 2114 0.98 5.17 7.43 9.07
pegwit 124 293 1275 1.08 3.06 4.80 6.44
susan 38 64 563 0.41 1.45 2.95 4.59
rasta 111 246 1357 0.96 2.98 4.73 6.36

the last column (AO% level3) represents the case when an instruction
integrity checker is also employed in addition to control flow checkers.
The two minor columns (unpipe and pipe) under the last column
represent the cases when the hash engine within the instruction integrity
checker is un-pipelined and pipelined, respectively. The table indicates
that for all the benchmarks considered, inter-procedural checking alone
can be implemented with a maximum area overhead of 1.20% and an
average overhead of 0.72%. Adding intra-procedural checking raises
the maximum overhead to 5.17% and average overhead to 2.44%.
For the case with the highest hardware requirements (inter- and
intra-procedural control flow checking together with pipelined hash
checking), the maximum overhead is 9.07% and the average overhead
is 5.59%. Clearly, the area overhead is quite low in all cases, when
viewed as a percentage of the area of the processor. When employed
as part of a system-on-chip that includes an embedded processor and
other components, the relative area overheads are likely to be much
lower.

TABLE II
ARCHITECTURAL PARAMETERS USED IN SIMULATIONS

Parameter Config. Parameter Config.

L1 I-Cache 16kB L1 D-Cache 16kB
Fetch queue size 8 Issue width 2
Commit width 1 Issue inorder
Call addr. CAM la-
tency

10 ns Return addr. CAM
latency

5 ns

Intra-procedural
lookup latency
(On-chip RAM)

5 ns Intra-procedural
lookup latency
(Off-chip RAM)

40 ns

Hash engine clock
period

4 ns Processor clock pe-
riod

10 ns

B. Performance Impact
We evaluated the performance impact of the proposed architecture

using the SimpleScalar 3.0/PISA architectural simulation toolset [27].
The micro-architectural parameters of SimpleScalar were configured
to model a typical embedded processor such as the ARM920T. The
parameters used for the simulated processor are shown in Table II. We
built our simulator within the framework of the existing cycle-accurate
simulator sim-outorder and used it to evaluate program execution
statistics when the monitor is running in parallel and performing
various checks. The clock frequency of hash engines was determined
from the hardware implementations, as discussed in the previous
subsection. Each benchmark was simulated for five million instruc-
tions. We considered two different implementation scenarios for the
memories that are part of the hardware monitor — in one case, we
assumed that they were implemented as on-chip memories, and in the
second case, we assumed that they were implemented off-chip. The
main difference between these cases is the access latency.

For inter- and intra-procedural checks, we experimented with two
different modes for flagging invalid behavior. In thedetectionmode,
the processor is allowed to continue while the monitor is running and is
stalled only if a control instruction (call/branch) completes before the
previous control instruction has been verified. In thepreventionmode,
no new instruction is allowed to commit after a control instruction
until the latter has been checked. For dynamic hashing, the latency of
hash computation does not permit stalling the processor for each basic
block. Therefore, the processor and hashing units are allowed to run

0
0.5

1
1.5

2
2.5

3

ad
pcm ep

ic

g7
21e

nc
ode

g7
21d

ec
ode gs

m

mpe
g2e

nc
ode

mpe
g2d

ec
ode

su
sa

n

Benchmark

A
ve

ra
ge

 C
PI

original with monitor (detection mode) with monitor (prevention mode)

(a)

0
1
2
3
4
5
6
7

adp
cm epic

g72
1enco

de

g72
1deco

de
gsm

mpeg2enco
de

mpeg2deco
de

su
sa

n

Benchmark

C
PI

original
md5(unpipelined)
md4(unpipelined)
pipelined hash

(b)

Fig. 5. Performance analysis of (a) intra-procedural control flow checking and
(b) dynamic hash checking

in parallel and the former is stalled only if the instruction buffer in the
hash unit becomes full.

When on-chip memories were used for the hardware monitor’s
CAMs and SRAM, performance degradation for inter-procedural
checks was found to be negligible (< 1%) for all benchmarks tested,
for both detection and prevention modes. This is expected since most
applications have sparse call graphs and their FSMs can be synthesized
to operate at or above processor speeds. The same is true for intra-
procedural checks, assuming an on-chip SRAM is used to store the
FSM state table for each function.

When off-chip memories were used, as expected, we observed
slightly higher performance penalties. Fig. 5(a) plots the average cycles
per instruction (CPI) for all benchmarks, for both the detection and
prevention modes. The figure demonstrates that even in this case, the
impact is fairly small (average of 1.77% for detection mode and 4.94%
for prevention mode).

0

1

2

3

4

5

6

100 90 80 70 60 50 40 30 20 10 0

Basic blocks hashed (%)

Av
er

ag
e

CP
I adpcm

g721encode
gsm
mpeg2encode
susan

Fig. 6. Performance estimation when the percentage of basic blocks hashed
is varied

Fig. 5(b) illustrates the impact of instruction integrity checking on
CPI, for different hash algorithms and their implementations. As ex-
pected, the performance penalty for an un-pipelined MD5 hash engine,
with a latency of 64 clock cycles, is substantial. The performance
penalty using an un-pipelined MD4 engine (latency of 48 cycles) is
lower, but still considerable. However, with pipelining, the penalty can
be virtually eliminated, as shown by the last bar in the graph. In most
cases, the original CPI is maintained with the use of pipelined hash
engines. With the use of pipelining, there is negligible performance
difference between the MD4 and MD5 algorithms.

Fig. 6 shows how the average CPI is affected by varying the number
of basic blocks that are hash-checked when an un-pipelined MD4 hash
engine is used. In most cases,50-60% of basic blocks can be hash-
checked without any observable decline in performance, even without
a pipelined implementation.

In summary, the results demonstrate that the proposed hardware-
assisted run-time monitoring technique is viable and imposes minimal
area and execution time overheads.

VII. C ONCLUSIONS

In this paper, we presented a scalable, application-specific method-
ology to safeguard the execution of programs running on embedded
processors. We formulated a hierarchical run-time monitoring frame-
work including program attributes such as inter-procedural control
flow, intra-procedural control flow and instruction contents within a
basic block, which provides protection at different granularities for
applications and systems with diverse security requirements. Run-time
monitoring is performed by a configurable hardware monitor to ensure
minimal performance degradation. Our studies reveal that the proposed
architecture is capable of facilitating secure execution of programs in
the face of a wide variety of security threats. We believe that such
techniques will be useful in addressing the increasing security concerns
in embedded system design.

REFERENCES

[1] B. Schneier,Applied Cryptography: Protocols, Algorithms and Source Code in C.
John Wiley and Sons, 1996.

[2] W. Stallings,Cryptography and Network Security: Principles and Practice. Prentice
Hall, 1998.

[3] Vulnerability Notes Database. CERT coordination center (http://www.kb.
cert.org/vuls/).

[4] M. Howard and D. LeBlanc,Writing Secure Code. Microsoft Press, 2002.
[5] G. Hoglund and G. McGraw,Exploiting Software: How to Break Code. Addison-

Wesley, 2004.
[6] S. Chen, Z. Kalbarczyk, J. Xu, and R. K. Iyer, “A data-driven finite state machine

model for analyzing security vulnerabilities,” inProc. Int. Conf. on Dependable
Systems& Networks, June 2003, pp. 605–614.

[7] C. Ko, M. Ruschitzka, and K. Levitt, “Execution monitoring of security-critical
programs in distributed systems: A specification-based approach,” inProc. IEEE
Symp. on Security& Privacy, May 1997, pp. 175–187.

[8] B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic self-checking
techniques for improved tamper resistance,” inProc. Wkshp. on Security& Privacy
in Digital Rights Management, Nov. 2001, pp. 141–159.

[9] H. Chang and M. J. Atallah, “Protecting software code by guards,” inRevised Papers
from the ACM CCS-8 Wkshp. on Security& Privacy in Digital Rights Management,
Nov. 2001, pp. 160–175.

[10] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski, “Oblivious
hashing: A stealthy software integrity verification primitive,” inProc. Int. Wkshp. on
Information Hiding, Oct. 2002, pp. 400–414.

[11] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution via program
shepherding,” inProc. USENIX Security Symp., Aug. 2002, pp. 191–206.

[12] M. Kuhn, The TrustNo 1 Cryptoprocessor Concept. CS555 Report, Purdue
University (http://www.cl.cam.ac.uk/˜mgk25/), Apr. 1997.

[13] Secure Coprocessing. IBM Inc. (http://www.research.ibm.com/scop/).
[14] X. Zhang, L. Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure coprocessor-based

intrusion detection,” inProc. ACM SIGOPS European Wkshp., Sept. 2002.
[15] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and

M. Horowitz, “Architectural support for copy and tamper resistant software,” in
Proc. Int. Conf. on Architectural Support for Programming Languages and Operating
Systems, Nov. 2000, pp. 168–177.

[16] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
Architecture for tamper-evident and tamper-resistant processing,” inProc. Int. Conf.
on Supercomputing, June 2003, pp. 160–171.

[17] G. E. Suh, J. Lee, and S. Devadas, “Secure program execution via dynamic
information flow tracking,” Dept. of EECS, MIT, Tech. Rep., July 2003.

[18] Non-Executable User Stack. http://www.openwall.com/linux
[19] C. Cowanet al., “Stackguard: Automatic adaptive detection and prevention of buffer-

overflow attacks,” inProc. USENIX Security Symp., Jan. 1998, pp. 63–77.
[20] J. P. McGregor, D. K. Karig, Z. Shi, and R. B. Lee, “A processor architecture defense

against buffer overflow attacks,” inProc. Int. Conf. on Information Technology:
Research and Education, Aug. 2003, pp. 243–250.

[21] ARM TrustZone Technology Overview. http://www.arm.com/products/
CPUs/arch-trustzone.html .

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for
evaluating and synthesizing multimedia and communicatons systems,” inProc. Int.
Symp. on Microarchitecture, Dec. 1997, pp. 330–335.

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “Mibench: A free, commercially representative embedded benchmark suite,”
in Proc. Annual Wkshp. on Workload Characterization, Dec. 2001, pp. 3–14.

[24] Synopsys. http://www.synopsys.com
[25] J. M. Mulder, N. T. Quach, and M. J. Flynn, “An area model for on-chip memories

and its application,”IEEE J. Solid-State Circuits, vol. 26, no. 2, pp. 98–106, Feb.
1991.

[26] ARM920T Embedded Processor Core. http://www.arm.com
[27] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Computer

Sciences Department, University of Wisconsin, Tech. Rep., June 1997.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

