
Time-Domain Simulation of Sampled Weakly Nonlinear Systems Using

Analytical Integration and Orthogonal Polynomial Series

Ewout Martens∗and Georges Gielen
Katholieke Universiteit Leuven, Department of Electrical Engineering, ESAT-MICAS

Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
{emartens|gielen}@esat.kuleuven.ac.be

Abstract

This paper presents a novel method for simulation of
sampled systems with weakly nonlinear behavior. These
systems can be characterized by adding weakly nonlinear
terms to the linear state-space equations of the system re-
sulting in an extended state-space model. Perturbation the-
ory is used to split these equations in an ideal linear behav-
ior and a non-ideal small perturbation. The linear equations
are solved analytically which reduces simulation time com-
pared to numerical evaluation. The solution of the perturba-
tion equations is approximated by orthogonal polynomials.

This methodology not only reduces simulation time com-
pared to traditional numerical simulations, but also deals
naturally with clock jitter and the discontinuous behavior
of sampled systems. An implementation of the methodology
has been used to analyze systems including switched filters
and continuous-time ∆Σ modulators.

1. Introduction

Modern integrated circuits frequently contain sam-
pled subsystems. In mixed analog-digital systems,
conversions between the analog and the digital do-
main are key operations. Further, a part of the process-
ing algorithm can be implemented in the discrete do-
main, using for example switched-capacitor circuits.

Methodologies commonly used for systematic
analysis and synthesis of analog circuits require time-
efficient simulations to determine and optimize the
performance [3]. Using these methods for sampled
systems implies executing simulations which take into
account major non-idealities like clock jitter, charge in-
jection and weakly nonlinear behavior [5]. Further-
more, signals encountered in switched circuits have
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inherently a discontinuous time behavior making it
difficult to use simulators often used by analog de-
signers like SPICE.

Simulation of sampled systems can be performed in
time or frequency domain [9]. The goal of this work
is to develop more efficient time-domain simulation
of weakly nonlinear sampled systems which can be
used as part of simulations of larger mixed-signal sys-
tems with a clock-based computational model. Appli-
cations are, for example, time-domain analysis of sen-
sor interfaces with switched-capacitor filters and ∆Σ

converters.
The approach presented in this paper is based on

splitting up the nonlinear response between two sam-
pling moments into a linear dominant part and a small
nonlinear perturbation. These parts are obtained as
solutions of the linear and perturbation equations re-
spectively. Analytical integration is employed to pro-
vide an expression for the linear response. The per-
turbation, on the other hand, is approximated by a se-
ries of orthogonal polynomials. Combination of the
two responses results in the time-efficient evaluation
of weakly nonlinear behavior.

This approach has several advantages:

• Time-domain simulations simplify the modeling
of systems which contain feedback via the digi-
tal domain. This is encountered, for example, in
∆Σ modulators. Note that a transient and not only
a steady-state solution is calculated. Frequency-
domain approaches, for example harmonic bal-
ance [4] or Volterra series [8, 2], are more suited
for calculating steady-state solutions.

• It is straightforward to take into account effects of
clock jitter since it is not assumed that the width of
the time interval is fixed. To include jitter effects,
sampling points are generated by a random pro-
cess. Other time-domain simulation techniques
(e.g. [6]) which derive an analytical expression for
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the state values between two sampling moments,
for example using the Z-transform, can only model
effects of clock jitter by approximated linear behav-
ior.

• Sampled nonlinear circuits can be simulated with
general time-marching methods, for example us-
ing VHDL-AMS simulators or MATLAB/Simulink.
High accuracy can be achieved at the expense of
very time-consuming simulations. The proposed
approach reduces the simulation time while still
achieving a high accuracy.

• Thermal noise can easily be added to the time-
domain model. Random noise processes can be
converted to multivariate stochastic variables if
they are filtered in the same way as the input sig-
nals and subsequently sampled.

This paper is organized as follows. Section 2 intro-
duces the model for characterizing weakly nonlinear
systems. It is explained how this set of equations is
split up into a dominant and a perturbation part. The
analytical integration method to solve the first set is
explained in section 3. The approximation method for
the perturbation equations is elaborated in section 4.
In section 5 two examples of the simulation method
are presented. Conclusions are drawn in section 6.

2. Characterizing weakly nonlinear systems

A n-th order linear system can be modeled by a set
of state-space equations which describe the behavior
in terms of n state variables [1]. To describe a weakly
nonlinear system, these linear equations should be ex-
tended resulting in an extended state-space model.

2.1. Extended state-space model

Analog integrated circuits exhibiting weakly non-
linear behavior can be modeled using basic nonlinear
elements like a nonlinear conductance, capacitance or
transconductance which are described by a polyno-
mial [7]. For example, a weakly nonlinear transcon-
ductance of order N is characterized as follows:

i(t) = gm ·
[

v(t) + α2v2(t) + . . . + αNvN(t)
]

, (1)

where α2, . . . , αN are distortion coefficients. v(t) is the
control variable of the nonlinearity. In general, the
characteristic equation is a multivariate polynomial in
multiple control variables.

Figure 1 depicts an example of a nonlinear integra-
tor and its macromodel. In this example, there are
three control voltages (vC, vR and v1) but only two

u(t)
y(t)v1(t)

Cint

R

u(t)
R

vR(t) = y(t)v1(t)
Cint(vC)

R Cin Rout(vR)gm(v1)v1

Cint(vC) = Cint0

(

1 + α2vC + · · · + αNvN−1
C

)

,

gm(v1) = gm0

(

1 + β2v1 + · · · + βNvN−1
1

)

,

Gout(vR) = Gout0

(

1 + γ2vR + · · · + γNvN−1
R

)

.

Figure 1. Example of a weakly nonlinear
model for an integrator of order N.

state variables. In general, control voltages are linear
combinations of the state and input variables which
can be represented by transformation matrices:

θ(t) = Tq · q(t), (2a)

ρ(t) = Tu · u(t), (2b)

with q(t) the (linear) state variables, u(t) input signals,
θ(t) and ρ(t) control voltages and Tq and Tu transfor-
mation matrices. Note that products of control vari-
ables which are encountered in multivariate character-
istic polynomials, can be converted to a sum of powers
of state variables.

For the example of Figure 1, the state transforma-
tion matrix Tq is defined as follows:

θ(t) =





v1(t)
vC(t)
vR(t)



 =





1 0
0 1
1 −1



 ·

[

v1(t)
vC(t)

]

= Tqq(t), (3)

where v1(t) and vC(t) are chosen as state variables.
Based on the linear state-space equations, the math-

ematical description of a weakly nonlinear system
with output y(t) can be written as a set of extended
state-space equations:

dq(t)

dt
+

N

∑
k=2

Pk
dθ(k)(t)

dt
= A1q(t) + B1u(t)
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+
N

∑
k=2

Akθ
(k)(t) +

N

∑
k=2

Bkρ
(k)(t), (4a)

y(t) = C1q(t) + D1u(t)

+
N

∑
k=2

Ckθ
(k)(t) +

N

∑
k=2

Dkρ
(k)(t), (4b)

where the system is characterized by the parameters
of the matrices Pk, Ak, Bk, Ck and Dk. N is the distor-
tion order of the weakly nonlinear system. The super-

script (k) of a vector v(k)(t) indicates that each element
of the vector should be raised to the power k.

Using Kirchoff’s laws, the extended state-space
model for the example in Figure 1 can be derived:

dq(t)

dt
+

N

∑
k=2

[

0 0 0
0 αk 0

]

dθ(k)(t)

dt
=





−
G+gm0

+Gout0
Cin

Gout0
Cin

gm0
+Gout0

Cint0
−

Gout0
Cint0



 q(t) +

[

− G
Cin

0

]

u(t)

+
N

∑
k=2





−
gm0

βk

Cin
0 −

Gout0
γk

Cin
gm0

βk

Cint0
0

Gout0
γk

Cint



 θ
(k)
n (t). (5)

All parameters are defined in Figure 1. The control
variables θ(t) are defined by state transformation (3).

2.2. Solving the extended state-space model

To simulate a sampled system, the response of the
extended state-space model is calculated over a time
interval between two sampling points provided by a
sampling clock, possible with jitter. This can be sim-
plified by taking the weakly nonlinear character into
account. In this case, the nonlinear response shall be a
small deviation from the linear response. So, the total
response of the weakly nonlinear system can be split
up into the linear response and a small perturbation:

q(t) = q̄(t) + q̃(t), (6a)

y(t) = ȳ(t) + ỹ(t). (6b)

When the system is part of a cascade of systems, the
input signal can also be split up in a linear and a per-
turbation signal:

u(t) = ū(t) + ũ(t), (6c)

where the perturbation input ũ(t) coincides with the
perturbation output of the previous system.

Substituting these expressions into the extended
state-space equation (4a), and simplifying, results in

two sets of equations: the linear state-space equations

dq̄(t)

dt
= A1q̄(t) + B1ū(t), (7)

and the perturbation equations

dq̃(t)

dt
= [In + K(t)]−1 [A1q̃(t) + B1ũ(t) + e(t)] , (8a)

with

e(t) =
N

∑
k=2

[

Akθ
(k)(t) + Bkρ

(k)(t)
]

− K(t)
dq̄(t)

dt
, (8b)

K(t) =
N

∑
k=2

k Pk (diag θ(t))k−1 Tq, (8c)

where ‘diag x’ converts vector x to a diagonal matrix.
For each of these two sets of equations a different

solution strategy is followed. Whereas for the linear
set an analytical solution can be found, for the pertur-
bation set an approximation method must be applied.

3. Solution of the linear equations

First, the linear state-space equations (7) are solved
to determine the dominant response of the system.
This can be done analytically based on the eigenstruc-
ture of the system matrix A1.

There are different formulations of the solution of
the differential equation possible, for example using
the exponential of A1 [1]. The formulation used in this
work, however, is chosen to make it possible both to
reuse a part of the calculation throughout the simula-
tion and to employ analytical integration.

To find the response of (7) at time t with initial con-
ditions q̄(t0), one has to sum all contributions of all
eigenvalues. One can prove that a real eigenvalue λk

of the system matrix A1 gives rise to the terms

Qk,m (∆t)m e λk∆tq̄(t0)

+ Rk,m

∫ t

t0

(t − τ)m

m!
e λk(t−τ)ū(τ) dτ, (9a)

for m = 0, . . . , ck. The contribution of a complex eigen-
value pair αl ± j βl are the terms

[

Pr
l,p cos (βl∆t) − Pi

l,p sin (βl∆t)
]

(∆t)p e αl ∆tq̄(t0)

+ Sr
l,p

∫ t

t0

(t − τ)m

m!
e αl(t−τ) cos [βl (t − τ)] ū(τ) dτ

− Si
l,p

∫ t

t0

(t − τ)m

m!
e αl(t−τ) sin [βl (t − τ)] ū(τ) dτ,

(9b)
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for l = 0, . . . , dl . Here, ck + 1 and dl + 1 are the orders
of the generalized eigenspace of the real and complex
eigenvalues respectively. ∆t denotes the width of the
time interval.

The matrices Qk,m, Rk,m, Pr
l,p, Pi

l,p, Sr
l,p and Si

l,p con-

tain coefficients depending on the system. They are
calculated at the beginning of the simulation. So, al-
though it may be tedious to accurately calculate these
matrices, overall simulation time is not increased ac-
cordingly since the calculation must be done only
once. Substituting the expression for the general so-
lution into the state-space equations, and equalizing
orthogonal terms, shows that the columns of these
coefficient matrices are elements of the null space of

(A1 − λkIn)ck−m+1 or (A1 − (αl + j βk)In)dl−p+1.
Analytical expressions are provided to calculate the

integrals in the terms (9) for commonly used input sig-
nals. These analytical calculation of the integrals re-
duces simulation time compared to numerical evalua-
tions. Together with the reuse of the coefficient matri-
ces, this results in time-efficient simulations.

Furthermore, analytical integration has the advan-
tage that input signals may be discontinuous. For ex-
ample, to model initial charge of capacitors at the start
of the time interval in a sampled system, Dirac im-
pulses can be used as input signals [9].

4. Solution of the perturbation equations

Once the dominant behavior has been determined,
the deviation of this response should be calculated by
solving equations (8). The total response is then calcu-
lated as the sum of the linear and perturbation parts.

The perturbation equations can be written in the
standard form of differential equations:

dq̃(t)

dt
= F (q̃(t), t) . (10)

Furthermore, the time interval [t0, t1] is normalized to
a standard interval (in this paper [−1, 1]) using the
transformation

ξ = αt + β, (11)

resulting in the normalized perturbation equations in

q̂(ξ) = q̃
(

ξ−β
α

)

:

dq̂(ξ)

dξ
=

1

α
F

(

q̂(ξ),
ξ − β

α

)

. (12)

Generally, an analytical solution cannot be found
for these equations. Instead, the signals can be ap-
proximated over the entire time interval:

q̂(ξ) =
M

∑
i=0

Q̂i pi(ξ), (13)

where the signals {p0(ξ), . . . , pM(ξ)} are the base sig-
nals of the approximation. In this work, orthogonal
polynomials are chosen as base functions. This set has
several advantages compared to other sets:

• Using polynomials simplifies function evaluations
compared to other types of base functions.

• One could also use Taylor series as polynomial ap-
proximation. The advantage of series of orthogo-
nal polynomials is that they provide an approxi-
mation over the entire time interval. Taylor series,
on the other hand, approximate the signal only at
the beginning of the interval. The main point of
interest, however, in the case of sampled systems
is the end point of the interval.

In this work, Chebyshev polynomials are used as base
functions.

To find the coefficients Q̂i of the polynomial se-
ries (13), one could substitute the approximation into
the differential equations and equalize corresponding
terms. This method has some disadvantages:

• Nonlinear behavior requires the calculation of
powers of the approximated signal in terms of
base functions of order 0 to M. Such expressions
are nonlinear and complicated. Furthermore, they
are approximations which introduce an error on
the differential which is not correct anywhere in
the interval. Especially in the end point of the in-
terval, a large error can be the result.

• All input signals, including the linear approxima-
tion, should be approximated by series of the base
functions.

Another approach consists in writing down the dif-
ferential equations in M collocation points. Together
with the initial conditions, a nonlinear system is ob-
tained of as many equations as with the method de-
scribed above. Since this is not easier or more difficult
to solve and it does not suffer of the aforementioned
disadvantages, this method is our first choice to calcu-
late the coefficients of the approximation.

There are M collocation points to be chosen within
the standard interval. For Chebyshev polynomials, it
is advantageous to select the points

ξ j = cos

(

(j − 1)π
M − 1

)

, j = 1, . . . , M, (14)

if M 6= 1. For M = 1, the end point is selected as
collocation point (which is 1 in the standard interval).

Now the differential equations are written down in
each point ξ j. The left-hand side of (12) becomes

dq̂(ξ)

dξ
=

M

∑
i=0

Q̂i

dpi(ξ j)

dξ
, (15)
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with
dpi(ξ j)

dξ the derivative of the base function of order

i in ξ j. For Chebyshev polynomials and the choice of
collocation points of (14), one can prove that

dpi(ξ j)

dξ
=







i + 2i ∑
i−1

2
l=1 cos

(

2l(j−1)π
M−1

)

i odd,

2i ∑
i
2
l=1 cos

(

(2l−1)(j−1)π
M−1

)

i even.
(16)

These values should only be calculated at the begin-
ning of the simulation, since the interval is always nor-
malized to the same standard interval.

For the right-hand side of (12) the values of the nor-
malized perturbation signals q̂(ξ) should be written as
a function of the coefficients Q̂i. All coefficients can be
lumped together within the coefficient vector Q̂:

Q̂ =
[

Q̂T
0 Q̂T

1 · · · Q̂T
M

]T
. (17)

The values of q̂(ξ) in the collocation point ξ j can be
written as a matrix multiplication:

q̂(ξ j) = P(ξ j) · Q̂, (18a)

with

P(ξ) =
[

diagn p0(ξ) · · · diagn pM(ξ)
]

. (18b)

The operator ‘diagn’ is defined as the Kronecker prod-
uct between the identity matrix and a scalar, vector or
matrix (i.e. diagn φ = In ⊗ φ). The function values of
a Chebyshev polynomial in the points of (14) are

pi(ξ j) = cos

(

i(j − 1)π
M − 1

)

. (19)

Using these expressions, the set of differential equa-
tions written down in the collocation points together
with the initial conditions can be converted to a sys-
tem of (nonlinear) algebraic equations:

V(Q̂) =











P
′(ξ1)
...

P
′(ξM)

P(−1)











Q̂ −
1

α















F
(

P(ξ1),
ξ1−β

α

)

...

F
(

P(ξM),
ξM−β

α

)

0















= 0, (20)

with P
′(ξ) defined similar to P(ξ) but with deriva-

tives instead of function values of the base functions.
An approximation of the perturbation coefficients

can be found by solving the set of nonlinear algebraic
equations using Newton-Rhaphson iterations. Since
the system is weakly nonlinear, it should have an ap-
proximately linear behavior. So, a first-order approxi-
mation is

Q̂ ≈ −

[

dV(0)

dQ̂

]−1

·V(0), (21)

u(t)

x(t)

Ca

Cb

Cc

Cd

Cg

Ceφ1

φ1
φ2

φ1

φ1

φ2 φ2
φ1 φ2

φ2

Figure 2. Fleischer-Laker switched-capacitor
biquad used in the first experiment [5].

with dV(0)

dQ̂
the jacobian of the vector V(Q̂). Although

more accuracy can be obtained by performing multi-
ple Newton iterations, (21) is a good approximation
for weakly nonlinear circuits. No significant improve-
ment was found when two or three iterations were
performed in the experiments described in section 5.
Note that this means that the coefficients are the result
of the solution of one set of linear equations.

The complexity of this algorithm depends on how
efficiently the jacobian in (21) can be calculated. It is

straightforward to calculate dV(0)

dQ̂
once the jacobian of

F(q̂) of (12) is evaluated in all collocation points. For
this evaluation, one can determine an expression sim-
ilar to (8), i.e. the calculation of the jacobians is simpli-
fied by storing terms common to the jacobian and the

function values, especially the factor [In + K(q̂)]−1.
Furthermore, parts of both functions should only be
calculated once at the beginning of the simulation.

5. Experimental results

An implementation of the above algorithm has
been developed to verify its accuracy and simulation
time. The model has a discrete-time computational
model which makes it straightforward to implement
it as a SystemC module.

First, the switched-capacitor circuit depicted in Fig-
ure 2 is analyzed. The circuit is clocked at a sam-
pling rate of 128 MHz. It is assumed that capacitors
Cb and Cd are modeled by third-order characteristic
polynomials. Figure 3 shows the signal-to-noise-and-
distortion ratio (SNDR) at y(t) when the input is a sine
wave of about 1 MHz. The numbers between paren-
theses are the normalized simulation times. The time-
marching algorithm used for comparison is a standard
Runge-Kutta algorithm. Such an algorithm is used by
general simulation approaches like MATLAB simula-
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Figure 3. Effect of nonlinear capacitors Cb and
Cd in the circuit of Figure 2.

tions 1. One can conclude that, although high orders
of the polynomial series are required for good approx-
imation, simulations are about six times faster.

As second experiment, the model is used to cal-
culate the SNDR degradation in a third-order single-
loop ∆Σ A/D-converter with an oversampling ratio
of 128. At each time step, the SystemC module calcu-
lates the new states of the loop filter. These values are
the inputs of a quantizer module which produces a bit
stream. Feedback is provided by a DAC by genera-
tion of pulses at sampling moments. The integrator
model is shown in Figure 1. Figure 4 depicts the drop
in SNDR as a function of the distortion coefficient of
the integrating capacitor. Comparison is made with
a time-marching simulation of a VHDL-AMS model2.
Due to the feedback structure of a ∆Σ modulator and
its tolerance to circuit non-idealities, lower-order ap-
proximations already result in a good accuracy. Also
for this experiment, a speed-up factor of about six is
achieved.

6. Conclusions

Time-efficient simulations of sampled systems are
a great aid in the systematic analysis and synthesis of
switched subsystems frequently used in analog and
mixed-signal integrated circuits.

The simulation algorithm described in this paper is
applicable for sampled weakly nonlinear circuits and
achieves a reduction of the simulation time by two
means. First, the dominant behavior is calculated an-
alytically. Then, the deviation of the linear response is

1The Runge-Kutta algorithm is included in the SystemC module
to make a fair comparison.

2The simulator used is AdvanceMS of Mentor Graphics R©.
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Figure 4. SNDR degradation due to nonlinear
distortion in ∆Σ modulator.

calculated as a small perturbation. Since the perturba-
tion should be small, it can be approximated by a finite
polynomial series whose coefficients are calculated by
solving a set of linear equations. Experimental results
of a switched-capacitor filter and a continuous-time
∆Σ converter have shown that the proposed method
is more time-efficient than time-marching algorithms
used by, for example, MATLAB and VHDL-AMS sim-
ulators, while giving similar results.
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[2] P. Dobrovolný et al. “Analysis and Compact Behavioral
Modeling of Nonlinear Distortion in Analog Communi-
cation Circuits”. IEEE Trans. CAD of Integrated Circuits
& Systems, 22(9):1215–1227, Sept. 2003.

[3] G. G. Gielen and R. A. Rutenbar. “Computer-Aided De-
sign of Analog and Mixed-Signal Integrated Circuits”.
Proc. of the IEEE, 88(12):1825–1849, Dec. 2000.

[4] K. S. Kundert and A. Sangiovanni-Vincentelli. “Simu-
lation of Nonlinear Circuits in the Frequency Domain”.
IEEE Trans. CAD, 5(4):521–535, Oct. 1986.

[5] K. Laker and W. Sansen. Design of Analog Integrated Cir-
cuits and Systems. McGraw-Hill, Inc., 1994.

[6] P. Malcovati et al. “Behavorial Modeling of Switched-
Capacitor Sigma-Delta Modulators”. IEEE Trans. Cir-
cuits & Systems—I: Fundamental Theory & Applications,
50(3):352–364, Mar. 2003.

[7] P. Wambacq and W. Sansen. Distortion Analysis of Analog
Integrated Circuits. Kluwer Academic Publishers, 1998.

[8] F. Yuan and A. Opal. “Distortion Analysis of Periodi-
cally Switched Nonlinear Circuits Using Time-Varying
Volterra Series”. IEEE Trans. Circuits & Systems—I: Fun-
damental Theory & Applications, 48(6):726–738, June 2001.

[9] F. Yuan and A. Opal. “Computer Methods for Switched
Circuits”. IEEE Trans. Circuits & Systems—I: Fundamental
Theory & Applications, 50(8):1013–1024, Aug. 2003.

6


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




