Multi-Placement Structures for Fast and Optimized
Placement in Analog Circuit Synthesis

Raoul F. Badaoui and Ranga Vemuri
{rbadaoui,range@ececs.uc.edu

AbStI’aCt Mulg?rlzlgﬁﬁg\em
Generation Performance
. . . Optimization Circuit
This paper presents the novel idea of multi-placement struc wuii-Piacement Rigoriiam Simulation

tructure J/Sizes/F'arame&ers

tures, for a fast and optimized placement instantiation fia-a Sizes Froorpian [
log circuit synthesis. These structures need to be gertoathy Instantiator oS s
once for a specific circuit topology. When used in synthesis, . MU Placement
these pre-generated structures instantiate various lajloor-
plans for various sizes and parameters of a circuit. Unlike-p
cedural layout generators, they enable fast placementofits igyre 1:(a) One-time Generation of the multi-placement structure
while keeping the quality of the placements at a high levehdu .4 its (b) use in synthesis
a synthesis process. The fast placement is a result of higgdsp
instantiation resulting from the efficiency of the muli@dment be used in a layout-inclusive sizing process. Most of thes&sv
structure. The good quality of placements derive from the erly on procedural module generators to describe layout tem
tensive and intelligent search process that is used to bihid plates such as BALLISTIC [1], MOGLAN [8, 7] or MSL [5].
multi-placement structure. The target benchmarks of terse- Expert knowledge is used to design a layout template for an un
tures are analog circuits in the vicinity of 25 modules . An akized circuit using a specific fixed placement of blocks. €hes
gorithm for the generation of such multi-placement struedlis templates take as input the sizes and other design paraéter
presented. Experimental results show placement exedirties the circuit and instantiate a layout, iteratively, duringyathe-
with an average of a few milliseconds making them usable dais process. Speed is the major advantage of this method. How
ing layout-aware synthesis for optimized placements. ever, its drawback lies in its inability to explore possigieod
performance for the circuit that might exist for certainesif
the circuit were to be placed differently than in the temglat
1. Introduction The prqposed appr.oach aims at retaini_ng the .be.nefits of both
the techniques described above: a fast instantiation afulay

In the design of integrated circuits, placement is a majgp stfor layout-inclusive synthesis and various placement ipdss
that sets the coordinates of the various blocks preseneinith ties for various input sizes (No restriction to a single-fegined
cuit on a layout surface. The synthesis process of analeg &mPplate). Itis intended for sizing analog circuits of cdenjty
cuits uses layout generation information within its sizeegrch anging up to 25 modules.
loop for accuracy in performance estimation. A survey otgla ~ Our approach consists of a one-time generation of a multi-
ment algorithms [4] shows the major directions in analogg@la placement structure for a specific topology as shown in ligur
ment approaches: optimization based and template based. 1.a. The obtained structure would be used in a layout-inaus

Optimization basedtechniques use heuristic algorithms oynthesis process in the following manner: It is providethwi
sized circuits using methods such as simulated annealohgexn numerical sizes from an optimization tool and returns a iépec
netic algorithms to meet the specified performance comsgai floor-plan for the circuit. The proposed synthesis loop isvein
The KOAN/ANAGRAM [2] optimization-based placement tooin Figure 1.b . For different sizes given, the aim is to hawe th
belongs to this class. Other research includes Zhang's §8k w best floor-plan returned.
using genetic algorithms and Gielen’s LAYLA [6].This metho The rest of the paper is organized as follows: Section 2 de-
yields good placements optimizing interconnect wire-tesg fines the multi-placement structure and how it handles a kaimp
Its major drawback is convergence time which makes it hacdverage of the sizing search space. Section 3 describes-one
to use in a layout-inclusive sizing process. gorithm to generate that multi-placement structure. Bn&kec-

Template basedtechniques try to reduce the time search daifion 4 presents experimental results to support the fdiagidnd

gorithms take in optimization-based techniques so thatthe effectiveness of our method.
1530-1591/05 $20.00 © 2005 IEqEE

Circuit netlist
Placement Routing Circuit

Instantiatior Extraction

to a sub-space of thétdimensional search space. In Fig-
ure 2.a, a shaded elliptic area illustrates conceptuallgtwhch

a constraint imposes on the sizing algorithm. As shown, nu-
merous good solutions are hidden in the non-shaded area.
Thus, the synthesis process is not able to explore solutiotis
side its grey shaded area and find potential sub-optimal so-
lutions. An exhaustive search of the wholdimensional
space is practically impossible for time constraints. The- p

Figure 2:Representation of a M-dimensional search space

2. Multi-Placement Structure posed idea tries to include most possible good solutionbef t
o] search space in a reduced search space of the synthesis algo-
2.1. Definition of a Multi-Placement Structure rithm.

A fixed placement with specificxy) coordinates for the

A multi-placement structure is generated once for a Spedﬂfbcks is represented as one grey shaded area, thus, a multi-

circuit_ topqlogy. As shown in_ figure 1.b , this structure can bplacement structure and its set of placemé&htgould be repre-

US.Ed iteratively in a synthesis process. It Fnstantlatesrr_ubst sented as a set of grey shaded areas such as the ones shown in
suitable placement of blocks corr_espon(_jmg to t_he slzes Ei’lﬁ]aure 2.b. These elliptic areas can be overlapping in theche
parameters _fed o the. placement instantiator. Th!s Se“?”” subspace of the synthesis tool (The synthesis tool doesinot i
fines the various functions and structures comprising thlelaH”nuClude &y) coordinates in its search parameters). For example

pIaXemen.tftnéctfgrea t & blocks while a block i pointsA andB represent one solution with the same values for
cireurt 1S defined as a se OCKS Whilé a bIoCK IS any o)) e parameters of the circuit. The only difference ishe t

module defined by its module generator functions. The tha‘b(x,y) coordinates values of the blocks. Based on the definition of

wi andh; represent the width and height of l_)lockvhne €O the Multi-Placement Structure, the latter should retura spe-
stantsim,, h, W and.hMi are set b_y the de5|gner as the MINGific placement for each unique set of circuit parameterasilu
mum and.rr_1aX|mum widths and heights of black , the best one. In Figure 2.b, both poiftsand B are each in-

A specific placement of the sBtof blocks would be defined ide one shaded area of the search space. Thus, to make them

.) S
as a set ok; andy; values representing the coordinates ObeOClé%mmy with the main condition of returning only one place-
on the floor-plan.

At the bedinni f lti-ol t struct i ment , the placements stored in the Multi-Placement Stractu
€ beginning of our mutti-placement STUCIUTE generatl g, , 14 he shrunk in the circuit parameters range searcle ssac
process, we have a circuit with the widths, heigktandy co-

) . it is conceptually shown in Figure 2.c. Each placem@rdlon
ordinates as unknown and variable values. P y 9 P ma 9

. with its reduced widths and heights space shall be mathemati
The aim is to generate a structure that maps each SeEQnyormulated as:

w; (widths) andh;(heights) of all blocks to a set af andy; coor-
dinates representing the best placement to use for thefigpeci
widths and heights. That structure would mathematicallyelpe
resented as the functiow , with V = N (wi, hy) :

(NxB)
(pj,Bi)

At @
{Wstan;-_j 7We"d.j 7hstan‘4_j 7hend.j)

B is the set of all block®; of the circuit.l1 is the set of all
M(V): AN N (1) placementy; stored in the multi-placement structure. The val-
Vo= oppell UeSWstart andWeng (hstart and heng) for a specific placement
Set would represent the set of placements stored in a multi- represent an interval of all possible valueswp{h;) for each
placement structure while vectdrand itsw; andh; values con- block B;j reducing thecoverageplacementp; has. Thus, place-
sist of the possible dimensions of the various blocks. Thelte mentp; becomes valid if and only if; (hj) of every blockB; lies
ing placementp would be the best placement to use for thos#ithin [Wstarg ;; Wend ;] ([Nstart ;- Neng ;]). These ‘start’ and 'end’
specific widths and heights of the blocks. values should then be set during the generation of the multi-
Hence, if such a function is built, it can be used during dircuplacement structure in a way to ensure that placements &re on
synthesis as follows: First translate the proposed devis s valid and used within a range @fi andh; that would make the
into widths and heights of the modules using module genee@mbination of the widths, heights andy coordinates best for
tor functions, then use the functiow to obtain the placementthe performance of the circuit.
that would best suit the proposed device sizes. The Multi-Placement Structure shall have a structure such
To illustrate multi-placement structures, Mdimensional as the one represented conceptually in Figure 2.c : Non-
search space for some arbitrary circuit is represented asvarlapping placements of the circuit stored in the stmegtu
two-dimensional circle in Figure 2.aMis equal to the num- only one of those placements returned for every set of dipaui
ber of parameters in the circuit added to thgy) coordinates rameters feeded to the structure and most good designaswuti
variables of the blocks. The black dots in the figure reprgsen points included in its search space. The structure shalleine g
tential good solutions of the design problem. When using teerated once for a circuit and then used repetitively in sysith
plates to generate the layouts, the placement is set to adetedhllowing a better convergence during synthesis, yieldingud
of (x,y) coordinates. The sizing algorithm is hence constraingtlide of placement possibilities with a fast instantiatiime

BLOCK | |Placement Array Placement Array Placement Array
Arr(i,0) = {p1,p2...}) Arr(i,0) = {p1,p2...}) Arr(i,0) = {p1,p2...})

Wi [Inlerval [Istart(0),lend(0)] Hlnterval [Istart(l),lend(l)])* - {Interval [Istart(n),lend(n)]j M (V) : N N = n (4)

Hi [Imen/al [Istart(0),lend(0)] Hlnterval [Istart(l),lend(l)])* ~ ~Interval [Istart(n),lend(n)] N
V = T[:ﬂ(‘l/]/i(wi)ﬂ}[i(hi))
Placement Array Placement Array Placement Array i=0
Arr(i,0) = {p1,p2...}) Arr(i,0) = {p1,p2...}) Arr(i,0) = {p1,p2...})

Our goal is to have only one placement returned from func-

Figure 3:Row representing a block in a multi-placement structure offlon a4, thus:

ject

suitable for synthesis. Section 2.2 defines the data stesto- M (V)| =1 (5)
volved in implementing the multi-placement structures rokdi

above. Section 3 presents how a novel algorithm is used to generate

the multi-placement structure described and the way it rssu

2.2. Computational Implementation of the Multi- thatequation5is observed.
Placement Structure

3. The Multi-Placement algorithm
Functionas can be implemented as partially shown in Figure

3. Each block is represented by one structure as the one shownThis section presents the algorithm used to build the multi-
placement structure described in section 2. The goal isrterge
ate the structures of figure 3 ensuring the realization odtqn
4 and the compliance with equation 5.

Figure 4 shows the main steps and modules involved in the
generation of the multi-placement structure. The two mpgots
of the algorithm are th&lacement Explorer and theBlock
Pimensions-lnterval Optimizer.

2.2.1. Block-Row in a Multi-Placement Structure When an
input vectorV, is fed to that structure, eachv(h;) pair is fed
to the structure corresponding to Blocklhose two values run
through a linked list of interval objects. Each intervaledijrep-
resents an integer interval lstar, t0 leng,,. A linked list of
such intervals has the constraint of bemgcendingand non-

overlapping The value fed to the linked list must fall in one o The Placement Explorer is a search-like tool that intelli

those intervals. ently chooses various placements by selecting valueshéor t
When aw; or ah; value finds its interval, it returns an array o& Y y

e . i,Vi) coordinates. It then finds out which range of values of
numbersArr; attached to that specific interval as shown in t Xio¥i) 9

) . . s andh’s yields best performance for those specificy) val-
figure. This array of numbers represents the indices of atigsl))
mentspj in which w; (h) of vectorV lie within Wstar ; and ues, and sets the value of thesar,Wena Nstart,Nend) 4-tuple ac

cordingly. Finally, it stores this placement in a multi-pésnent
Wend; (hstart; @ndheng ;) of that placemenp;. Each of these Ingy. Finaly, | 'SP ! g

rows can be mathematically represented as the followina-f structure such as the one described in section 2. The plaxteme
ow . : icafly rep wing uréxplorer obtains aostvalue for this placement using the other
tion, a being an integer:

part of the tool, the Block Dimensions-Interval Optimizer.

The Block Dimensions-Intervals Optimizer takes a place-
wi(a)(or# (@) A~ N 3) ment with fixed &;,y;) values as input along yvith thg 4-tuple
(Wstart, Wends Dstart, Nend)- It runs a search algorithm (with thve
andh dimensions of the blocks as variables) to try and reduce
TheTsets returned from the’ and# functions are subsetsthosew andh intervals around the values that result in the low-

of the T set. The latter is the set of all placements stored in tR&t Wiring lengths and area for the circuit. This tool retutn
multi-placement structure. Everyreturned from a row of the the placement explorer the 4-tuple representing the retidiee
multi-placement structure consists of a set of placemarits smensions interval fed in along with an average value of tfs co
able to use for the; andh; values of the inpu¥ vector.tis the induced by the various wire lengths and areas encountered du
equivalent of theArr; » type objects shown in figure 3.The indng the search. The best attained value of that cost is also re
tersection of those returned subsets should be one and pely'§ned. The said average value returned would be used as the

placement, the one to use for those specified input widths &@$t indicator of the placement explorer as stated abovee-A d
heights. tailed description of the algorithm used to implement thalso

described above follows.
2.2.2. The Complete Multi-Placement StructureWhen all

the fn,h;) pairs are fed to their corresponding rows in the strug-
ture, we would obtain a set of array of numbers returned from

each row in the structure. The intersection of all thoseyarra The several steps involved in the placement's explorer-algo
of placements should correspond to the resulting placemﬁmm are shown in Figure 4 and described below
from our multi-placement structure. That structure’s fimrcas '

would then simply be computed as: 3.1.1. Placement SelectorThe placement selector fol-
lows a simulated annealing based method to perform its

a — T1cll

1. Placement Explorer

placement’s set of ranges. In order to ensure that equation 5
holds true, there should be no overlap between two placesnent

[Placement] intervals of block dimensions. ThResolve Overlapsroutine
Selector_): defined below has the task of resolving those overlaps and en-
5 forcing equation 5.

\ Placement - .
Placement . P ;(D | i Cost j : 1: Set of Overl appi ng pl acenents
Expansion * _ Reduced k Selector Calculator R.e.50| ve Overl aps:
Pertutd : Vi;i:0—=N

: Dimensions-Intervals:
- - Average Cost :
- Best Cost

Placement VWi Wi 3Wstart;_j — Wendij
Vhi;hi D Nstarg | — Nendij

: : I:’Wi(Wi)ﬁﬂ{i(hi)ﬂI
T e VI,me 1
V Resol ve Overl ap(m pj)

Resolve

Optimize
Overlaps

Ranges

Multi-
Placement
Structure

Object

Store

Blocks
Dimensions-Interval
Optimizer

Keep
Placement

Restore
Previous
Placement

By using thew and # functions representing the multi-
: placement structure shown in figure 3 and initially emptg th
: > e Resolve Overlapsroutine retrieves all the placements in the
T ' multi-placement structure that overlap with placempnOne
by one, all these placements’ overlaps are resolved usafgeh
solve Overlaproutine.

The latter searches for the smallest dimension (row) in
task. It initially selects a random placement for the topalvhich the two placements are overlapping. The values of the
0gy. The{Wstar; ;; Wend ;; Nstart ; ;Nenq ;) Values of the allowable average cost of each of the placement are then compared. The
ranges of widths and heights for that placement are imlacement with a higher average cost is chosen to be shrunk in
tially set to the minimum widths and heights of the blockshe found dimension. Shrinking a placement’s interval eaimg
These values are then expanded in flacement Expan- one selected row consists of taking a placement row as an in-
sionstep presented below. put along with its Wstart,Wend, Nstart» hend) 4-tuple vector. It ei-

) .) ther shrinks the selected or h interval. If the overlapping in-
3.1.2. Placement Expansion-This step takes in the selecteqq 5| (o he shrunk contains completely the other placement
placement with its blocks” dimensions ranges set to thef-Mip ey from thestart and theend sides, it is forked into two

imum and eXPa”dS them on the floor-plan while keeping therﬂ?ﬂcements, each assuming new shrunk intervals on eacbfside
from overlapping. the un-changed placement. The shrunk placement(s) has-its ¢

Blocks have thgir d_imensi(_)ns incremented one by one qugponding\@start,wend, hetart, hend) 4-tuple values adjusted ac-
no further expansion is possible due to overlapping or Mt"&ordingly.

bounds constraints. This expansion would form an interfal o Having resolved overlaps, placemenis then stored in the

widths and heights for the bIOCk_S' multi-placement structure using tistore Placementoutine.
_The expanded placemert is then sent to the Block ag shown below, thétore Placementalgorithm is actually
Dimensions-Interval OptimizeBPIO) described later in Sec- g ifying the data structure represented in figure 3. It adds
tion 3.2. This placement represents a proposed SOIUt@R | objects and splits others into two in order to keepntbre-
in the simulated annealing scheme of the placement @Xjriapping and ascending characteristics of the linkgafiin-
plorer. TheBDIO will return back to the placement explorer ggq) opjects. The index of the placement being storedds th

cost value for this placement and a reduced rangeaiidh ap- 54qeq to the corresponding array of indices above the place-
plicable for t.hIS placement. Those shrunk intervals areothe&s ont's interval represented by one or more interval objects
that would yield best performance.

Thus, this placement should be returned by the multi- store Pl acenent:
placement structure once used, if it is fed wittand h values Vi;i:0—N
that lie in the specified range. Re;\j[e‘;' [qe wi(@):

To make the multi-placement structure comply with equation 5. 71—y {Pi} Va Wetary; <A< Weng,
5, and have the structure only retumeplacement for the spec- Redef i ne #i(a):
ified w and h intervals, the latter interval should not intersect A —T1
with any otherw andh interval attached to any placement al- 2~ T"=TU{Pi} V& fsan; < a<heng;
ready stored in the multi-placement structure. SectiorBh-
low describes th&®esolve Overlapsstep handling this issue in
the algorithm

Figure 4:Algorithm Flow Detailed Representation

Having resolved overlaps and stored the placement in the
multi-placement structure, the algorithm follows a sintetban-
nealing based selection criteria to choose the next placttoe
3.1.3. Resolve OverlapsThe {wv,h) variable space that is nowbe evaluated. Théccept New Algorithm check of Figure 4
attached to placemeptmight intersect with an already exploregerforms a condition check on the cost of the placement being

explored. If placemenp is accepted it is used to select the next ([_Circuit | Blocks [Nets | Terminals]|

placement to be evaluated through fPerturb Placementstep g::gg; g j ig
of the algorithm. Otherwise, the last accepted placemersgs. Circo6 5 2 18

TwoStage O 5 9 22
3.1.4. Perturb Placement: The Perturb Placement step of Sviﬁ‘gleg?ﬁ,ed"gr;‘;’mp 5 14 3
the algorithm of Figure 4 uses the current accepted placemen Mixer 8 6 15
to select a new placement and sends it back to be evaluated by circ08 8 8 24

tso-cascode 21 36 46
the placement explorer. Based on a percentage value setby th berchmarkad >4 15 15

user, a set number of blocks’andy coordinates are randomly
varied. To allow some shuffling of the circuit, an out-of-inolu

coordinate variation is not discarded but used to shift tbeko Table 1-Test Benchmarks _
back to the opposite side of the floor-plan. 3.2.2. Cost Calculator: The cost calculator has a fixed place-

ment along with fixed widths and heights of the blocks present

As for the stopping criterion of the Simulated Annealing-prd" the circuitas its input. It calculates a cost for the pregbeir-
cess, a value representing the percentage coverage ofdtteswicUit based on the wire-lengths and area of that proposedrlesi
and heights ranges space is calculated and updated. Tre pi&BiS costfunction is customizable.
ment explorer algorithm keeps running until an acceptableey At the end of the simulated annealing process whose stop-
(set by the user) of that percentage is reached knowing tRH}d Criterion is a number of iterations set by the user, tez-a
the ideal 100% value can never be reached. The remaining &3¢ oSt value obtained is returned along with the best ahstv
covered percentage of the space would then be mapped f@ft@ined. Added to that, th@var, Wend: hstart, Nend) 4-tuple has
template-like placement for backup purposes. Section 8-2 & be minimized around the values wfand h that have pro-

scribes the algorithm used to implement the Block Dimersiorfiuced the best cost during the iterations. Tptimize Ranges
Intervals Optimizer. step of the algorithm described below in Section 3.2.3 isltise

minimize those ranges.

3.2. Block Dimensions-Intervals Optimizer 3.2.3. Optimize Ranges:The interval of thew andh inter-

vals of the blocks represented by thesibt, Wend, hstart:s Nend)

The Block Dimensions-Intervals Optimizer (BDIO) is sup4-tuples is optimized around the valueswandh that yielded
posed to perform the following tasks on one placement handgé best cost. The values for each bladk the selected place-
to it by the Placement Explorer: mentp; are adjusted in the same way e is changed be-

e Minimize the values of the intervals represented by the lﬁ)—W:
tuple Wstart, Wend, Nstart, hend) around the values (yf/_ano! averagecost
h that would best produce a better performance circuit for Wtart,j = Whest — —p - X (Wend j — Wstar ;) ®)

the specific placement in question. Use of this formula makes the intervals proportional to tre r

e Calculate an average cost for the placement considerialof the average cost and best cost. The further the aversge
This average cost is the one to be returned to the Plateaway from the best cost, the tighter we would like the inter
ment Explorer along with the best cost attained. val to be arounavpes; andhpes;.

The Block Dimensions-Intervals Optimizer (BDIO) has been
also implemented using a Simulated Annealing methodolo

This T%ke_s Ol:rtméjltl-placlgmerltt :I;trulcturihgen_?tr]atloln a%r best cost and its average cost. The Placement Explorerhses t
anested simulated annealing style algorthm. The algornbr oy, neq average cost value as a cost for its own SA-like-algo
the BDIO is shown in Figure 4 on its right side. The foIIowmnghm

sections describe the tasks performed on the placemenedan Finally, the multi-placement structure would be filled with

to theBDIO by the placement explorer. a multitude of placements, mapping to widths and heights of

3.2.1. Dimensions SelectorThe dimensions selector select&he blocks present in the circuit, confining with equationd,1
specific values for the andh values iteratively and sends then@ind 5. The next section will show through some example bench-
to a cost calculator. The proposed solution for the simdlate marks the usage of the proposed method and its efficiency.
nealing of theBDIO is thus a numerical value of the widths and
heights of the blocks. Those values should be valid valuéssin
range specified by the 4-tupl@iart, Wend, hstart, heng) Of the
placement being evaluated. 4. Experimental Results

Having obtained a value for the cost from the cost calcula-
tor (described in Section 3.2.2), the dimensions sele@dubs A multi-placement structure has been generated for each of
the proposed andh values by a percentage input set by the ustre circuits presented in Table 1. The algorithm was written
atinput. C++, and run on a SUN-Blade-1000 workstation with 2GB of

The Blocks dimensions-interval optimization algorithm re
Wrns the placement along with its reduced interval 4-tuitde

Cost
3200

3000
£ 2600 -
s]
3 2800 S
£ 0 L
2200
2000

Figure 6:Lowest Cost Selection for TwoStageOpamp Multi-Placement
Figure 5:Various sizes Floorplan instantiations (a,b) and templatestructure.
based instantiation (c) for two-stage opamp

[Circuit | CPU Generation Time | Placements | Instantiation |
circ0l 21m12s 57 0.07s
circ02 25m35s 51 0.085s
circ06 46m23s 86 0.1s
TSO 52m45s 82 0.09s
SEO 1h55m 115 0.12s
Mixer 57m23s 75 0.11s
circ08 1h42m13s 123 0.12s
tso-cascode 2h36m35s 124 0.14s
benchmark24 4h03m 133 0.15s

Figure 7:Example floor-plan instantiation for circuit 'tso-cascode

Table 2:Usage and Generation of the Multi-Placement Stru@f time taken to generate those placements and is compara-
tures Generated ble to template-based approaches in speed. On the othey hand

RAM. Table 2 shows the details of the multi-placement strug?pendmg on the parameters and sizes of the circuit usied, it

. Stantiates various floor-plan settings, as if optimizatiased
tures generation. Thelacementgolumn shows the number of : . . N
. . . methods were being used. It instantiates placements within
possible template placements modeled in each muln-plan&n]. . . .
: o S iseconds. It is applicable to most analog blocks of sizes
structure. Thenstantiationcolumn reveals the time it takes to . :
.o ranging up to 25 modules. It does not require expert knowl-
instantiate one placement when the structure is fed withsdiar edae to bre-generate placement templates
the circuit. Those instantiation times prove to be shortugmo 9 pre-g P P '
for use in a layout-inclusive synthesis process.
The various placements generated for the various sizes d%ﬁferences
\lg_ded WOSUId bedopSanzr?d W;th re_sptecttfcot_area ap(tjhwnt'e-lbntg 1& B.R.Owen, R.Duncan, S.Jantzi, C.Ouslis, S.Rezaniad an
Igures o.a and o.b show two Instantiaions ot the two-stage \;arin. Ballistic: An analog layout language. IfEEE

opamp when its generated multi-place.ment Strgcture is.used 1995 cystom Integrated Circuits Conferenpages 41-44, 1995.
The template-based manual placement is shown in 5.casac9ﬂ11 M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. Carley.

parison. The multi-placement structure idea suits analogic Koan/anagram 2: New tools for device-level analog placdraed
synthesis best due to the higher need of exact layout elabora routing. IEEE Journal of Solid-State Circuits26(3):330-342,
tion during synthesis. Circuiso-cascodés a benchmark circuit March 1991.
of op-amps in cascode comprised of 21 modules, comparablginL. Zhang et.al. A genetic approach to analog module pree
size to most complex analog blocks. An instantiation of fit-o with simulated annealing. IfEEE International Symposium on
mized layout is shown in figure 7. Circuits and Systemsolume 1, pages 345-348, ISCAS 2002.

Finally, to validate the correctness of the multi-placemel#] G. G. Gielen and R. A. Rutenbar. Computer-aided desiganaf
structure, various instantiations of the same module were ¢ 09 and mixed-signal integrated circui8roceedings of the IEEE
ducted, following a variation in one dimension of the search 88(12):1825-1852, December 2000.
space. The cost incurred from using several placements friH-Sampath and R. Vemuri. Msl: A high-level language fargm-
within the multi-placement structure is shown in the toptplo Eterized analog and mixed-signal layout generatordFiiR 12th

. . International Conference on VLS2003.
of Figure 6. The bottom plot shows the cost when the mulii-) .
. . 6] K. Lampaert, G. Gielen, and W. Sansen. A performanceedriv

placement structure is used; clearly, the lowest cost plece

lected. d di the | i f th d sol placement tool for analog integrated circuit$EEE Journal of
was selected, depending on the jocation of the proposed SolU gy gtate Circuits30(7):773-780, July 1995.
tion in the search space.

[7] M. Wolf and U. Kleine. Automatic topology optimizatiomf ana-
log module generators. Resign Automation and Test in Eurqgpe
5. Conclusion pages 961-962, February 1998.
[8] M. Wolf, U. Kleine, and B. J. Hosticka. A novel analog mdelu
This paper presented an algorithm to generate a multi- generator environment. Proceeding of the European Design and
placement structure as a way to obtain optimized placements Test Conferencepages 388-392, March 1996 1996.
in a synthesis loop without having to include a timely place-
ment algorithm. The method extremely reduces the amount

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

