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Abstract

Process variations play an increasingly important role on the
success of analog circuits. State-of-the-art analog circuits are
based on complex architectures and contain many hierarchical
layers and parameters. Knowledge of the parameter variances
and their contribution patterns is crucial for a successful design
process. This information is valuable to find solutions for many
problems in design, design automation, testing, and fault toler-
ance. In this paper, we present a hierarchical variance analysis
methodology for analog circuits. In the proposed method, we make
use of previously computed values whenever possible so as to re-
duce computational time. Experimental results indicate that the
proposed method provides both accuracy and computational effi-
ciency when compared with prior approaches.

1. Introduction

As semiconductor manufacturers push the boundaries of
the process technology, a steady trend has been shrinking
the feature sizes. One direct result from the reduction in de-
vice sizes is the increasing importance of the role of process
variations. As devices are scaled down to their physical lim-
its, precise control over process parameters becomes nearly
impossible, resulting in larger percentage variations in the
parameters at each level of the design hierarchy.

Process variations affect the performance of analog and
digital circuits alike, as performance parameters, such as
gain, frequency of operation, or path delay, are directly in-
fluenced by process parameters. Thus, increased variations
in process parameters will also increase variability in per-
formance parameters at the circuit and the system level. An
analysis of such parametric variations is needed for many
problems in VLSI design, design automation, testing, and
fault tolerance. There is an increasing need to incorporate
process variations into the design flow from early design
stages and understand which parts of the design are the most
important contributors.

Since statistical tolerance analysis has been widely used
for many applications in industry for several decades, a
plethora of approaches have been developed for various ap-
plication domains over the years. Evans [7] provides a de-
tailed application background on state-of-the-art tolerance
analysis approaches.

A popular variance analysis approach has been the col-
lection of statistical data through simulating many in-
stances of the circuit. The most well known and widely
used sample-and-simulate technique is the Monte Carlo
analysis. Taguchi’s method [14] and modified Taguchi’s
method [6], which are based on deterministic sam-
pling, have been proposed as more reliable alternatives
to the Monte-Carlo analysis. However, the large num-
ber of required simulations (3n) prohibits their use beyond
a handful of parameters.

Due to its tractability, worst-case min-max analy-
sis based on a sensitivity-weighted addition of tolerance
windows has been intensively used in many fields [15]. Hi-
erarchical analysis based on Monte-Carlo and sensitiv-
ity analyses has also been introduced as a compromise
[9].

Recently, variance analysis of path delays has attracted
much attention in the digital domain [1, 5, 11], where the
problem typically involves three levels of hierarchy (tran-
sistor level, gate level, and path level) and a single param-
eter (delay). While computing the delay variance of a path,
correlations among the gate delays have been taken into ac-
count through their covariances [5, 11]. In [11], sensitivity
analysis is used to derive the relations between gate delays
and process variables. However, instead of min-max anal-
ysis, the covariance of each pair of gate delay is computed
based on the sensitivity information and this information is
used to update the tolerance bounds computed under the in-
dependent assumption. A similar approach is taken in [5]
while the covariances are assumed to be fixed between the
gates and specified by the system designer. In [10], we have
developed a theoretical basis for variance analysis of ana-
log circuits. The approach in [10] is based on computation
of correlation coefficients along a hierarchical path.

In this paper, we propose a variance analysis method
that is specifically geared towards information re-use. We
model the circuit representation as a tree and re-use the
variance information at each hierarchical layer. The method
takes advantage of identification of correlation loops in the
hierarchical structure so as to avoid re-calculation of pre-
viously computed values. Such information re-use is ex-
tremely helpful during design iterations where only minor
changes are made to the circuit.
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2. Hierarchical Variance Analysis

In analog circuits, a small number of transistors consti-
tute building blocks (such as current mirrors, diff-amp pairs,
etc.), several building blocks constitute modules (such as
an OPAMP), and modules are connected in a network to
build the circuits (such as a filter or an ADC). The rela-
tions among the circuit parameters at various levels can
be defined either through approximate behavioral models,
or through simulator-based models, such as the sensitivity
analysis. Thus, there is inherently a hierarchical construct
followed during the design process. The behavior of the cir-
cuit can be generalized as follows:

Pi(r) = fi(r)(P1(i−1) , P2(i−1) , ..., P
NP

(i−1)
i−1

)

where Pi(r) denotes the ith parameter at the hierarchy
Level-r, fi(r) denotes its functional relation in terms of pa-
rameters one level down in the hierarchy, and NPr denotes
the number of parameters at the hierarchy Level-(r).

In general, the covariance analysis for the linear system
with normally distributed inputs can be conducted hierar-
chically through chainwise matrix multiplications [4]:

Let A : Rn → Rm, linear, and x ∼ Nn(µ,Σ).
Then, Ax ∼ Nm(Aµ,AΣA′).

The coefficients of the matrix A can be formed by the
sensitivities between adjacent levels since first order Taylor
approximation always results in a linear relation between
variances in adjacent levels. As a result, the covariance ma-
trix can be propagated hierarchically.

Although the matrix multiplication approach can pro-
vide the variance and covariance information for each pa-
rameter, the following drawbacks limit its usage in hierar-
chical variance analysis for analog circuits.

• The covariance matrices only provide lumped infor-
mation about the correlation between variables. It is
hard to determine the contribution in variance for each
lower level variable with respect to the top level vari-
ances. However, variation analysis in analog circuits
requires the auxiliary information to help determine
which critical sub-circuits to focus on during design
iterations.

• The covariance matrix approach lacks the flexibility
to trade off the computational complexity and the ac-
curacy. As the number of variables in each level in-
creases, time complexity becomes the major concern
in variance analysis.

• In the covariance matrix based approach, each time the
hierarchical construct is changed, all the affected val-
ues need to be recomputed. This need for the complete
recomputation arises from the inability to destruct the
components of the variance of each parameter. Dur-
ing the design iterations, an analog circuit is modified

multiple times and the resulting hierarchical construct
can be slightly different from the previous one. It is
desired to save some computational effort on the un-
changed part of the hierarchical construct.

In order to overcome these challenges, we propose a hi-
erarchical approach where structural information on the cir-
cuit is tracked to enable information re-use during design it-
erations. In our earlier work [10], we have derived expres-
sions for computing the variances of parameters at each hi-
erarchical level of the circuit:
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represents the first order sensitivity of a Level-k parame-
ter Pi(k) to a Level-(k − 1) parameter Pi(k−1) . Section 4
presents a detailed discussion of this mathematical expres-
sion. In this work, we concentrate on a graph based inter-
pretation and an efficient implementation of this processing
scheme. We use a tree model for the hierarchical structure
of the circuit. We focus on a layered variance analysis in
which tracing to lower levels is avoided if the necessary in-
formation has been processed previously.

3. Modelling the Circuit Behavior and Pa-
rameter Correlations

Top-down design flow in analog circuits allows for a
well-structured hierarchical representation of the circuit be-
havior. In our circuit model (illustrated in Figure 1), the
lowest level of the hierarchy consists of process (e.g. the ox-
ide thickness, the dopant concentration) and layout (e.g. the
transistor width, the transistor length) parameters. The next
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Figure 1: Hierarchical graph model of the circuit behavior
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Figure 2: Correlated intermediate variables can be identified
through functional dependency on Level-0 parameters

level of hierarchy consists of DC parameters such as the
bias current, followed by small signal parameters, such as
the transconductance and the output resistance. The nodes
in the circuit graph in Figure 1 correspond to the parame-
ters. An edge between two nodes indicates a functional de-
pendency. The weight of that edge is assigned as the sen-
sitivity between the two parameters. We call these weights
correlation coefficients.

For the relations between process and layout parameters
(Level-0 parameters) and DC parameters (Level-1 parame-
ters), we use the SPICE circuit simulator and perturbation-
based sensitivity computation. For the relations among the
parameters at higher levels of hierarchy, we use analytical
models. Such analytical models have been derived and used
by circuit and system designers [13, 8], and extensively in
analog design automation [3, 2].

Once the hierarchical circuit model is constructed, the
variances of parameters at levels above Level-0 need to be
computed. At a first glance, this computation step involves
nothing more than computing the variance of a response
function using the variances of its input parameters. How-
ever, as the parameters at intermediate hierarchical nodes
are correlated, simple statistical analysis is not sufficient for
accurate computation.

3.1. Adjacent level correlations

In this work, we process the correlation between two
same-level parameters through their dependency on lower-
level parameters. This dependency is determined using the
hierarchical structure of the circuit representation and the
correlation coefficients. A correlation between two Level-i
parameters exists if they have functional dependency on at
least one common lower level parameter.

As an example, consider the hierarchy in Figure 2. The
correlation between F and G is due to their dependence on
the Level-0 parameter, Y. Thus, for two parameters to be
correlated, there has to be a path from both of them to at
least one common Level-0 parameter. In prior work, cor-
relations among intermediate parameters are handled using
covariances that are either obtained through simulations [5]
or assumed given [11]. (Simulation-based derivation of co-
variance is primarily limited to 3 levels of hierarchy.) In
this work, we aim at efficient processing of these correla-
tions using the circuit representation.

4. Layered Processing of Variances

The variance of Level-1 parameters can easily be com-
puted using the sensitivity information since there is no cor-
relation among Level-0 parameters. However, for the pa-
rameters at Level-2 and above, correlations need to be taken
into account. Without loss of generality, consider a partial
circuit graph given in Figure 3. Parameter P i(j) at Level-i
can only be processed after processing of all parameters at
Level-(i − 1) that Pi(j) has functional dependence on. The
processing of parameter Pi(j) involves the following steps:

• Calculation of the variance based only on the vari-
ances of parameters at Level-(i − 1) on which P i(j)

has functional dependency. This step corresponds to
the first term in Equation 1 and only involves the pa-
rameters one level down in the hierarchy. For parame-
ters at Level-2 and above, correlations need to be taken
into account.

• Calculation of the correlation correction term (CCT)
for the variance of Pi(j) . This step corresponds to the
remaining term in Equation 1 and involves all param-
eters at Level-(i − 1) and all the parameters at Level-
0 that cause the correlation. Although straightforward
as a mathematical expression, direct implementation
of this step can be time-consuming since the circuit
graph needs to be traversed through Level-0 multiple
times for each parameter being processed.

4.1. Loop tracing for CCT calculation

In order to avoid processing of the same informa-
tion multiple times, we aim at using the connectivity
information in the circuit graph in a more efficient man-
ner. Let us first make several definitions:
Definition: A path between two parameters at distinct lev-
els of hierarchy constitutes a correlation path.
Definition: For a parameter at Level-i, all parame-
ters at lower levels that can reached through two dis-
tinct paths constitute its correlation parameters.
Definition: Two distinct paths between a parameter at
Level-i and one of its correlation parameter consti-
tute a correlation loop.

Equation 1 indicates that for a parameter, P i(j) , and each
of its Level-0 correlation parameters, the correlation paths

P1 P2 P3

P1 P2 P3 P4 P5

P2 P3 P4 P5 P6 P7P1

Level-2

Level-1

Level-0

Level-0 Correlation Parameters

parameter under processing

(1)(1) (1) (1)(1)

(2)(2)(2)

(0) (0) (0) (0) (0) (0) (0)

Figure 3: Determination of correlations and processing of vari-
ance information in a hierarchical manner



F3

H

G1 G2

X2 X3X1

F2F1

X1

H

G1 G2

X2 X3

F3F2F1

a. A pair of correlation paths 
from H     that have been 
processed while processing 1G

to X2

b. A pair of correlation paths 
from H to X  that have  
not yet been processed

2

Figure 4: A partial circuit graph to process the CCT in the vari-
ance of H due to the correlation parameter X2

need to be traced down to Level-0 in pairs. Equation 1 also
requires that parameters at (Level-(i − 1)) in these path
pairs be distinct. The reason for this condition is illustrated
in a partial circuit graph shown in Figure 4. There exist
more than one correlation paths between the parameter un-
der processing, H , and the Level-0 parameter, X2, mak-
ing X2 a Level-0 correlation parameter for H . As Equa-
tion 1 suggests, the correlation paths need to be processed
in pairs. The pair of correlation paths shown in Figure 4a
have already been processed while processing the param-
eter, G1, thus should be omitted. However, the correlation
paths shown in Figure 4b have never been processed, thus
should be included in the analysis.

The correlation paths shown in Figure 4a clearly include
a loop excluding the parameter under processing (H). We
call such loops convergent loops. The paths in Figure 4b
demonstrate a non-convergent loop. Thus, the implemen-
tation of Equation 1 on the circuit graph suggests identifi-
cation and processing of non-convergent loops (correlation
loops) in the circuit graph.

4.2. Correlation through an arbitrary level
Correlation loops need not always go through Level-

0 parameters. While one can still use Equation 1 and the
aforementioned loop-based technique, it is advantageous in
terms of computational efficiency to use the information at
higher levels of the hierarchy. In order to achieve this goal,
one can re-write the CCT term in Equation 1 by introduc-
ing the variances of the intermediate level parameters:

CCT =
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is defined as remainder correlation weight between a Level-
i parameter Pi(n) and a Level-k (k ≤ i−2) parameter Pi(k) .
It is called remainder since the complementary part of the
correlation coefficients has already been taken into account.
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Figure 5: A four-layer hierarchical structure
Equation 2 suggests that a correction loop may exist be-
tween the parameter under processing and another parame-
ter at an arbitrary level of hierarchy. Such loops need to be
handled in the same way loops through Level-0 are handled.
For example, in a five-layer hierarchical structure as shown
in Figure 5a, the remainder correlation weight rH1

X2
corre-

sponds to the correlation loop through H1 and X2, as show
in Figure 5b. In this case, the remainder correlation weight
relating H1 and X2 will be rH1

X2
= C1 ·C2 ·C3 ·C4 ·C5 ·C6.

To calculate a remainder correlation weight, one needs
to identify the loops in the partial tree corresponding to the
remainder correlation weight and sum up the correspond-
ing products of correlation coefficients along the loops.

4.3. Data structure and implementation issues
For VLSI systems with many hierarchical layers, it is

likely that the connectivity information will be sparse, since
independent variables at one corner of the die are not likely
to affect parameters on another corner of the die. Moreover,
in the computation of the correction terms, the connectiv-
ity information is processed many times. Thus, an efficient
data structure for the representation of the connectivity in-
formation is a bi-directional tree structure where each node
may have multiple children and multiple parents.

The partial circuit graph between a parameter under pro-
cessing and one of its correlation parameters resembles a
directed control flow graph in the sense that it has a sin-
gle start and a single end point. Identification of loops in
control flow graphs is a well investigated topic in compiler
research. In [12], the loop identification is conducted in al-
most O(k) time, where k is the number of edges in the con-
trol graph (the worst case time complexity is O(k2)).

The correlation path information provides valuable in-
sight during design iterations. First, the correlation paths
provide a means for determining the relative contribution
of each sub-circuit. Second, unmodified correlation paths
need not be processed during design iterations. Third, for
large circuits, we can compare the relative importance of
the sensitivity paths and only retain a set of important sen-
sitivity paths at each hierarchical level.

Although the storage of these sensitivity paths may lead
to space overhead, the overhead is actually quite small in



practice since, for each path, we only need to record the in-
dex of the variables the path visits at each level. Also, dy-
namic programming techniques can be utilized when prop-
agating these paths in a bottom-up manner along the hierar-
chical construct.

5. Comparison of computation time and accu-
racy with prior approaches

Two experiments have been conducted to evaluate the
computational time and accuracy of the proposed hierarchi-
cal analysis approach. In this section, we provide compar-
isons with the Monte Carlo analysis, Taguchi’s method, the
min-max method, and the covariance based method given
in [11].
Example 1: A four-layer non-linear hierarchy
Figure 6 shows an illustrative four-layer hierarchical con-

struct with non-linear functional relationships between two
adjacent layers. To evaluate the computational time and ac-
curacy of the proposed method, means and variances of
all the variables in the hierarchical construct are calcu-
lated using both the proposed method and various widely
used statistical analysis approaches: the Monte Carlo anal-
ysis with both a large sample size and a small sample size,
Taguchi’s method, sensitivity-based min-max analysis, and
covariance based analysis. (Covariance is assumed to be
user given in [5], and is assumed to be based on a con-
stant correlation of 0.3 between each pair of intermediate
layer variables in [11]. To enable comparison, the same 0.3
correlation based analysis is used.) In the proposed method,
the correlation coefficients are modelled with the first or-
der Taylor series approximations around the nominal. The
standard deviation of Level-0 parameters is given as 3.3%.

The computational time, the accuracy for the Level-3 pa-
rameter, H , and the accuracy for the Level-2 parameters
(G1 - G3) have been summarized in Table 1. The 50K-
sample Monte Carlo (MC) method is chosen as the base
case for all accuracy comparisons.

The poor accuracy of the min-max and covariance-based
approaches in conducting the hierarchical analysis for ana-
log circuits limits their usage even though they can be done
with relatively small computational efforts. These results

G1 G2 G3

F1 F2 F3 F4 F5

X2 X3 X4 X5 X6 X7X1 X8

H

F1=X7X2+X2
2+X2X3

X6
X4

F2=X2
1+X3X6+X2

4

G1=F1F2+F 2
3

F3=X2X6+X3X4+X2
8

G2=F 2
2 +F 2

4

F4=X1X8+X2
4+X5X7

G3=F4F5+F2F3+X2
1

F5=X2
1+X2

7+X2
4/X5

H=G2
1+G2G3

Figure 6: A system of hierarchy with non-linear functional rela-
tions between two adjacent layers

confirm that the covariance-based approaches developed for
digital timing analysis [11, 5] may not be easily extended
to analog circuits where correlations may substantially vary
between each pair of intermediate level parameters. Assum-
ing a fixed correlation for all intermediate parameter pairs
is effective in timing analysis since propagation delay is the
only parameter and delays through various gates will have
similar correlations as they consist of the same (or similar)
transistor combinations. In the analog and mixed-signal cir-
cuits, however, this condition does not hold any more, thus
a constant correlation modelling approach results in much
higher errors.
Example 2: A differential amplifier circuit
Figure 7 shows a current mirror load MOS differen-
tial amplifier circuit that consists of 3 NMOS and 2
PMOS transistors. The corresponding hierarchical con-
struct is shown in Figure 8, where Av corresponds to the
low frequency gain. In this example, six process vari-
ables (W, L, Vto, Uo, λ, Tox) for each of the five transis-
tors are chosen as independent Level-0 parameters with
given variances. Level-1 parameters consist of DC pa-
rameters (ID,VDS ,VGS). The small-signal model param-
eters (gm, go) constitute the set of Level-2 parameters,
since they are usually expressed as functions of DC pa-
rameters. The top level (Level-3) of the hierarchy con-
sists of the performance parameters of the circuit, such
as gain (Av) and cut-off frequency (fc). In this experi-
ment, only the variance of the gain is investigated. The
variances of other performance parameters can be ob-
tained in the same manner. As in the previous exam-
ple, correlation coefficients between Level-1 and higher
level parameters are derived using first order Taylor Se-
ries approximations around the nominal. Unlike the previ-
ous example, the correlation coefficients between Level-0
and Level-1 are obtained through a perturbation based ap-
proach. The standard deviation of Level-0 parameters is
assumed to be 0.67%.

The goals of this experiment are (a) to evaluate the im-
pact of approximate modelling (1st order approximation in
this case) on more complicated functional relations, (b) to
compare the proposed method to other state-of-the-art ap-
proaches for a practical circuit, (c) to illustrate the possibil-

Parameter G1 G2 G3 H Time
Method %ε %ε %ε %ε s
MC-50K - - - - 2.5×103

MC-1K 0.9 3.5 0.1 0.5 46.5
Taguchi’s 0.4 4.6 0.4 0.1 328.3
Min-max 22.4 3.9 1.4 39.6 0.5

Covariance 11.0 9.6 1.3 21.6 0.8
Proposed 0.8 0.2 1.3 0.6 0.8

Table 1: Comparison for the accuracy of variance computation.
Monte Carlo analysis with 50K samples is taken as the base.
Taguchi’s method requires 38 (6561) samples.
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ity of combining the analytical derivation and the perturba-
tion based computation of correlation coefficients.

Table 2 shows the accuracy and computation time com-
parison for the parameters at Level-1 and above for var-
ious approaches. A 12K-sample Monte Carlo simulation
is taken as the base case for all comparisons. Taguchi’s
method is excluded from the experiment as the required
sample size (330) prohibits its use in this circuit with 30
Level-0 parameters. While tracking the results of the Monte
Carlo simulation within 10% error, the proposed method
only takes a fraction of computation time required by it.
On the other end of the spectrum, the proposed analysis is
highly accurate compared to the min-max or covariance ap-
proaches with only a small increase in computation time.
Thus, even though the functions governing the relations be-
tween variables in adjacent layers are much more compli-
cated compared to the first example, a similar conclusion
can be drawn from this example. The proposed method pro-
vides both computational efficiency and accuracy.

6. Conclusion
In this paper, we present a hierarchical method to ana-

lyze the impact of process variations on circuit parameters.
We model the hierarchical structure of the circuit as a tree
wherein relations among circuit parameters are modelled as
weighted edges. We start from Level-1 parameters and pro-
cess each parameter at higher levels. Through identification
of correlation loops, we avoid reprocessing of the same in-
formation to save time. The information reuse is particu-
larly important during design iterations. In order to enable
such reuse, we keep track of the correlation paths in the sys-
tem and process only the updated information.

Two experimental cases have been used to evaluate the
efficiency of the proposed approach: a highly non-linear hi-

-

go5 gm2gm1

Av

go2go1 gm4

Id1 Id4

W5W1 L5L1 Tox5Tox1

Figure 8: Hierarchical graph for the differential amplifier

σ MC-12K Min-max Covariance Proposed
%ε ID1 - 681.1 -0.3 2.0
%ε ID4 - 698.9 -0.3 2.0
%ε gm1 - 1641.3 470.0 3.1
%ε gm2 - 1639.1 468.5 3.6
%ε gm3 - 1623.8 465.5 2.6
%ε gm4 - 1610.8 459.8 1.5
%ε go1 - 695.8 6.9 2.3
%ε go2 - 651.9 1.0 -3.4
%ε go3 - 695.0 6.8 2.1
%ε go4 - 625.2 -2.6 -6.7
%ε go5 - 574.6 -7.1 3.0
%ε Av - 1585.4 414.3 9.4
Time(s) 5.0×104 1.7 1.7 2.4

Table 2: Results for Example 2. Monte Carlo analysis with 12K
samples is taken as the base case.

erarchy of random functions, and a 5-transistor dif-
ferential amplifier circuit. The results indicate that the
proposed analysis provides almost the same compu-
tational efficiency as the simple min-max approach,
and fixed-covariance based approach while provid-
ing much higher accuracy (9% for the proposed ap-
proach for the top-level parameter compared to 1585%
for the min-max analysis and 414% for the fixed covari-
ance approach [11].).
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