
Instruction Scheduling for Dynamic Hardware Configurations

Elena Moscu Panainte Koen Bertels Stamatis Vassiliadis

Computer Engineering
Delft University of Technology, The Netherlands

http://ce.et.tudelft.nl
E-mail: {E.Panainte, K.Bertels, S.Vassiliadis}@et.tudelft.nl

Abstract

Although the huge reconfiguration latency of the avail-
able FPGA platforms is a well-known shortcoming of the
current FCCMs, little research in instruction scheduling
has been undertaken to eliminate or diminish its negative
influence on performance. In this paper, we introduce an
instruction scheduling algorithm that minimizes the num-
ber of executed hardware reconfiguration instructions tak-
ing into account the ”FPGA area placement conflicts” be-
tween the available configurations. The algorithm is based
on compiler analyses and feedback-directed techniques and
it can switch from hardware execution to software execution
for an operation, when the reconfiguration latency could not
be reduced. The algorithm has been tested for the M-JPEG
encoder application and the real hardware implementations
for DCT, Quantization and VLC operations. Based on sim-
ulation results, we determine that, while a simple schedul-
ing produces a significant performance decrease, our pro-
posed scheduling contributes for up to 16x M-JPEG en-
coder speedup.

1. Introduction

The latest commercial FPGA platforms now offer sup-
port for partial and dynamic hardware configurations. Nev-
ertheless, one of their main drawback remains the huge re-
configuration latency. In order to hide this latency, compiler
support is fundamental to automatically schedule and opti-
mize the compiled application code for efficient reconfig-
urable hardware usage.

When dealing with reconfigurable hardware, the com-
piler should be aware of the competition for the reconfig-
urable hardware resources (FPGA area) between multiple
hardware operations during the application execution time.
A new type of conflict - called in this paper ”FPGA area
placement conflict” - emerges between two hardware con-
figurations that cannot coexist together on the target FPGA.

In this paper, we propose a general instruction schedul-
ing algorithm that automatically minimizes the number of
required hardware configurations taking into account both
the ”FPGA area placement conflicts” and the characteris-
tics of the compiled software application. More specifically,
the algorithm anticipates the hardware configurations in less
frequently executed application points avoiding the ”FPGA
area placement conflicts”.

The paper is organized as follows. In the following sec-
tion, we present background information and related work.
In section 3, we describe the goals and the contribution of
this paper. A formal description of our scheduling problem
is included in Section 4. Section 5 introduces the instruc-
tion scheduling algorithm. The M-JPEG case study is dis-
cussed in Section 6 and finally, we present conclusions and
future work.

2. Background and Related Work

In this paper, we assume the Molen programming
paradigm [11] [12] for FCCMs (Field-programmable Cus-
tom Computing Machines) where the reconfigurable hard-
ware is controlled by two instructions: i) SET for hardware
configuration and ii) EXECUTE for hardware execu-
tion. The code generated for a hardware operation (an
operation performed on the reconfigurable hardware) in-
cludes i) parameter passing, ii) the SET instruction, iii)
the EXECUTE instruction and iv) returning the com-
puted results. This sequence of instructions where the SET
instruction is immediately followed by the associated EX-
ECUTE instruction is referred to in the rest of this paper as
the ”simple scheduling”.

In [5], it has been reported that this simple scheduling
produces significant performance decrease due to the huge
reconfiguration latency of current FPGA. In order to deal
with this drawback, a recent instruction scheduling algo-
rithm has been proposed in [6] for a particular case when
there is only one hardware operation in the whole applica-
tion. The main idea is to move the SET instructions outside

1530-1591/05 $20.00 © 2005 IEEE

loops in order to eliminate redundant hardware configura-
tions.

However, in order to achieve significant performance im-
provement for real applications, more than one operation is
usually implemented in hardware. As the available area of
the reconfigurable platforms is limited, the coexistence of
all hardware configurations on the FPGA for all application
execution time may be restricted. Moreover, hardware im-
plementations of these operations can be developed by dif-
ferent IP providers that can impose a predefined FPGA area
allocated for each operation, resulting ”FPGA-area place-
ment conflicts”. Two hardware operations have an ”FPGA-
area placement conflicts” (or just conflict in the rest of the
paper) if i) their combined reconfigurable hardware area is
larger than the total FPGA area or ii) the intersection of their
hardware areas is not empty. In Figure 1(a) we sketch a pos-
sible FPGA area allocation for three operations performed
on the FPGA. We observe that op1 and op2 cannot fit to-
gether on the FPGA (thus op1 conflicts with op2) while op2
and op3 have a common overlapping area (thus op2 con-
flicts op3).

A compiler approach that considers the restricted case
of two consecutive and non-conflicting hardware operations
is presented in [10]. In this approach, the hardware execu-
tion of the first operation is scheduled in parallel with the
hardware configuration of the second operation. Our ap-
proach is more general as it performs scheduling for any
number of hardware operations at procedural level and not
only for two consecutive hardware operations. The perfor-
mance gain produced by our scheduling algorithm results
from reducing the number of performed hardware configu-
rations.

3. Motivation and Contribution

Figure 1(b) shows the control-flow graph of a procedure,
when op1, op2 and op3 operations are performed on the re-
configurable hardware and they are placed on the FPGA as
presented in Figure 1(a). The numbers associated with each
edge of the graph represent the execution frequency of the
edge. One first observation is the redundant repetitive ex-
ecution of SET op1 instruction from B5 in the loop B4-
B5-B6. Additionally, it should be noticed that moving this
SET op1 instruction on (B1, B2) edge will also make redun-
dant the SET op1 instruction from B13. In the initial sim-
ple scheduling, the FPGA is configured for op1 100 times
in B5 and 10 times in B13. As a result of our scheduling
algorithm, the hardware configuration for op1 will be ex-
ecuted only 20 times. The hardware configuration for op2
from B10 cannot be moved further then B7, as it will change
the hardware configuration for op3 that must be performed
in B7. There are no redundant configurations for op3, thus
the hardware execution of op3 has to be preceded each time

i = 0

i = i+1

i < 10

j = 0

j < 20

c < 0

j = j+1

SET op1

SET op2

SET op2

SET op3

SET op3

EXEC op3
SET op3

EXEC op2
SET op2

EXEC op1
SET op1

EXEC op2
SET op2

exit

entry

read c
20INITIAL:

SET op1 : 100 + 10 = 110
SET op2 : 200 + 10 = 210
SET op3 : 10 + 10 = 20

�������������
�������������
�������������

�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������

OP1 OP3

OP2

EXEC op3
SET op3

EXEC op1
SET op1

10

10

10

10

10

10

10

10 100

10

200

200

200

10

100

20

20

100

FINAL:
SET op1 : 20
SET op2 : 10+10= 20
SET op3 : 10+10= 20

10FPGA AREA ALLOCATION

B1

B2

B4

B7 B5

B6

B10

B11

B16

B3

B8

B9

B12

B13

B14

B15

a) b)

Figure 1. Motivational example for instruc-
tion scheduling of hardware configurations
(b) with FPGA-area placement constraints (a)

by the hardware configuration. When the hardware config-
uration consumes all the performance gain produced by the
hardware execution of op3, the scheduler can switch to its
software execution on the GPP (General-Purpose Proces-
sor).

In this paper, we propose a general approach for intrapro-
cedural instruction scheduling of the hardware configura-
tion instructions taking into account the ”FPGA-area place-
ment conflicts”. It is based on the state-of-art compiler opti-
mization for partial expression redundancy elimination pre-
sented in [2]. In order to incorporate the ”FPGA-area place-
ment conflicts” between the hardware operations, we intro-
duce a new type of data-flow analysis as described in Sec-
tion 5. Additionally, it can switch for one operation from
hardware execution to its software execution when the hard-
ware operation provides no performance improvement even
after the scheduling phase.

4. Problem Statement

We represent the control flow graph (CFG) of a proce-
dure as a directed graph G < N,E,w > where the nodes N
represent the basic blocks, the edges E represent the con-
trol flow dependencies and the weight function w: E → R+

represents the execution frequency of each edge. The op-
erations implemented in hardware are included in HW set.
We define DEFop the set of basic blocks n ∈ N that con-
tain an instruction SET op immediately followed by EXEC
op instruction. A node n ∈ DEFop is called a definition node
for op. In our example from Figure 1, B5 and B13 are def-
inition nodes for op1. An ”FPGA-area placement conflict”
between two operations op1 and op2 is represented as op1
= op2. The information about these conflicts is provided
by a symmetric function f : HW x HW → {0,1}, where
f(op1, op2) = 1 if op1 = op2, and 0 otherwise. We define
Con f lictop = {n ∈ N|∃opi ∈ HW,n ∈ DEFopi ∧op = opi}.
A node n ∈ Con f lictop is called a conflict node for op. In
Figure 1, B10 and B14 are conflict nodes for both op1 and
op3.

In order to simplify this discussion, we make the fol-
lowing assumptions. We assume that there is a single en-
try node with no predecessor (pred(entry) = /0, where
pred(n)={m ∈ N | (m,n) ∈ E}) and a single exit node with
no successor (succ(n) = /0, where succ(n)={m ∈ N | (n,m)
∈ E}). Also, we assume that a node cannot be simulta-
neous in DEFop and Con f lictop. In consequence, when
more conflicting operations are included in the same ba-
sic node, this node must be split into a set of nodes, one
for each operation. The final assumption is that only the
SET/EXECUTE instructions included in the CFG af-
fect the reconfigurable hardware.

For each operation op, we consider a set of insertion
edges δop ⊆ E. The merit of δop is measured by the function
Wδ = ∑e∈δop w(e). Loosely stated, the objective of our algo-
rithm is to move upwards the SET instructions from DEFop

on less frequently executed edges, in order to reduce the
total number of performed SET instructions. A formal de-
scription of this problem is as follows:

PROBLEM Given a directed, weighted graph G <
N,E,w > and a set of hardware operations HW, each de-
fined in DEFop ⊆ N and with conflicts in Con f lictop ⊆ N,
find a set of insertion edges δ ⊆ E for each op ∈ HW which
minimizes Wδ under the following constraints:

• ∀ n ∈ DEFop, for all paths from entry to n, there is an
insertion edge (u,v),

• @ k ∈Con f lictop such that k is included in any subpath
from v to n

The minimization of Wδ assures that a smaller or equal
number of SET instructions will be performed in the final
CFG graph than in the input graph. The first constraint re-
flects the requirement that hardware must be first configured
(using the SET instruction) on all paths before the operation
can be performed (using EXECUTE instruction). The sec-
ond constraint assures that no conflict operation will change
the hardware configuration before the operation execution.

5. Instruction Scheduling Algorithm

The problem of removing redundant hardware configu-
rations is similar to the well-known problem of removing
redundant expressions. As hardware configurations do not
cause any exception, we can use an aggressive speculative
scheduling for the hardware configurations in order to antic-
ipate them on less executed paths and thus, to make redun-
dant the hardware configurations from frequently executed
paths. We introduce the scheduling algorithm that solves
the problem defined in the previous section in three steps.
In the first step, the subgraphs where the hardware config-
urations can be anticipated are constructed. Next, a mini-
mum s-t cut algorithm is applied to find the optimal inser-
tion edges δop for each hardware operation. Finally, a switch
from hardware to software execution is introduced for the
cases when the expense of hardware configurations in the
newly inserted nodes still outperforms the performance gain
of hardware execution.

5.1. Step 1: The Anticipation Subgraph

Constructing the anticipation graph is a key step in our
algorithm. The main goal is to eliminate from the initial
graph the edges that cannot propagate upwards the hardware
configurations due to hardware conflicts. This step con-
tains two uni-directional data-flow analyses and one pass for
constructing the anticipation subgraph by removal of non-
essential edges.

Partial Anticipability A hardware configuration for op-
eration op is partially anticipated in a point m if there is at
least one path from m to the exit node that contains a defi-
nition node for op and none of the paths from m to the first
such definition node contains a conflict node for op.

A confluence conflict node n is a node with two succes-
sors s1 and s2 such that op1 is partially anticipated at the
entry point of s1, op2 is partially anticipated at the entry
point of s2 and op1 = op2. Due to hardware conflicts, op1
and op2 cannot be both anticipated in the confluence con-
flict node n. We consider a restricted partial anticipability
analysis where the confluence conflict nodes limit the par-
tial anticipability for both op1 and op2. This is a backward
data-flow problem, where the data-flow equations for a ba-
sic block i are defined as follows:

PANTin(i) = Gen(i)∪ (PANTout(i)−Kill(i))

PANTout(i) =
U

j∈Succ(i)
PANTin(j)

PANTout(exit) = /0
In the first equation, GEN(i) is the set of hardware op-

erations generated in the basic block i. A hardware opera-
tion op1 is generated in a basic block i if i ∈DEFop . The set
Kill(i) includes all hardware operations that are in conflict
with the operations generated in the basic block i. A hard-

i = 0

i = i+1

i < 10

j = 0

j < 20

c < 0

j = j+1

EXEC op3
SET op3

EXEC op2
SET op2

EXEC op1
SET op1

EXEC op2
SET op2

exit

EXEC op3
SET op3

entry

read c

EXEC op1
SET op1

B1

B4

B7 B5

B6

B10

B11

B16

B3

B8

B9

B12

B13

B14

B15

B2

AVAL={op1}

AVAL={op1}

AVAL={op1}

AVAL={op1}

AVAL={op2}

AVAL={op2}

AVAL={op2}

AVAL={op1}

AVAL={op2}

AVAL={op2}

AVAL={op3}

AVAL={op3}

AVAL={op3}

AVAL={op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}
PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1, op3}

PANT={op1}

PANT={op2}

PANT={op2}

PANT={op2}

PANT={op2}
PANT={op2}

PANT={op2}

PANT={op2}

PANT={op2}

PANT={op2}

PANT={op2}

PANT={op2}

PANT={op3}

PANT={op3}

PANT={op3}

op1

op3op2

op2

Conflicts:

Figure 2. Set of PANT and AVAL values for the
input graph from Figure 1

ware operation op ∈ PANTin(i) is partially anticipated at the
entry of a basic block i if it is generated in i or if it is par-
tially anticipated at the exit of i and it is not killed in i.

The second equation differs from standard data-flow
equations involved in iterative data-flow analysis where the
join operator is

S

or
T

. The operator
U

is a conditional re-
union that excludes the conflicting hardware operations and
defined as follows:

A
U

B = {x ∈ A
S

B| 6 ∃y ∈ A
S

B,x = y}
This operator is used to stop the partial anticipability of

the operations with hardware conflicts at confluence points.
A hardware operation op ∈ PANTout(i) is partially antici-
pated at the exit of a basic block i if it is partially anticipated
at the entry of any successor of i and i is not a conflict con-
fluence node for op. In Figure 2, we present the values for
PANT for the input graph presented in Figure 1. For the ba-
sic blocks where these values are missing, there are implic-
itly assumed as /0.

Availability We use the standard forward data-flow anal-
ysis for availability described by the set of data-flow equa-
tions:

AVALout(i) = Gen(i)∪ (AVALin(i)−Kill(i))

AVALin(i) =
T

j∈Pred(i)
AVALout(j)

AVALin(entry) = /0

B1

B2

s

B3

B4

B5

B13

t

Min cut 20

10 10

10

100

B1

B2

B3

B4

B5

B14

B7

B6

s

B15

t

20

10

100

10

10

Min cut

100

100
10

a) b) c)

s

B8

B9

B10

t

B7

B14

B13

10

Min cut10

200

10

Figure 3. The anticipation graph for op1 (a),
op2 (b) and op3 (c) from Figure 1

This analysis is used to eliminate the hardware config-
urations when they are already available. The values for
AVAL for our example graph are presented in Figure 2.

Constructing the Anticipation Graph Based on the
previously presented data-flow analysis results, for each
operation op ∈ HW we eliminate from the initial graph
the nodes which are not essential as follows. We call an
edge (u,v) an essential edge for op if Ess(u,v) = (u,v) ∈
E∧op /∈AVALout(u)∧op∈PANTin(v). The reduced graph
Grd contains the nodes Nrd = {n ∈ N|∃m ∈ N,Ess(n,m)∨
Ess(m,n)} and the edges Erd = {(u,v) ∈ E|Ess(u,v)}. The
reduced graph may contain a set of disconnected subgraphs.
In order to connect them, we introduce a new pseudo en-
try node (called s) and a pseudo exit node (called t) and the
edges Est = {(s,n)|n has no predecessor in Nrd}

S

{(n, t)|n
has no successor in Nrd} with infinite execution frequency.
For our example from Figure 1, the anticipation graphs are
presented in Figure 3.

5.2. Step 2: Minimum s-t Cut

In this step, the set of insertion edges from our prob-
lem definition is determined by applying a minimum s-t cut
algorithm. The purpose of the min cut algorithm is to se-
lect the less frequently executed edges from the anticipa-
tion graph on all paths to the definition nodes. In conse-
quence, the min cut algorithms assures the minimization re-
quirement and the first constraint from our problem defi-
nition, while the construction of the anticipation graph se-
cures the second constraint.

One of the important advantages of using a min cut algo-
rithm is to avoid moving upwards SET instructions on edges
inside loops. In our implementation, we used Edmonds-
Karp minimum s-t cut algorithm. For the three hardware op-

HW Execution SW Execution
Op EXEC Area SET One call %Total

Name [cycle] [slice] [cycle] [cycle] M-JPEG

DCT 416 848 431771 44396 80 %
Quant 73 397 202073 1494 3 %
VLC 272 193 98237 6921 12.5 %

Table 1. HW/SW features for the operations
that candidate for hardware implementation

erations from Figure 1, their minimum cuts are presented in
Figure 3. We notice that for op3 (depicted in Figure 3 (c)),
the SET instruction from B7 can propagate further then B2
(on edge (B1, B2)). The minimum cut algorithm chooses
the edge (B2, B3) as its execution frequency is smaller (10
versus 20 for (B1,B2)).

5.3. Step 3: Selection of Software/Hardware Exe-
cution

In the cases when, even after our scheduling, the hard-
ware configuration and execution is more expensive than
the pure software execution, the scheduling algorithm can
switch for this operation from hardware execution to soft-
ware execution. In this case, all the SET instructions for this
operation are eliminated and its EXECUTE instructions are
replaced by standard calls to the associated software func-
tion. In our example from Figure 1, op3 may be in this case
if one hardware configuration and one hardware execution
is more expensive than one software execution.

6. M-JPEG Case Study

The presented instruction scheduling algorithm has been
implemented as a MachSUIF pass [3] within the Molen
compiler [6] which generates code for the Molen prototype
on the Virtex II Pro FPGA platform. The target C applica-
tion of this case study is the multimedia benchmark Mo-
tion JPEG (M-JPEG) encoder and the input sequence con-
tains 30 color frames from ”tennis” in YUV format with
a resolution of 256x256 pixels. The operations performed
on the FPGA are DCT (2-D Discrete Cosine Transform),
Quantization and VLC (Variable Length Coding). The Xil-
inx IP cores for DCT [9], Quantization [7] and VLC [8] are
used for hardware implementations. The GPP included in
the Molen prototype is the IBM PowerPC 405 processor at
250 MHz.

We present in Table 1 the characteristics of DCT, Quan-
tization and VLC hardware and software executions. Based
on the characteristics of the XC2VP20 chip, for which a
complete configuration of 9280 slices takes about 20 ms,

100%

6%

100%

88%

48%

6%

100%

21%

18%

6%

100%
97%

54%

6%

100%100%

57%

6%

0%

25%

50%

75%

100%

No conflict DCT-Quant

conflict

Quant-VLC

conflict

DCT-VLC

conflict

DCT-Quant-

VLC conflict

SW Real Fast Ideal

16 x

speedup

Figure 4. Comparison of estimated perfor-
mance for our scheduling algorithm for M-
JPEG benchmark

we estimated the configuration time for each operation (Ta-
ble 1, column 4) in terms of PowerPC processor cycles.
The profiling results for the software execution from Ta-
ble 1 are based on simulations using the PowerPC simu-
lator from Simics [4]. Comparing the values from Table 1
(column 4 and 5), we notice that the hardware configuration
alone is about 10 times more expensive than the complete
software execution. Using Amdhal’s law, we determine that
the simple scheduling for DCT will slowdown the M-JPEG
benchmark up to 10x. For this reason, we compare the per-
formance of our scheduling algorithm to the pure software
approach rather than the inefficient simple scheduling.

The estimated performance for the M-JPEG application
for different possible conflicts between the three hardware
operations are presented in Figure 4. The standard unit of
this comparison is the pure software execution (SW) when
the M-JPEG benchmark is completely performed on the
GPP alone. The performance of our instruction scheduling
algorithm for the real Xilinx hardware implementations is
denoted as REAL. As recently some hardware approaches
[1] have been proposed for reducing the hardware configu-
ration time, we also analyze the impact of our scheduling al-
gorithm when the hardware configuration is accelerated by
a factor of 20x1 compared to the current values from Table
1, column 4. The performance of our instruction schedul-
ing algorithm combined with this faster hardware configu-
ration is presented in Figure 4 as FAST. For completeness,
we also present the IDEAL case when the hardware config-

1 The factor has been chosen arbitrarily. Mutatis mutandis, similar ob-
servations will then hold.

uration is performed in zero cycles.
We notice that for the ”no conflict” case, the perfor-

mance improvement is about 94 % (equivalent to a 16x
speedup) for both REAL and FAST scheduling and very
close to the IDEAL performance. In this case, the instruc-
tion scheduling algorithm moves the hardware configura-
tions for all three operations at the procedure entry point.
In consequence, there is only one hardware configuration
for each hardware operation, thus the difference between
REAL and FAST is negligible.

For the rest of the ”conflict” cases, the scheduler for
REAL will switch from hardware execution to software ex-
ecution for the conflicting operations. For example, when
there is a DCT - Quantization conflict, the scheduler will
move both DCT and Quantization operation in software,
while the third non conflicting operation VLC remains in
hardware; its hardware configuration needs to be performed
only once, at the procedure entry point.

For the FAST scheduling, even when one operation has a
conflict, it may remain in hardware, thanks to the 20x faster
hardware configuration. For the case with DCT - Quantiza-
tion - VLC conflicts, both DCT and VLC are performed
in hardware and produce a performance improvement of
43 % as the fast hardware configuration does not con-
sume all performance gain of the hardware execution. The
scheduler selects the software execution for Quantization,
in order to prevent a performance decrease produced by its
hardware configuration and execution (16 % for Quantiza-
tion) . Therefore, the performance improvement for simple
scheduling (all operations executed on the reconfigurable
hardware) and 20x faster reconfigurations is 27 % while our
scheduling algorithm contributes to a performance improve-
ment between 43 % and 94 % compared to SW.

In consequence, we notice that for the non-conflict case,
our algorithm capitalizes the maximum performance gain
that can be obtained by hardware execution of the con-
sidered operations. Finally, the results presented in Fig-
ure 4 emphasize the important performance impact of our
scheduling algorithm even for the future faster FPGAs.

7. Conclusions

In this paper, we have introduced a general scheduling
algorithm for hardware configuration instructions. This al-
gorithm takes into account specific features of the recon-
figurable hardware such as the ”FPGA area placement con-
flicts” and the reconfiguration latencies of each hardware
operations. Based on the characteristics of the compiled ap-
plication, the scheduling reduces the number of performed
hardware configurations preserving the application seman-
tics. It combines advanced compiler techniques with pow-
erful graph theory algorithms. The results of our case study
show that the performance is dramatically improved by us-

ing our scheduling algorithm, and this improvement will
hold for future faster FPGA platforms.

When confronted with the choice between the software
or hardware execution, our future work will focus on defin-
ing the heuristics to guide this selection. Another issue is to
allow the data-flow analysis to propagate a conflicting op-
eration beyond the confluence conflict points. We are also
looking at incorporating dynamic placement on the recon-
figurable hardware in our scheduling.

References

[1] B. Blodget, C. Bobda, M. Huebner, and A. Niyonkuru. Par-
tial and dynamic reconfiguration of xilinx virtex-ii fpgas.
In FPL, volume 3203, pages 801–810, Antwerp, Belgium,
September 2004. Springer-Verlag Lecture Notes in Com-
puter Science (LNCS).

[2] Q. Cai and J. Xue. Optimal and efficient speculation-based
partial redundancy elimination. In ACM CGO, pages 91–
102, San Francisco, California, 2003.

[3] http://www.eecs.harvard.edu/hube/software.
[4] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-

gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Transactions on Computers, 35(2):50–58, February 2002.

[5] E. Moscu Panainte, K. Bertels, and S. Vassiliadis. Dynamic
hardware reconfigurations: Performance impact on mpeg2.
In Proceedings of SAMOS, volume 3133, pages 284–292,
Samos, Greece, July 2004. Springer-Verlag Lecture Notes in
Computer Science (LNCS).

[6] E. Moscu Panainte, K. Bertels, and S. Vassiliadis. The Pow-
erPC backend molen compiler. In FPL, volume 3203, pages
434–443, Antwerp, Belgium, September 2004. Springer-
Verlag Lecture Notes in Computer Science (LNCS).

[7] L. Pillai. Quantization. In Applica-
tion Note: Virtex and Virtex-II Series,
http://direct.xilinx.com/bvdocs/appnotes/xapp615.pdf.

[8] L. Pillai. Variable length coding.
In Application Note: Virtex-II Series,
http://direct.xilinx.com/bvdocs/appnotes/xapp621.pdf.

[9] L. Pillai. Video compression using
dct. In Application Note: Virtex-II Series,
http://direct.xilinx.com/bvdocs/appnotes/xapp610.pdf.

[10] X. Tang, M. Aalsma, and R. Jou. A Compiler Directed Ap-
proach to Hiding Confguration Latency in Chameleon Pro-
cessors. In FPL, volume 1896, pages 29–38, Villach, Aus-
tria, Aug 2000. Springer-Verlag Lecture Notes in Computer
Science (LNCS).

[11] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. Moscu
Panainte. The molen programming paradigm. In Proceed-
ings of SAMOS, volume 3133, pages 1–10, Samos, Greece,
July 2003. Springer-Verlag Lecture Notes in Computer Sci-
ence (LNCS).

[12] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. Moscu Panainte. The molen poly-
morphic processor. IEEE Transactions on Computers,
53(11):1363– 1375, November 2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

