
Multi-Placement Structures for Fast and Optimized
Placement in Analog Circuit Synthesis

Raoul F. Badaoui and Ranga Vemurifrbadaoui,rangag@ececs.uc.edu

Abstract

This paper presents the novel idea of multi-placement struc-
tures, for a fast and optimized placement instantiation in ana-
log circuit synthesis. These structures need to be generated only
once for a specific circuit topology. When used in synthesis,
these pre-generated structures instantiate various layout floor-
plans for various sizes and parameters of a circuit. Unlike pro-
cedural layout generators, they enable fast placement of circuits
while keeping the quality of the placements at a high level during
a synthesis process. The fast placement is a result of high speed
instantiation resulting from the efficiency of the multi-placement
structure. The good quality of placements derive from the ex-
tensive and intelligent search process that is used to buildthe
multi-placement structure. The target benchmarks of thesestruc-
tures are analog circuits in the vicinity of 25 modules . An al-
gorithm for the generation of such multi-placement structures is
presented. Experimental results show placement executiontimes
with an average of a few milliseconds making them usable dur-
ing layout-aware synthesis for optimized placements.

1. Introduction

In the design of integrated circuits, placement is a major step
that sets the coordinates of the various blocks present in the cir-
cuit on a layout surface. The synthesis process of analog cir-
cuits uses layout generation information within its sizingsearch
loop for accuracy in performance estimation. A survey of place-
ment algorithms [4] shows the major directions in analog place-
ment approaches: optimization based and template based.

Optimization based techniques use heuristic algorithms on
sized circuits using methods such as simulated annealing and ge-
netic algorithms to meet the specified performance constraints.
The KOAN/ANAGRAM [2] optimization-based placement tool
belongs to this class. Other research includes Zhang’s [3] work
using genetic algorithms and Gielen’s LAYLA [6].This method
yields good placements optimizing interconnect wire-lengths.
Its major drawback is convergence time which makes it hard
to use in a layout-inclusive sizing process.

Template basedtechniques try to reduce the time search al-
gorithms take in optimization-based techniques so that they can

Generation

Instantiator
FloorplanPlacement

Optimization
Algorithm

Instantiatior

Floorplan Layout

Routing Circuit
Extraction

Placement

(b)(a)

Performance

Sizes/Parameters Circuit netlist

Circuit

Simulation

Sizes

Structure

Multi−Placement
Structure

Multi−Placement
Structure

Multi−Placement

Figure 1:(a) One-time Generation of the multi-placement structure
and its (b) use in synthesis

be used in a layout-inclusive sizing process. Most of these works
rely on procedural module generators to describe layout tem-
plates such as BALLISTIC [1], MOGLAN [8, 7] or MSL [5].
Expert knowledge is used to design a layout template for an un-
sized circuit using a specific fixed placement of blocks. These
templates take as input the sizes and other design parameters of
the circuit and instantiate a layout, iteratively, during asynthe-
sis process. Speed is the major advantage of this method. How-
ever, its drawback lies in its inability to explore possiblegood
performance for the circuit that might exist for certain sizes if
the circuit were to be placed differently than in the template.

The proposed approach aims at retaining the benefits of both
the techniques described above: a fast instantiation of layout
for layout-inclusive synthesis and various placement possibili-
ties for various input sizes (No restriction to a single, pre-defined
template). It is intended for sizing analog circuits of complexity
ranging up to 25 modules.

Our approach consists of a one-time generation of a multi-
placement structure for a specific topology as shown in Figure
1.a . The obtained structure would be used in a layout-inclusive
synthesis process in the following manner: It is provided with
numerical sizes from an optimization tool and returns a specific
floor-plan for the circuit. The proposed synthesis loop is shown
in Figure 1.b . For different sizes given, the aim is to have the
best floor-plan returned.

The rest of the paper is organized as follows: Section 2 de-
fines the multi-placement structure and how it handles a sampled
coverage of the sizing search space. Section 3 describes oneal-
gorithm to generate that multi-placement structure. Finally, Sec-
tion 4 presents experimental results to support the feasibility and
effectiveness of our method.

1530-1591/05 $20.00 © 2005 IEEE

M−dimensionnal

search space
A

B

(b)

B

A

(c)(a)

:

Sub−Space for fixed X,Y coordinates

Acceptable Good Design

:

Figure 2:Representation of a M-dimensional search space

2. Multi-Placement Structure

2.1. Definition of a Multi-Placement Structure

A multi-placement structure is generated once for a specific
circuit topology. As shown in figure 1.b , this structure can be
used iteratively in a synthesis process. It instantiates the most
suitable placement of blocks corresponding to the sizes and
parameters fed to the placement instantiator. This sectionde-
fines the various functions and structures comprising the multi-
placement structure.

A circuit is defined as a set ofN blocks while a block is any
module defined by its module generator functions. The variables
wi andhi represent the width and height of blocki while con-
stantswmi , hmi , wMi andhMi are set by the designer as the mini-
mum and maximum widths and heights of blocki.

A specific placement of the setB of blocks would be defined
as a set ofxi andyi values representing the coordinates of blocks
on the floor-plan.

At the beginning of our multi-placement structure generation
process, we have a circuit with the widths, heights,x andy co-
ordinates as unknown and variable values.

The aim is to generate a structure that maps each set of
wi(widths) andhi(heights) of all blocks to a set ofxi andyi coor-
dinates representing the best placement to use for the specified
widths and heights. That structure would mathematically berep-
resented as the functionM , with V =SN

i=0(wi ;hi) :

M (V) : N 2N 7! Π (1)
V 7! p; p2Π

SetΠ would represent the set of placements stored in a multi-
placement structure while vectorV and itswi andhi values con-
sist of the possible dimensions of the various blocks. The result-
ing placementp would be the best placement to use for those
specific widths and heights of the blocks.

Hence, if such a function is built, it can be used during circuit
synthesis as follows: First translate the proposed device sizes
into widths and heights of the modules using module genera-
tor functions, then use the functionM to obtain the placement
that would best suit the proposed device sizes.

To illustrate multi-placement structures, aM-dimensional
search space for some arbitrary circuit is represented as a
two-dimensional circle in Figure 2.a .M is equal to the num-
ber of parameters in the circuit added to the (x,y) coordinates
variables of the blocks. The black dots in the figure represent po-
tential good solutions of the design problem. When using tem-
plates to generate the layouts, the placement is set to a fixedset
of (x,y) coordinates. The sizing algorithm is hence constrained

to a sub-space of theM-dimensional search space. In Fig-
ure 2.a, a shaded elliptic area illustrates conceptually what such
a constraint imposes on the sizing algorithm. As shown, nu-
merous good solutions are hidden in the non-shaded area.
Thus, the synthesis process is not able to explore solutionsout-
side its grey shaded area and find potential sub-optimal so-
lutions. An exhaustive search of the wholeM-dimensional
space is practically impossible for time constraints. The pro-
posed idea tries to include most possible good solutions of the
search space in a reduced search space of the synthesis algo-
rithm.

A fixed placement with specific (x,y) coordinates for the
blocks is represented as one grey shaded area, thus, a multi-
placement structure and its set of placementsΠ would be repre-
sented as a set of grey shaded areas such as the ones shown in
Figure 2.b. These elliptic areas can be overlapping in the search
subspace of the synthesis tool (The synthesis tool does not in-
clude (x,y) coordinates in its search parameters). For example,
pointsA andB represent one solution with the same values for
all the parameters of the circuit. The only difference is in the
(x,y) coordinates values of the blocks. Based on the definition of
the Multi-Placement Structure, the latter should return one spe-
cific placement for each unique set of circuit parameter values:
the best one. In Figure 2.b, both pointsA andB are each in-
side one shaded area of the search space. Thus, to make them
comply with the main condition of returning only one place-
ment , the placements stored in the Multi-Placement Structure
should be shrunk in the circuit parameters range search space as
it is conceptually shown in Figure 2.c. Each placementp j along
with its reduced widths and heights space shall be mathemati-
cally formulated as:(Π�B) 7! N 4 (2)(pj ;Bi) 7! fwstarti; j ;wendi; j ;hstarti; j ;hendi; j)

B is the set of all blocksBi of the circuit.Π is the set of all
placementsp j stored in the multi-placement structure. The val-
ueswstart andwend (hstart andhend) for a specific placement
p j represent an interval of all possible values ofwi (hi) for each
block Bi reducing thecoverageplacementp j has. Thus, place-
mentp j becomes valid if and only ifwi (hi) of every blockBi lies
within [wstarti; j ;wendi; j ℄ ([hstarti; j ;hendi; j ℄). These ’start’ and ’end’
values should then be set during the generation of the multi-
placement structure in a way to ensure that placements are only
valid and used within a range ofwi andhi that would make the
combination of the widths, heights,x andy coordinates best for
the performance of the circuit.

The Multi-Placement Structure shall have a structure such
as the one represented conceptually in Figure 2.c : Non-
overlapping placements of the circuit stored in the structure,
only one of those placements returned for every set of circuit pa-
rameters feeded to the structure and most good design solutions
points included in its search space. The structure shall be gen-
erated once for a circuit and then used repetitively in synthesis,
allowing a better convergence during synthesis, yielding amul-
titude of placement possibilities with a fast instantiation time

Wi

Hi

Interval [Istart(0),Iend(0)] Interval [Istart(1),Iend(1)] Interval [Istart(n),Iend(n)]

BLOCK i

Interval [Istart(0),Iend(0)] Interval [Istart(1),Iend(1)] Interval [Istart(n),Iend(n)]

Placement Array
Arr(i,0) = {p1,p2...}

Placement Array
Arr(i,0) = {p1,p2...}

Placement Array
Arr(i,0) = {p1,p2...}

Placement Array
Arr(i,0) = {p1,p2...}

Placement Array
Arr(i,0) = {p1,p2...}

Placement Array
Arr(i,0) = {p1,p2...}

Figure 3:Row representing a block in a multi-placement structure ob-
ject

suitable for synthesis. Section 2.2 defines the data structures in-
volved in implementing the multi-placement structures defined
above.

2.2. Computational Implementation of the Multi-
Placement Structure

FunctionM can be implemented as partially shown in Figure
3. Each block is represented by one structure as the one shown.

2.2.1. Block-Row in a Multi-Placement Structure When an
input vectorV, is fed to that structure, each (wi ,hi) pair is fed
to the structure corresponding to Blocki. Those two values run
through a linked list of interval objects. Each interval object rep-
resents an integer intervaln: Istarti;n to Iendi;n. A linked list of
such intervals has the constraint of beingascendingandnon-
overlapping. The value fed to the linked list must fall in one of
those intervals.

When awi or ahi value finds its interval, it returns an array of
numbersArr i;n attached to that specific interval as shown in the
figure. This array of numbers represents the indices of all place-
mentsp j in which wi (hi) of vectorV lie within wstarti; j and
wendi; j (hstarti; j andhendi; j) of that placementp j . Each of these
rows can be mathematically represented as the following func-
tion, a being an integer:

W i(a)(orH i(a)) : N 7! Π (3)
a 7! π � Π

Theπ sets returned from theW andH functions are subsets
of theΠ set. The latter is the set of all placements stored in the
multi-placement structure. Everyπ returned from a rowi of the
multi-placement structure consists of a set of placements suit-
able to use for thewi andhi values of the inputV vector.π is the
equivalent of theArr i;n type objects shown in figure 3.The in-
tersection of those returned subsets should be one and only one
placement, the one to use for those specified input widths and
heights.

2.2.2. The Complete Multi-Placement StructureWhen all
the (wi ,hi) pairs are fed to their corresponding rows in the struc-
ture, we would obtain a set of array of numbers returned from
each row in the structure. The intersection of all those arrays
of placements should correspond to the resulting placement
from our multi-placement structure. That structure’s functionM
would then simply be computed as:

M (V) : N 2N 7! Π (4)

V 7! π = N\
i=0

(W i(wi)\H i(hi))
Our goal is to have only one placement returned from func-

tionM , thus: jM (V)j= 1 (5)

Section 3 presents how a novel algorithm is used to generate
the multi-placement structure described and the way it ensures
that equation 5 is observed.

3. The Multi-Placement algorithm

This section presents the algorithm used to build the multi-
placement structure described in section 2. The goal is to gener-
ate the structures of figure 3 ensuring the realization of equation
4 and the compliance with equation 5.

Figure 4 shows the main steps and modules involved in the
generation of the multi-placement structure. The two majorparts
of the algorithm are thePlacement Explorer and theBlock
Dimensions-Interval Optimizer.

The Placement Explorer is a search-like tool that intelli-
gently chooses various placements by selecting values for the
(xi ,yi) coordinates. It then finds out which range of values of
w’s andh’s yields best performance for those specific (xi ,yi) val-
ues, and sets the value of the (wstart,wend,hstart,hend) 4-tuple ac-
cordingly. Finally, it stores this placement in a multi-placement
structure such as the one described in section 2. The placement
explorer obtains acostvalue for this placement using the other
part of the tool, the Block Dimensions-Interval Optimizer.

TheBlock Dimensions-Intervals Optimizer takes a place-
ment with fixed (xi,yi) values as input along with the 4-tuple
(wstart, wend, hstart, hend). It runs a search algorithm (with thew
andh dimensions of the blocks as variables) to try and reduce
thosew andh intervals around the values that result in the low-
est wiring lengths and area for the circuit. This tool returns to
the placement explorer the 4-tuple representing the reduced di-
mensions interval fed in along with an average value of the cost
induced by the various wire lengths and areas encountered dur-
ing the search. The best attained value of that cost is also re-
turned. The said average value returned would be used as the
cost indicator of the placement explorer as stated above. A de-
tailed description of the algorithm used to implement the tools
described above follows.

3.1. Placement Explorer

The several steps involved in the placement’s explorer algo-
rithm are shown in Figure 4 and described below.

3.1.1. Placement Selector:The placement selector fol-
lows a simulated annealing based method to perform its

Restore

Placement

Keep

?

Placement

New

Accept

Expansion

Placement

Selector

Placement

Selector

Dimensions

Calculator

Cost

Previous

Resolve
Overlaps

Store

Placement p

Optimize
Ranges

Placement

Explorer

Optimizer
Dimensions−Interval

Blocks

START

Placement

Perturb

No

Yes

Placement

Object

Structure

Placement

Multi−

− Average Cost

− Best Cost

− Reduced

 Dimensions−Intervals

Figure 4:Algorithm Flow Detailed Representation

task. It initially selects a random placement for the topol-
ogy. Thefwstarti; j ;wendi; j ;hstarti; j ;hendi; j) values of the allowable
ranges of widths and heights for that placement are ini-
tially set to the minimum widths and heights of the blocks.
These values are then expanded in thePlacement Expan-
sionstep presented below.

3.1.2. Placement Expansion:This step takes in the selected
placement with its blocks’ dimensions ranges set to their min-
imum and expands them on the floor-plan while keeping them
from overlapping.

Blocks have their dimensions incremented one by one until
no further expansion is possible due to overlapping or out-of-
bounds constraints. This expansion would form an interval of
widths and heights for the blocks.

The expanded placementp is then sent to the Block
Dimensions-Interval Optimizer (BDIO) described later in Sec-
tion 3.2. This placement represents a proposed solution
in the simulated annealing scheme of the placement ex-
plorer. TheBDIO will return back to the placement explorer a
cost value for this placement and a reduced range ofw andh ap-
plicable for this placement. Those shrunk intervals are theones
that would yield best performance.

Thus, this placement should be returned by the multi-
placement structure once used, if it is fed withw andh values
that lie in the specified range.

To make the multi-placement structure comply with equation
5, and have the structure only returnoneplacement for the spec-
ified w and h intervals, the latter interval should not intersect
with any otherw andh interval attached to any placement al-
ready stored in the multi-placement structure. Section 3.1.3 be-
low describes theResolve Overlapsstep handling this issue in
the algorithm

3.1.3. Resolve Overlaps:The (w,h) variable space that is now
attached to placementp might intersect with an already explored

placement’s set of ranges. In order to ensure that equation 5
holds true, there should be no overlap between two placements’
intervals of block dimensions. TheResolve Overlapsroutine
defined below has the task of resolving those overlaps and en-
forcing equation 5.

I : Set of Overlapping placements
Resolve Overlaps:8i; i : 0! N8wi ;wi : wstarti; j ! wendi; j8hi ;hi : hstarti; j ! hendi; j

I =W i(wi)\H i (hi)\ I8π;π 2 I
Resolve Overlap(π; pj)

By using theW andH functions representing the multi-
placement structure shown in figure 3 and initially empty, the
Resolve Overlapsroutine retrieves all the placements in the
multi-placement structure that overlap with placementp. One
by one, all these placements’ overlaps are resolved using theRe-
solve Overlaproutine.

The latter searches for the smallest dimension (row) in
which the two placements are overlapping. The values of the
average cost of each of the placement are then compared. The
placement with a higher average cost is chosen to be shrunk in
the found dimension. Shrinking a placement’s interval range in
one selected row consists of taking a placement row as an in-
put along with its (wstart,wend, hstart, hend) 4-tuple vector. It ei-
ther shrinks the selectedw or h interval. If the overlapping in-
terval to be shrunk contains completely the other placement’s
interval from thestart and theend sides, it is forked into two
placements, each assuming new shrunk intervals on each sideof
the un-changed placement. The shrunk placement(s) has its cor-
responding (wstart,wend, hstart, hend) 4-tuple values adjusted ac-
cordingly.

Having resolved overlaps, placementp is then stored in the
multi-placement structure using theStore Placementroutine.

As shown below, theStore Placementalgorithm is actually
modifying the data structure represented in figure 3. It addsin-
terval objects and splits others into two in order to keep thenon-
overlapping and ascending characteristics of the linked list of in-
terval objects. The index of the placement being stored is then
added to the corresponding array of indices above the place-
ment’s interval represented by one or more interval objects.

Store Placement:8i; i : 0! N
RedefineW i(a) :
N 7!Π
a 7! π = π[fpj g 8a; wstarti; j � a�wendi; j

Redefine H i(a) :
N 7!Π
a 7! π = π[fpj g 8a; hstarti; j � a� hendi; j

Having resolved overlaps and stored the placement in the
multi-placement structure, the algorithm follows a simulated an-
nealing based selection criteria to choose the next placement to
be evaluated. TheAccept New Algorithm check of Figure 4
performs a condition check on the cost of the placement being

explored. If placementp is accepted it is used to select the next
placement to be evaluated through thePerturb Placementstep
of the algorithm. Otherwise, the last accepted placement isused.

3.1.4. Perturb Placement:The Perturb Placement step of
the algorithm of Figure 4 uses the current accepted placement
to select a new placement and sends it back to be evaluated by
the placement explorer. Based on a percentage value set by the
user, a set number of blocks’x andy coordinates are randomly
varied. To allow some shuffling of the circuit, an out-of-bound
coordinate variation is not discarded but used to shift the block
back to the opposite side of the floor-plan.

As for the stopping criterion of the Simulated Annealing pro-
cess, a value representing the percentage coverage of the widths
and heights ranges space is calculated and updated. The place-
ment explorer algorithm keeps running until an acceptable value
(set by the user) of that percentage is reached knowing that
the ideal 100% value can never be reached. The remaining un-
covered percentage of the space would then be mapped to a
template-like placement for backup purposes. Section 3.2 de-
scribes the algorithm used to implement the Block Dimensions-
Intervals Optimizer.

3.2. Block Dimensions-Intervals Optimizer

The Block Dimensions-Intervals Optimizer (BDIO) is sup-
posed to perform the following tasks on one placement handed
to it by the Placement Explorer:� Minimize the values of the intervals represented by the 4-

tuple (wstart, wend, hstart, hend) around the values ofw and
h that would best produce a better performance circuit for
the specific placement in question.� Calculate an average cost for the placement considered.
This average cost is the one to be returned to the Place-
ment Explorer along with the best cost attained.

The Block Dimensions-Intervals Optimizer (BDIO) has been
also implemented using a Simulated Annealing methodology.
This makes our multi-placement structure generation algorithm
a nested simulated annealing style algorithm. The algorithm for
theBDIO is shown in Figure 4 on its right side. The following
sections describe the tasks performed on the placement handed
to theBDIO by the placement explorer.

3.2.1. Dimensions Selector:The dimensions selector selects
specific values for thew andh values iteratively and sends them
to a cost calculator. The proposed solution for the simulated an-
nealing of theBDIO is thus a numerical value of the widths and
heights of the blocks. Those values should be valid values inthe
range specified by the 4-tuple (wstart, wend, hstart, hend) of the
placement being evaluated.

Having obtained a value for the cost from the cost calcula-
tor (described in Section 3.2.2), the dimensions selector perturbs
the proposedw andh values by a percentage input set by the user
at input.

Circuit Blocks Nets Terminals
circ01 4 4 12
circ02 6 4 18
circ06 6 4 18
TwoStage Opamp 5 9 22
SingleEnded Opamp 9 14 32
Mixer 8 6 15
circ08 8 8 24
tso-cascode 21 36 46
benchmark24 24 48 48

Table 1:Test Benchmarks

3.2.2. Cost Calculator: The cost calculator has a fixed place-
ment along with fixed widths and heights of the blocks present
in the circuit as its input. It calculates a cost for the proposed cir-
cuit based on the wire-lengths and area of that proposed design.
This cost function is customizable.

At the end of the simulated annealing process whose stop-
ping criterion is a number of iterations set by the user, the aver-
age cost value obtained is returned along with the best cost value
attained. Added to that, the (wstart, wend, hstart, hend) 4-tuple has
to be minimized around the values ofw and h that have pro-
duced the best cost during the iterations. TheOptimize Ranges
step of the algorithm described below in Section 3.2.3 is used to
minimize those ranges.

3.2.3. Optimize Ranges:The interval of thew and h inter-
vals of the blocks represented by the (wstart, wend, hstart, hend)
4-tuples is optimized around the values ofw andh that yielded
the best cost. The values for each blocki in the selected place-
mentp j are adjusted in the same way thewstart is changed be-
low:

wstarti; j = wbest� averagecost
bestcost

� (wendi; j �wstarti; j) (6)

Use of this formula makes the intervals proportional to the ra-
tio of the average cost and best cost. The further the averagecost
is away from the best cost, the tighter we would like the inter-
val to be aroundwbesti andhbesti .

The Blocks dimensions-interval optimization algorithm re-
turns the placement along with its reduced interval 4-tuple, its
best cost and its average cost. The Placement Explorer uses the
returned average cost value as a cost for its own SA-like algo-
rithm.

Finally, the multi-placement structure would be filled with
a multitude of placements, mapping to widths and heights of
the blocks present in the circuit, confining with equations 1, 4,
and 5. The next section will show through some example bench-
marks the usage of the proposed method and its efficiency.

4. Experimental Results

A multi-placement structure has been generated for each of
the circuits presented in Table 1. The algorithm was writtenin
C++, and run on a SUN-Blade-1000 workstation with 2GB of

��������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������
�����������

���������������������������������
������ ��������������� �������

�
�
�
�
� ����������
�
�
�
���
�
�������

� ��
�
�
��
�
�
�

���������� ��
�
���������

�
�
��
�
�
�

���������
�� �� �

���
�
�
��
�
������

�
�

�
�

������ ��
�

�
�

���������� ��
�
��������

�����
�����

�����
�����

���
���

���
���

����
����

����������������������������������
��

�
�
��
�
���
��
���
�
��
�
��
�
���
��
��
��
�
�
��
�
��
�
��
�
��
�
��
�
��
�
��
���������������
��

�
�
��
�
���
��
���
�
��
�
�
��
�
�
��
�
���
��
���
�
��
�
��
� �
�
�

� ��
�
���
��
���
�
��
�
��
�
��
�
�
��
�
�
��
�
��
�
��
�
���
��
���
�
��
�
��
�
�

��������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� ���������������������������������
�
�
�
�

�� �������� ������������
���������������������������� � ��� ���������� ���������������

������������� �������������������� �

��������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�

� �

	 																	
	 	 		 	
															

							
		 			 	

												 																	 	

	
	
	
	
	 			 												
	
	
	
		
	
										

	 			 		
	
	
	
	 		
	
	
	
	

												 		
	
											 			

	
	
	
		
	
	
	
	

												
		 		 	

			
	
			
	
	
									

	
	

	
	

								 	
	 	
	
	

	
	

												 		 		
	
											

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

��������
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������
��
��
�
�
��
��
������������������

������������ ���� �����������������
��������

�
�
�
�
�
�

���������
�
������� �������

�
�

�
��
�

�
�

�
��
�
��
�
��
�
��
�
�

� �

�
�
�
�
�
�
�
��
�
��
�
���
�
�
�

�
�
��
�

�
��
�

�
�
�
�
�
�
��
��
�
��
�
��
�
�

��������
�
�
�
�
�

���������������������
�
�
�
� ��

�
�������

�
�

���������
���
������

���
���

�����
�����
�����

���
���
���

����
���������

�����

�
�
�
��
�
��
�
��
�
�
��
�
�
��
�
���
��
���
�
��
�
� �����������������������

���������������������������������� ���
�
�
��
�
��
�
���
��
���
�
��
�
�
� �
�
�
���
��
���
�
��
�
��
�
��
�
��
�
��

�
�
��
�
��
�
��
�
�
���
��
��
���
�
��
�
��
�
���
��
��

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

��������
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������� �
����������� �

�
����������� ��������

�
� ���
�������������� �

�
�� ������������������������

�
� �����

�������������������� ��������
���������������

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

��������
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
�

�
�

		
										

	
		 											
															 				
	 																		 	
														

		
	
	
	
			
	
	

											
	 	
									 							

	
	

	
	
	 	
	
	

	
	

	
		
		
		
		
		
		
	
	
	

	 		 	

	
	
	

	
	
	
		
		
		
		
			
		 	
	
	

	
	
		
	

	
	
		
	
	

	
		
	

	
	
	
	
	
	
		
	
	
	
		
	
	
	
		
	

		
							

		
	
	
	
	
	
	

																								
	
	
	
			 				

	
									

	
	

											
			
								

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

����

�����������������

������������
���������
������
������

����
��������������

���������������
��������
��������������������

��������������������������
�
�
�
��
�
�
�
� �
�
�
�
�

�
�

��
�
�
�
��������

�

�
������

�
�
�

�
�
��
� �

�
�

�
��������
� �

��
�

�
�������

�
�
�

�
�
�

�
�
�

�
��
�

�
�

�
��
��
���
�
��
�
�
�
��
� �

�
�
�
�

� �
�
�
��
�
��
�
���
�
�
�
��
�

�
�
�
��
�
�
�
�
�

� �
�
�
�
�

�
�

�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�

�����
�����

�����
�����
�����
�����
�����

��
��
��

������
������
������

�
�
��
�
���
��
���
�
��
�
���
��
���
�
��
�
��
�
��
�
��
�
��
�
���
��
���
�
��
�
�

������������

���������������������� ������������������������

��
�
�
��
�
���
��
���
�
��
�
���
��
��
��
�
�
��
�
��
�
��
�
��
�
��
�
���
��
��

�
�
�
��
�
���
��
���
�
��
�
���
��
���
�
�
� �
�
�
��
�
��
�
��
�
��
�
���
��
���
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

����

�����������������

� ������������
������������������
� ���������������
���������������������� �
� �������� ������������
���������������������������
�
�

�
�

�
�

�
�

� ��������������������������������
������
������
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�

����

�����������������

�

�

�

�

�

	
																
	 	
																		 	
	 	
									

	
														

	 	 		
																				
		
	
	
	
		
	
	
	
	 	
	
	
	
	

	
	

		
	
	
	
								

	

	
						

	
	
	

	
	
		
	 	

	
	

	
								
	 	

		
	

	
							

	
	
	

	
	
	

	
	
	

	
		
	

	
	

	
		
		
			
	
		
	
	
	
		
	 	

	
	
	
	

	 	
	
	
		
	
		
	
			
	
	
	
		
	

	
	
	
		
	
	
	
	
	

	 	
	
	
	
	

	
	

	
	
	
	
	
	
		
		
	
	
	
	
	
	
	
	
	
	
	
		
	

	
	
	
	
	
	
	
	
	
	
	
	
		
		
	
	
	
	
	

(a)

(b)
(c)

Figure 5:Various sizes Floorplan instantiations (a,b) and template-
based instantiation (c) for two-stage opamp

Circuit CPU Generation Time Placements Instantiation
circ01 21m12s 57 0.07s
circ02 25m35s 51 0.085s
circ06 46m23s 86 0.1s
TSO 52m45s 82 0.09s
SEO 1h55m 115 0.12s
Mixer 57m23s 75 0.11s
circ08 1h42m13s 123 0.12s
tso-cascode 2h36m35s 124 0.14s
benchmark24 4h03m 133 0.15s

Table 2:Usage and Generation of the Multi-Placement Struc-
tures Generated

RAM. Table 2 shows the details of the multi-placement struc-
tures generation. Theplacementscolumn shows the number of
possible template placements modeled in each multi-placement
structure. Theinstantiationcolumn reveals the time it takes to
instantiate one placement when the structure is fed with sizes for
the circuit. Those instantiation times prove to be short enough
for use in a layout-inclusive synthesis process.

The various placements generated for the various sizes pro-
vided would be optimized with respect to area and wire-length.
Figures 5.a and 5.b show two instantiations of the two-stage
opamp when its generated multi-placement structure is used.
The template-based manual placement is shown in 5.c as a com-
parison. The multi-placement structure idea suits analog circuit
synthesis best due to the higher need of exact layout elabora-
tion during synthesis. Circuittso-cascodeis a benchmark circuit
of op-amps in cascode comprised of 21 modules, comparable in
size to most complex analog blocks. An instantiation of its opti-
mized layout is shown in figure 7.

Finally, to validate the correctness of the multi-placement
structure, various instantiations of the same module were con-
ducted, following a variation in one dimension of the search
space. The cost incurred from using several placements from
within the multi-placement structure is shown in the top plot
of Figure 6. The bottom plot shows the cost when the multi-
placement structure is used; clearly, the lowest cost placement
was selected, depending on the location of the proposed solu-
tion in the search space.

5. Conclusion

This paper presented an algorithm to generate a multi-
placement structure as a way to obtain optimized placements
in a synthesis loop without having to include a timely place-
ment algorithm. The method extremely reduces the amount

Figure 6:Lowest Cost Selection for TwoStageOpamp Multi-Placement
Structure.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
��
�
��
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
��
��
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

������������������������������������

������������������������������������� ������������
��

������������������������������������
�������������������������

������������������ �������������������
���������������

���
����������������

��������� ���������������������������
��������������

������������������������������������

�
�
�
�

�
�

�������������
�
���������
�
�
�
�
�

�������������
��
���������

�
�
�
�
�
� ����

�
�

������������ �
��
�
�

�
�

�������������������
�
�
� ����
�
�

������������ �
��
�
�
���������������

�
��

�
��
�

�
�
�
�
�

��
��
�

�
�
��
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
��
�
�
��
��
�
�
� ����
�
�

���������
�
�
�
�
��
�
�

�
�
�
�
�
�

�
�
�������������������������

��
���������

�
�
�
�
�
�
�

����������
�
�

�
�
�
�
�
��������
�
��
�
�� ��

�
�
�
�
�
�

�������������������������������� �� ��
�
�������

�������

�
�
�
�
�
�

�����������
� �

�
��
��
�
�

���������������
�
��������

�
�
�
�
�

������������
�
�
�

�������������
�
�������

�������
�
�
�
�
�
�

�
�
�
�
�
�
�����������
� �������������

�
��������
�
�
�
�
�

������������
�
�������

�������
�
�
�
�

�
�

�������������
�
���������
�
�
�
�
�

�������������
��
���������

�����
�����
�����

�����������
�����

�������
�������

������
������

��������������������������������������
����������������������

����������
����������
���������������

�����

��������������
��������������
��

�����
�����
�����

������
������

�����
�����

�����
�����
�����

�����
����������
�������������

�������
�����

����
����������

������
������

������������
�����

�����
�����
�����������

�����

�
�
�
��
�
���
��
���
�
��
�
��
�
���
��
���
�
�
�
�
�
��
�
��
�
��
�
��
�
���
��
���
� �
���
��
���
�
��
�
��
�
��
�
��
�
�
� �
�
�
���
��
���
�
��
�
��
�
��
�
��
�
�

��
��
���
�
��
�
��
�
���
��
���
�
��
�
���
��
���
��
��
�
�
��
�
�
���
��
���
�
��
�
���
��
���
�
��
�
��
�
���
��

�
�

����
�
���
��
���
�
��
�
��
�
���
��
���
�
��
���
���
��
��
��
�
�
��
�
��
�
���
��
���
�
��
�
��
�
��
�
��
�
�

����
�
�
��
�
��
�
���
��
���
�
��
�
�
�
���
��
���
�
��
�
��
�
�
�
��
�
��
�
�
�
��
�
��
�
���
��
���
�
��
�
��
��
��
�
�
��
�
�
��
�
���
��
���
�
��
�
��
�
��
�
��
�
��
�
��
��
���
�
��
�
��
�
��
�
��
�
�
� �
�
�
���
��
���
�
��
�
��
�
��
�
��
�
����

�
�
�

���
�
��
�
���
��
���
�
��
�
���
��
�����
�
��
�
��
�
���
��
���
�
��
�
�� ��

�
���
��
���
�
��
�
��
�
��
�
��
�
�
��
�
�
���
��
���
�
��
�
��
�
���
��
���
�
��
�
���
��
��
��
���
�
��
�
��
�
��
�
��
�
�
� �
�
�
���
��
���
�
��
�
��
�
���
��
���
�
���

�
�

�
�
�

�
��
��
���
�
��
�
��
�
���
��
���
�
�
���
�
�
���
��
���
�
��
�
��
�
���
��
���
����
��
���
�
��
�
��
�
��
�
��
�
��
�
�
��
��
��
���
�
��
�
��
�
���
��
���
�
��
� �
��
�
��
�
���
��
���
�
��
�
��
�
�
���
��
��
���
�
��
�
���
��
���
�
��
�
��
��
���
��
���
�
�
���
�
�
��
�
��
�
��
�
��
�
���
��
���
�
�

� ��
�
�
��
�
��
�
���
��
���
�
��
�
��
�
���
��
��
�
�
�
��
�
���
��
���
�
��
�
��
�
���
�� �
���
�
���
��
���
�
��
�
���
��
���
�
�
��
�
�
��
�
���
��
���
�
��
�
��
�
��
�
��

�
�
��
�
��
�
��
�
��
�
��
�
�
���
��
��
���
�
��
�
��
�
���
��
���
�
��
�
� �
�
�
��
�
���
��
���
�
��
�
��
�
���
��
���
�
�
�
�
�
��
�
��
�
��
�
��
�
���
��
���
� �
���
��
���
�
��
�
��
�
��
�
��
�
�
� �
�
�
���
��
���
�
��
�
��
�
��
�
��
�
�

��

����������
�
�
�
�
�

�

�

��

��

�����
�
�

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
��
�
��
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
��
��
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

�
�

���� �� ��������

�
�
�
�

�
�
�
��

�
�
�
�

��
�
�
��

�
�
�
�

���
�
�
� �������� ������
��������������

������
�������������������� �����
� ���������� � ���������������������������
������������������������ ��������������������������� � � ���

�� ������� ������������������� ����������� �����
���

���
���

�
�

� � �
� �
� �

�
� ��������������

�
�
�����������

�����
���������������������� ������������������ � ��

������������������ � �� ���������
�
�
� ����������

�������� �� �����
���������������

������������
��������������������������� ���������
�
�

����������������� � ���������� ������� ���� �����������
� ��������������

�������
����������������� ����������� � ������

������������������� �� �������� �������� ������
��������������

������
�������������������� ����� ��

��
��
��

�
�
�
��

�
�
�
�

��
�
�
���

�
�
�
�

���
��
��
���

�
�
�
�

���
�
�
��

�
�
�
�

��
�
�
��

�
�
�
�

���
�
�
��

�
�
�
�

��
�
�
�

������

��

�����
�
�

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
��
�
��
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
��
��
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�

� �

� �

� �� �

�
� � �

�
� �

� �
�

� �

	
	

	
																																	 	
	 	 	 	
																																									 	 	 	

		 	
																																																			

	
	

	 	
	

		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 																																			 		
	
	
	 		

	
	

													
																																										 	

		
	

		
																	 														

													
	 	

		 		
																																	 	

	
	
	
	

	
	
	
	

	
	
	

															 		
	
	
		

													
	
	
	
	
	

	 																
		
											

	
	
	
	 		
	
	 		

	
	

															 	
	
	
	

	
	

																			 		 			
	 		
	
	 		
	
	

															 	
	
	
	
																	 		 	
				

	
		

	
		
	

	
		
	

		
		
	

	
	
	
	
		
		
		
	
	
	
		
	
	
	
	
	

		
	
	
		
	
	
			
	
	
	
		
	
		
		
	 		
	
	 		
	
	

														
	
	
	
	
	
	
	

	
	
	
	
	
	

	
																														

		
												

	 		 	
	
	
	

				 			
	
	
	
	
	
	

												 	
	
	

	
	
		
									
	
	
	
		 		

	
	
	
	
	
	
	

																																										 		 				
	
	

										 		
												

	
	
	
	

	
	
	
	
	
	
	

														
	
	

	
	
		
		
	
	

																			
	 		
												

	
	
	
	
	

														 		
	
	
	

															 		
	
									

	
	
	
	

									
	
	
	
	
	
	
	

		
	
	
	
	
	
	
														
	 															 		

	
	
		

												
	
	
	
	
	

	 															
	
									

											
	
	
	
	

	
	

															 		
	 		
													
	
	
	
	
	

	 																
		
											

Figure 7:Example floor-plan instantiation for circuit ’tso-cascode’

of time taken to generate those placements and is compara-
ble to template-based approaches in speed. On the other hand,
depending on the parameters and sizes of the circuit used, itin-
stantiates various floor-plan settings, as if optimization-based
methods were being used. It instantiates placements withinmil-
liseconds. It is applicable to most analog blocks of sizes
ranging up to 25 modules. It does not require expert knowl-
edge to pre-generate placement templates.

References

[1] B.R.Owen, R.Duncan, S.Jantzi, C.Ouslis, S.Rezania, and
K.Martin. Ballistic: An analog layout language. InIEEE
1995 Custom Integrated Circuits Conference, pages 41–44, 1995.

[2] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. Carley.
Koan/anagram 2: New tools for device-level analog placement and
routing. IEEE Journal of Solid-State Circuits, 26(3):330–342,
March 1991.

[3] L. Zhang et.al. A genetic approach to analog module placement
with simulated annealing. InIEEE International Symposium on
Circuits and Systems, volume 1, pages 345–348, ISCAS 2002.

[4] G. G. Gielen and R. A. Rutenbar. Computer-aided design ofana-
log and mixed-signal integrated circuits.Proceedings of the IEEE,
88(12):1825–1852, December 2000.

[5] H.Sampath and R. Vemuri. Msl: A high-level language for param-
eterized analog and mixed-signal layout generators. InIFIP 12th
International Conference on VLSI, 2003.

[6] K. Lampaert, G. Gielen, and W. Sansen. A performance driven
placement tool for analog integrated circuits.IEEE Journal of
Solid-State Circuits, 30(7):773–780, July 1995.

[7] M. Wolf and U. Kleine. Automatic topology optimization for ana-
log module generators. InDesign Automation and Test in Europe,
pages 961–962, February 1998.

[8] M. Wolf, U. Kleine, and B. J. Hosticka. A novel analog module
generator environment. InProceeding of the European Design and
Test Conference, pages 388–392, March 1996 1996.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

