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Abstract

In this paper, we highlight a fast, effective and practical statisti-
cal approach that deals with inter and intra-die variations in VLSI
chips. Our methodology is applied to a number of random variables
while accounting for spatial correlations. Our methodology sorts
the Probability Density Functions (PDFs) of the critical paths of a
circuit based on a confidence-point. We show the mathematical ac-
curacy of our method as well as implement a typical program to test
it on various benchmarks. We find that worst-case analysis overes-
timates path delays by more than 50% and that a path’s probabilis-
tic rank with respect to delay is very different from its deterministic
rank.

1 Introduction

Variability is posing an increasing challenge to timing analysis of
VLSI designs implemented in the nanometer regime. Variations can
be eitherenvironmentalor physical. Environmental variations are
due to unpredictable operating conditions such as the power supply
voltageVdd and the chip’s temperature, whereas physical variations
arise during the fabrication of the chip and include permanent dis-
crepancies in the oxide thicknesstox, effective channel lengthLeff

and interconnect dimensions. These variations appear at different
levels of the manufacturing process:inter-lot, inter-wafer, inter-die
andintra-die. Traditionally, discrepancies in VLSI chip parameters
have been accounted for using several cases (best-case, nominal and
worst-case) inStatic Timing Analysis. Worst-case analysis is a de-
terministic timing analysis that was a fair assumption to make until
a few years ago, when intra-die parameter mismatches were consid-
ered to be negligible in the presence of the more significant inter-
die variations. Today, intra-die variations must be accounted for, as
worst-case timing analysis is highly potential-cutting [1].

Physical parameters are susceptible to random variations from
their nominal values, and therefore should be modeled as Random
Variables RVs. If the circuit to be analyzed contains thousands of
gates, and because of the existing spatial correlations between RVs
of the same kind, thousand-variable Joint PDFs (JPDFs) should be
used for each RV kind. Getting all these joint distributions is com-
putationally impossible for some reasonable discretization accuracy,
let alone the exponential run-time needed for computing any path
PDF using such JPDFs. If the number of discretization points of
the JPDFs per dimension is equal toQUALITY, then an N-variable
JPDF will haveQUALITYN discretization points, making the com-
putational complexity for computing the delay PDF of that path
©(QUALITYN ). Hence, the exact numerical solution for finding

the PDF of the critical path is unrealistically complex.
Recently, a number of techniques have been developed to per-

form statistical timing analysis. They can be broadly classified into
full-chip analysis andpath-basedanalysis. Full-chip analysis maps
the whole block to an acyclic graph and strives to propagate and
merge the PDFs of the gate delays, in order to get the PDF of the crit-
ical path of the circuit [2-9]. This method has an inherently exponen-
tial run-time with circuit size. Therefore, in the pursuit of reducing
the run-time, advocators of full-chip analysis have to use primitive
delay models, assume that gate delay PDFs are given [3,4], neglect
parameter correlations [2,3,8] and draw on inaccurate approxima-
tions [7]. And even with this, they sometimes giveboundsfor the
delay PDF and not the PDF itself [2,8,9]. In the path-based ap-
proach, the PDF of one path is calculated at a time [10-11]. First,
Deterministic Timing Analysis is performed on the circuit in order
to find some upper percentage of nominally critical paths. Then,
eachcandidatecritical path is analyzed statistically, with the aim of
computing its delay PDF. Theprobabilistic critical pathis decided
by comparing some confidence-point on the PDFs, such as the3σ
points. This method allows for more complex delay and intercon-
nect models [11]. Some common assumptions and drawbacks, both
in full-chip and path-based statistical analysis, include the considera-
tion of only 1 RV (usually effective channel length) [9,10], the use of
1 correlation-space at most (usually spatial correlations) [9,10], the
restriction to a certain kind of input PDF (usually Gaussian) [10,12],
and the exponential run-time needed to get accurate results [2,9,12].

In this work, we propose a path-based methodology which re-
laxes some these assumptions while maintaining a run-time of poly-
nomial complexity. Our methodology includesall the stepsthat lead
to finding the probabilistic critical path, from the initial deterministic
analysis algorithms to the ranking of all probabilistic critical paths of
the circuit. The methodology accounts for several RVs which affect
gate delay variations. Spatial correlations for these RVs are taken
into consideration. Our findings emphasize the critical path delay
overestimation that arises due to worst-case analysis.

2 Modeling and Assumptions

2.1 Gate Delay Using Elmore’s Model

In order to perform probabilistic timing analysis later in the pa-
per, we first derive the delay of any path which is composed of gates
by using Elmore’s model. Based on Elmore’s delay model, [13]
showed that the propagation delay of ann-input NAND gatetp is
formalized as

tp = 0.345[RN CdN FI(FI − 1) + FIRN Cn + RP Cn] (1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



whereFI is the number of fan-ins,CdN is the drain capacitance,
Cn is the sum of the drain capacitances of this gate at the output
node, plus the gate capacitances of all fan-out gates, as well as the
wire capacitance, whileRN andRP are the NMOS and PMOS on-
resistances, respectively. Forshort channel models for RN and
RP , tp can be expressed as

tp = 0.345
toxLeff

εox

[α(
Vdd

(Vdd − VT n)1.3
+

1

1.5Vdd − 2VT n

)

+ β(
Vdd

(Vdd − |VT p|)1.3
+

1

1.5Vdd − 2|VT p|
)] (2)

where

α =
CdN FI(FI − 1) + FICn

µnWn

(3)

β =
Cn

µpWp

(4)

where εox is the oxide permittivity, Wn/Wp are the
NMOS/PMOS channel widths,µn/µp are the NMOS/PMOS mobil-
ities andVTn/VTp are the NMOS/PMOS threshold voltages. Similar
delay equations can be found for an inverter, ann-input NOR gate
and a2-input XNOR gate. They all have thesame formas (2) with
different values forα andβ. These are the gates under investigation
which constitute all ISCAS85 benchmarks. Thus, a path consisting
of N such gates will have a delay equation of the form

tP AT H =
NX

i=1

{0.345
toxi

Leffi

εox

[αi(
Vddi

(Vddi
− VT ni

)1.3
+

1

1.5Vddi
− 2VT ni

)

+βi(
Vddi

(Vddi
− |VT pi

|)1.3
+

1

1.5Vddi
− 2|VT pi

|
)]}

(5)

2.2 Sensitivity Analysis

In order to investigate how much each parameter’s variability af-
fects the delay, we performed a first-degree sensitivity analysis for
the delay of a 2-input NAND gate, an inverter, a 2-input NOR gate
and a 2-input XNOR gate, all with fan-outs of 2, at the nominal
values of all parameters. To avoid complicated calculations, and to
focus the reader’s attention to the approach, we assumed the parame-
ters to be independent and all capacitances to be constant. We com-

pared the values of
�
�
�

∂tp

∂xi
|Xnom · σxi

�
�
� for each parameterxi, where

X is the vector of parameters andσxi is the standard deviation ofxi.
130nm CMOS technology values were used, and the typical vari-
ances were obtained from [15]. The parameters that had the most
impact on the delay weretox, Leff , Vdd, while VTn andVTp had
less effect. Table 1 shows the linear approximations of gate delay
variations as a result of varying those5 RVs by oneσxi .

2.3 Layering of Correlation-Spaces

In this section, we show a simple yet efficient method developed
in [9],[10] that divides the spatial correlation-space into several lev-
els. We use this technique to get rid of the correlated RVs while
keeping the correlation information. The model first replicates the
die on several layers, then divides each layeri of the die into4i rec-
tangle regions. Using variabilities inLeff for each layer’s partition-
size, the model replaces theLeff of each gate by a sum of RVs, such

2-NAND 2-NOR INV 2-XNOR

tox 0.587ps 0.369ps 0.225ps 0.529ps
Leff 2.061ps 1.296ps 0.792ps 1.859ps
Vdd 0.360ps 0.227ps 0.136ps 0.324ps
VT n 0.071ps 0.046ps 0.030ps 0.070ps
|VT p| 0.088ps 0.025ps 0.078ps 0.066ps

Table 1. Sensitivity Analysis of the Elmore

Delay Model (
∣∣∣ ∂tp

∂xi
|Xnom

· σxi

∣∣∣ for each xi)

(σtox
=0.15nm,σLeff

=15nm,σVdd
=40mV,σVT n

=13mV,σVT p
=14mV)

that the correlation information between twoLeff ’s is in number of
common RVs they have and their variances. This method was used
only for spatial correlations inLeff . We include other RVs to the
technique proposed in [9], to account for any other chip variations.

Since we are accounting for more than 1 RV, we will first provide
a general formulation to the spatial correlation problem. Letχ refer
to a parameter (RV) with a known marginal probability distribution,
χi refers to a RV of typeχ of any partition in a certain leveli, and
χi,j refers to the RV of typeχ and of partitionj in level i. χ0

is assigned a PDF whose mean isχnominal. Eachsubsequentχi

is assigned another PDF, with a mean ofzero, such that the PDF
of
PL−1

i=0 χi is equal to the PDF ofχ, which is given. Ifχ has a
Gaussian PDF, this simplifies to assigning a Gaussian PDF to each
χi, such that

σ
2
χ =

L−1X

i=0

σ
2
χi

(6)

whereL is the number of hierarchical layers, and layer 0 represents
the whole correlation space. The RV of a certain gate,χgate for
instance, will be set to the sum over all layers of the partition RVs
that it belongs to, yielding

χgate =

L−1X

i=0

4i−1X

j=0

ξ(i, j, gate)χi,j (7)

whereξ = 1 only if j is the partition thegate belongs toon level
i, and ξ = 0 otherwise. It is the inter-die variations in someχ
that decide the chip-mean ofχ. The remaining layers correspond to
different levels of intra-die variations. Intra-die variations are only
deviationsaroundthe chip-mean. This is why all layers except layer
0 were assigned zero-mean PDFs. As for the mean of the inter-PDF
of someχ (the mean of the PDF ofχ0), it is equal toχnominal,
because the average of the means ofχ, in all chips of all wafers of
all lots, isχnominal.

Using the above spatial correlation description, the path delay (5)
can be re-written as

tP AT H =
NX

i=1

{0.345

P
i,u,w toxu,w

P
i,u,w Leffu,w

εox

×

[αi(

P
i,u,w Vddu,w

(
P

i,u,w Vddu,w −
P

i,u,w VT nu,w )1.3
+

1

1.5
P

i,u,w Vddu,w − 2
P

i,u,w VT nu,w

)

+ βi(

P
i,u,w Vddu,w

(
P

i,u,w Vddu,w −
P

i,u,w |VT pu,w |)1.3
+

1

1.5
P

i,u,w Vddu,w − 2
P

i,u,w |VT pu,w |
)]} (8)

whereu andw represent the layer number and the partition num-
ber, respectively. Even though the RVs in the equation of a path are
considered as independent, we still cannot use this to our advantage
in order to find the PDF of anytPATH . This is because the same



RV, for instance, say,Leff1,2 , can belong to thetp of many gates in
the same path. Therefore, we cannot separately calculate the delay
PDF of eachtpi along a path, since the same RVs may re-occur in
the path, causing correlation betweentpi ’s. In the following section,
we will use the Taylor series first-order approximation for the gate
delay, in order to linearize part oftpi , and therefore transform (8)
into a suitable form for PDF calculation in low run-time complexity.

2.4 Taylor Series First-Order Approximation for Path Delay

Let Xi represent the vector of RVs of gatei, Xinter the vector of
inter-RVs,∆Xintrai the vector of intra-RVs of gatei, and for any
gatei: Xi = Xinter + ∆Xintrai . Using the Taylor-series first order
approximation oftpi taken at the bias pointXinter, the gate delay
equation is formulated in vector and scalar forms as follows

tpi
(Xinter + ∆Xintrai

) ≈ tpi
(Xinter) +∇tpi

|Xinter
·∆Xintrai

(9)

It should be noted that the mean ofXinter is Xnominal, the
mean of∆Xintrai is zero, and that this approximation is accurate
if ∆Xintrai � Xinter. Since the intra-die RV standard deviations
are much smaller than the nominal values of those RVs, the approxi-
mation is valid. Replacing the intra and inter RVs of (9) by the layer
RVs described in the previous subsection, we will get

tpi
(Xinter + ∆Xintrai

) ≈ tpi
(X0,0) +∇tpi

|X0,0 ·
X

u,w

Xu,w (10)

whereX0,0 is Xinter.
All summation RVs are assumed to be independent, both inside

each sum and across sums. This is very helpful because,if their coef-
ficients were constants, we would have an intra-part that is simply a
linear combination of independent RVs. Finding the intra-delay PDF
would then be very easy. However, their coefficients are the partial
derivatives of delayevaluated atXinter, which is a random vector.
Hence, we will take a final zeroth-order approximation that evalu-
ates the partial derivatives at nominal value [10], and thus making
them constants:

∂tpi

∂χ
|Xinter

≈
∂tpi

∂χ
|Xnominal

(11)

yielding

tpi
(Xi) ≈ tpi

(X0,0) + ai

X

u,w

toxu,w + bi

X

u,w

Leffu,w
+ ci

X

u,w

Vddu,w

+ di

X

u,w

VT nu,w + ei

X

u,w

|VT pu,w | (12)

whereai, bi, ci, di andei are constants equal to the derivatives of
the delay of gatei at nominal value. Thus, the path-delay equation
in (8) changes when we use this approximation. Using (12), for a
path ofN gates, (8) yields

tP AT H =
NX

i=1

tpi
(tox0,0 , Leff0,0 , Vdd0,0 , VT n0,0 , |VT p0,0 |)

+
X

u,w

au,wtoxu,w +
X

u,w

bu,wLeffu,w
+
X

u,w

cu,wVddu,w

+
X

u,w

du,wVT nu,w +
X

u,w

eu,w|VT pu,w | (13)

whereau,w, bu,w, cu,w, du,w andeu,w are constants corresponding
to layeru and partitionw. The first summation is thetPATHinter ,
while the following terms are thetPATHintra . Therefore, the intra-
delay of a path is simply a linear combination of RVs. If the input
RVs were Gaussian, then finding the intra-PDF would be equivalent
to finding its variance

σ
2
tP AT Hintra

=
X

u,w

a
2
u,wσ

2
toxu,w

+
X

u,w

b
2
u,wσ

2
Leffu,w

+
X

u,w

c
2
u,wσ

2
Vddu,w

+
X

u,w

d
2
u,wσ

2
VT nu,w

+
X

u,w

e
2
u,wσ

2
|VT pu,w

| (14)

2.5 Convexity Analysis

For the delay equation for the gates used, we calculated the val-

ues of
�
�
�

∂2tp

∂xi
2 |Xnom · σxi

�
�
� for each parameterxi. This represents the

change of the derivative of delay with respect to that parameter for
a one standard deviation change of the parameter. The first deriva-
tive of gate delay with respect to those RVs is in the order of tens
of pico-seconds per Volts, which is significantly higher that the val-

ues of
�
�
�

∂2tp

∂xi
2 |Xnom · σxi

�
�
� for all parameterxi. Therefore, we can

conclude that even a worst casechange in the derivative, for a 3σ
change in those RVs, would still be an order of magnitude less than
the actual value of the derivative. Therefore, the convexity is small
enough to ensure an acceptable accuracy for this approximation.

Doing the numerical computation of the inter-PDF at once
would require a complexity of©(QUALITYinterR), where
QUALITYinter is the discretization of the PDFs of the inter-RVs and
does not have to be equal toQUALITYintra (the discretization of the
PDFs of the intra-RVs), andR is the number of different parameters
being varied. One should try to separate as many variables, in or-
der to reduce the complexity of the PDF-computation. It should be
noted however, that with more complex models, inter-delay equa-
tion will tend to become inseparable in almost all its parameters.
In such a case, one should identify the parameters with theleast
inter-variabilities, and when using the Taylor-series approximation,
instead of using their inter-RVs, one should use their nominal values.
Another possible compromise of accuracy for faster run-time could
be to reduceQUALITYinter.

In the next section, we explain our full methodology, which
makes use of the two assumptions analyzed in this section, in or-
der to find and rank some upper percentage of probabilistic critical
paths.

3 Methodology

A high-level description of our methodology flowchart is the fol-
lowing. First, we set the number of RVs (R), the number of layers
(L) for the spatial correlation-space, as well as the variabilities of
each layer in each RV. The circuit is then mapped to atiming graph,
and we evaluate all gate deterministic delays as well as derivatives
with respect to all RVs that are being considered, at their nominal
values. The inputs to the methodology are a description of the cir-
cuit connections, gates, inputs, outputs as well as any necessary in-
formation related to correlations, like(x, y) coordinates to compute
the spatial correlations. These are one time calculations. Next, the
deterministiccritical path is found, using Bellman-Ford. We per-
form the probabilistic timing analysis of the deterministic critical
path delay: We find its intra-delay PDF and its inter-PDF, using the
techniques described in the previous section, and finally its total de-
lay PDF (accounting for inter and intra variations). From its delay
PDF, its standard deviationσC is extracted in order to have an idea
about the variability of our circuit. Using that standard deviation and
some arbitraryconfidenceconstantC that the user inputs, we find all
the next deterministic critical paths that are withinC ·σC of the first



deterministic critical path delay. We perform the same probabilistic
timing analysis to each of those paths sequentially. In the end, we
can compare any confidence point, such as the3σ’s, on the critical
path PDFs, in order to rank them and obtain theprobabilistic critical
path. Fig. 1 shows the graphical flowchart of our methodology.

3.1 Deterministic Delay Computation

The Bellman-Ford algorithm was used to find the deterministic
critical path of a circuit. The weight of each edge in the algorithm
is to be the nominal delay of the node before the edge, since the
graph is simple, directed and acyclic. The worst-case complexity of
Bellman-Ford is©(|N | × |E|), where|N | is the number of nodes
in the graph and|E| is the number of edges. This can be quite big
if the graph is very dense, however, the fact that our graph is simple
and acyclic makes it highly unlikely to reach that worst-case.

3.2 Probabilistic Timing Analysis to Deterministic Critical Path

Probabilistic timing analysis is applied to the deterministic crit-
ical path to find its standard deviation. The probabilistic analysis
is separated into intra- and inter-delay calculations. The variance of
the intra-die variations are formulated using (14), and the PDF of the
intra-delay is computed (assuming it’s Gaussian). The complexity
of such a PDF computation is simply©(QUALITYintra). For the
inter-delay PDF calculation, the first term in (13) is used. Finally,
the intra- and inter- PDFs are convolved to evaluate the total delay
PDF. Supposing that both PDFs have a discretization ofQUALITY,
the complexity of the convolution is obviously©(QUALITY2).

We use the standard deviation (σC ) of the deterministic critical
path total delay PDF as an indicator of variability in the circuit. We
will choose and analyze all the paths whose delays are larger than
D − C · σC , whereD is the deterministic delay of the critical path
andC is a constant the user specifies. The larger this constant, the
more confident we get in that there is no other path in the circuit that
is probabilistically longer than the one we got, but the more run-time
is needed. In order to find all the next critical paths withinCσC

of the deterministic critical path, we used the recursive algorithm
shown in Fig. 2, whereWi is the weight of edgei andLABELni is
the delay label of nodeni, equal to the maximum arrival time toni

from ns, that was calculated using Bellman-Ford. In broad terms,
the algorithm starts from a root node, which isnf , and checks for

Figure 1. Methodology Flowchart

1. Initialization
ROOT = nf

LABELROOT = D − CσC

FIRSTROOT = true
2. Find Near-Critical Paths (ROOT, LABELROOT ,FIRSTROOT )

For all fan-in nodesni of ROOT
If (LABELni

>= LABELROOT − Wi)
If (FIRSTROOT = true)

Add ni to the path
Update delay and node count of path
Find Near-Critical Paths(ni, LABELROOT − Wi, true)

Else
Create new path
Find all previous nodes toROOT in previous path
Add previous nodes,ROOT andni to new path
Set delay and node count of new path
Find Near-Critical Paths(ni, LABELROOT − Wi, true)

End If
End If

End For

Figure 2. Finding near-critical paths

fan-in nodes that have labels larger than the label of the root minus
the weight of the edge between them. If there is such a node, than
the same thing is repeated for that node as the root. This is repeated
until ns is reached for each path. The worst-case complexity of this
algorithm is©(κ × |E|), whereκ is the number of near-critical
paths and|E| is the number of edges in the graph.

Finally, probabilistic analysis is done for all the near-critical
paths, one path at a time, to find the delay PDF of each. In the
end, we rank the paths based on their PDFs by some confidence
point. We determine the probabilistic critical path and visualize
the change in rank of paths, going from deterministic to statistical
analysis. It is important to note that the means of the delay PDFs
of the paths arenot the same as their deterministic delays, because
the inter-delay is not a linear function of RVs and thereforethe ex-
pected value of the delay, is not the delay of the expected values.
The intra-delay calculations for all the paths yield a complexity of
©(κ×Ω×QUALITYintra2), whereΩ is the number of layer-RVs
in the path. However, the bottleneck complexity of the methodology
comes from the inter-delay PDFs, which have a worst-case complex-
ity of ©(κ×QUALITYinterR).

4 Results and Discussion

We implemented a program that reads the circuit-description as
a Design Exchange Format (DEF) file and gets the variability infor-
mation from the user, in order to generate and rank the delay-PDFs
of critical paths. It applies all the steps of the methodology described
in the previous section and depicted in Fig. 1. The considered RVs
were:tox, Leff , Vdd, VTn andVTp. Their PDFs were assumed to be
Gaussian, truncated at their6σ points. Typical standard-deviations
were taken from [15]. The(x, y) coordinates of the gates were ex-
tracted from the DEF files in order to account for spatial correlations.
We used a 4 layer model along with a fifth random layer, and we di-
vided the total variances equally over all layers. We tested our pro-
gram on the ISCAS85 benchmark circuits, using130nm technology
nominal values. The computations were performed using PDF dis-
cretizations ofQUALITYintra = 100 andQUALITYinter = 50. We
shall illustrate how these values were chosen as an optimal trade-off
between run-time and solution accuracy. Table 2 summarizes the
results.

The confidence constantC provides a mean for controlling the
number of near-critical paths to consider. We started with a mini-
mum ofC = 0.05 (except forc6288) and we increasedC until we



converged to a critical path that is not changing. In Table 2, we used
the minimum value ofC that found the correct probabilistic criti-
cal path. However, for benchmarkc6288, even for aC = 0.005,
the number of near-critical paths was more than a hundred thousand,
which is unacceptable both in terms of run-time and memory. So
we usedC = 0.001, which still yielded about 900 paths. Column

Figure 3. Delay PDFs of the 1st, 798th and 1596th paths

in c1355

7 shows the number of critical paths for each circuit. This num-
ber depends heavily on the choice of the confidenceC, because all
paths with a delay withinCσC of the nominal critical delay are con-
sidered near-critical, whereσC is the deterministic critical path’s
standard deviation. In addition, the type of benchmark (structure of
the graph), as well as the variability and correlations of parameters,
affect σC , and therefore the number of critical paths. To see this,
one can observe the large difference in critical path numbers, be-
tween circuits for which we used the sameC, such as benchmarks
c880 andc1355: ForC = 0.05, the former had 3 near-critical paths,
while the latter had 1596. Fig. 3 shows how close the delay PDFs
of the1st, 798th and1596th paths are inc1355. It should be noted
that Column8 shows the mean of the probabilistic critical path PDF
which is very close butnot equal to the nominal critical path de-
lay, because the delay is non-linear. Columns9 and5 depict the3σ
points for the critical path delay PDFs and the % overestimation of
the worst-case analysis over the3σ points of the probabilistic critical
path delay. On average, an overestimation of 55% is found, which
demonstrates how unacceptable and persistent the conservatism re-
sulting from worst-case analysis can get. Fig. 4 shows the critical
path’s intra- and inter- delay PDFs forc432, as well as the convo-
lution of the two, which is the total delay PDF. In addition, the 3-
sigma point of the total probabilistic (statistical) PDF compared to
the worst-case deterministic analysis.

In order to characterize the different effects of inter- and intra-
variations on the delay, we performed probabilistic timing analysis

of c432, for 3 different scenarios of inter- and intra- variances, for
the same total RV variabilities. Table 3 demonstrates the results. One
can clearly see that the larger the inter-variability is, the larger will
be the path-delay standard-deviation. In fact, large inter-variability
increases the possibility that all the gates in a path are subject to
worst-case variations. Even the number of near-critical paths in-
creases because of the increase ofσC .

c432

critical
path
mean
(ps)

total
σ

(ps)

inter
σ

(ps)

intra
σ

(ps)

# of
crit-
ical
paths

Only intra-die variations 265.891 19.950 0 19.950 20
50% inter-die,50% intra-
die

267.074 35.577 32.674 14.076 54

75% inter-die,25% intra-
die

266.889 41.388 39.960 10.778 76

Table 3. inter- and intra- variations

Column11 in Table 2 demonstrates thenew rank of deterministic
critical path after applying probabilistic timing analysis. Some paths
remained unchanged (such asc432, c880, c7552), while others were
nominally faster paths (notably inc1355 - what used to be the 40th
slowest deterministic path is now the critical path in the probabilis-
tic analysis). This is because of the spatial correlations’ impact on
c1355’s topology, increasing the variability in a path, causing their
3σ delays to become very big. The larger the variances and corre-
lations, the more deterministic and probabilistic ranks will tend to
differ from one another. Fig. 5 draws the probabilistic rank of the
first 100 paths of benchmarkc1355 versus their deterministic ranks,
when around1600 near-critical paths were analyzed. Fig. 6 illus-
trates the same plot for the first100 paths of benchmarkc7552 with
the same number of analyzed near-critical paths. We observe that
the first plot is considerably far from the first bisector, which means
that distances between paths are very small forc1355 compared to
the existing amount of variability. On the other hand, in the plot for
c7552, we can see that the ranks’ changes are minor. This can be
explained by the fact that the graph ofc1355 is more bushy than that
of c7552, therefore paths are much closer in terms of their delays.
Thus, path delays are very vulnerable to change ranks for thec1355
case (as depicted in Fig. 5). This is not the case forc7552 where
the delay of the paths are more distinctive. Moreover, spatial cor-
relations can be accounted for larger delay variances inc1355, due
to its DEF circuit description. In conclusion, it is the topology and
placement of the circuit that usually determine changes in critical
path ranks.

Finally, the last column in Table 2 shows the run-times of the

Circuit Deterministic analysis Probabilistic analysis
name

# of gates critical path
delay (ps)

worst-case
delay
(ps)

% diff.
from 3σ

point

C # of
critical
paths

critical path
mean (ps)

critical path
3σ point

(ps)

# of
gates

det.
rank

run-
time
(s)

c432 160 266.771 545.009 56.61 0.05 32 266.640 347.996 16 1 0.2
c499 202 180.004 358.336 49.94 0.05 58 179.183 238.979 11 40 0.6
c880 383 205.999 421.535 58.68 0.05 3 206.036 265.655 23 1 <0.1
c1355 546 241.245 486.283 52.46 0.05 1596 240.180 318.963 24 902 27
c1908 880 326.109 675.068 58.07 0.05 5 324.403 427.082 40 5 <0.1
c2670 1269 375.465 762.627 57.26 0.1 74 373.216 484.960 32 18 1.5
c3540 1669 459.501 903.289 48.32 0.05 32 458.431 609.015 41 8 0.5
c5315 2307 381.292 775.375 50.69 0.05 5 381.177 514.552 48 1 0.4
c6288 2416 1033.433 2163.213 62.22 0.001 896 1033.531 1333.470 124 1 15
c7552 3513 383.688 754.628 51.57 0.05 5 383.557 497.886 21 1 0.4

Table 2. Results



(a) Intra-delay PDF (b) Inter-delay PDF (c) Total path delay PDF forc432

Figure 4. Inter-, Intra-, and Total PDF for c432

Figure 5. Probabilistic rank vs. Deterministic rank for

c1355 (Large change in ranks)

Figure 6. Probabilistic rank vs. Deterministic rank for

c7552 (Limited change in ranks)

whole program, from the input-file parsing, to finding the deter-
ministic critical path, to computing their delay PDFs and ranking
them. For a path-based approach such as ours, the path delay com-
plexity is directly proportional to the number of near-critical paths
to consider, hence those run-times are very strong functions ofC.
Moreover, the run-time also varies with the graph structure: very
close deterministic delays will imply a considerable number of near-
critical paths. Lastly, run-time is a strong function of the discretiza-
tion pointsQUALITYintra andQUALITYinter.

In order to measure the trade-off between accuracy and run-
time, as far asQUALITYintra and QUALITYinter are concerned,
we calculated the delay PDF ofc499, using a series of discretiza-
tion combinations. The most accurate would be the one done
with the most discretization points. As an optimal trade-off be-
tween accuracy and run-time, we chose the point (QUALITYintra =
100, QUALITYinter = 50) because it yielded an accuracy within
0.009% of the3σ point with the highest discretization, with a run-
time of 0.4 seconds. Thus, the work presented in this paper uses
QUALITYintra = 100, QUALITYinter = 50.

One last observation involves the typical minimum value ofC.
Looking at Table 2, we can see that the biggestC we needed, to
find the absolute critical path, was0.1. This means that, for typi-
cal circuits, the probabilistic critical path is within10% of a typical
path-delay standard-deviation from the deterministic critical path.
This is a vital advantage for path-based statistical analysis, because
it means that typically the number of near-critical paths to consider
is acceptable.

5 Conclusion

We presented a framework for performing statistical timing
analysis. Five random variables have been accounted for in spa-
cial correlations. The work presented has a polynomial run time.
Our findings confirmed that the worst-case analysis overestimates
path delays by more than 50%. Moreover, depending on the circuit’s
topology and placement information, a path’s probabilistic rank with
respect to delay could be very different from its deterministic rank.
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