
Joint Power Management of Memory and Disk ∗

Le Cai and Yung-Hsiang Lu

School of Electrical and Computer Engineering, Purdue University

{lc, yunglu}@purdue.edu

Abstract

This paper presents a scheme to combine memory

and power management for achieving better energy

reduction. Our method periodically adjusts the size of

physical memory and the timeout value to shut down

a hard disk for reducing the average power consump-

tion. We use Pareto distributions to model the dis-

tributions of idle time. The parameters of the distri-

butions are adjusted at run-time for calculating the

corresponding timeout value of the disk power man-

agement. The memory size is changed based on the

inclusion property to predict the number of disk ac-

cesses at differentmemory sizes. Experimental results

show more than 50% energy savings compared to a 2-

competitive fixed-timeout method.

1. Introduction

Power reduction has become a major goal in sys-
tem designs. Among all components, the storage hi-
erarchy (cache, memory, and disks) consumes a sig-
nificant percentage of power. In a data center, stor-
age devices can consume over 25% power [21]. Many
studies have been conducted to reduce memory’s
power consumption [6, 8] or disks’ power consump-
tion [4, 21]. However, the close relationship between
memory management and power management has
not been fully investigated. We use an example to il-
lustrate the importance of combining memory man-
agement and power management.

Adding memory often improves performance by
reducing the numbers of disk accesses. However,
when power management is adopted, more mem-
ory may actually degrade performance and increase

∗ This project is supported in part by Purdue Research
Foundation and National Science Foundation Career CNS
0347466.

power consumption. For example, when a system’s
physical memory increases, more data reside in
memory so the disk becomes idle and enters a low-
power (“sleep”) state more often. If the memory is
not large enough, the system accesses the disk soon.
Since it has to wake up on-demand, the disk saves
insufficient energy to compensate the spin-up en-
ergy and the system actually consumes more en-
ergy. The minimum spin-down time to save energy
is called break-even time [9]. Moreover, the perfor-
mance degrades due to the disk’s wakeup delay—
usually several seconds or billions of cycles. This
example shows that adding more memory may in-
crease the overall power consumption and degrade
performance even though disk accesses occur less
frequently. If we further increase the memory size,
the disk can remain spinned-down longer to save
more energy but the savings may not compensate
the power consumed by the additional memory. It
is essential to combine memory management and
power management to reduce power consumption
and to improve performance. This joint manage-
ment method is different from previous adaptive
disk power management methods [2, 10] because
they respond to the changes of disk accesses with-
out actively adjusting memory sizes.

This paper presents a technique using operating
systems to perform joint power and memory man-
agement for physical memory and hard disks. We
assume that part of memory can be turned on and
off, as suggested in [6, 8], to reduce power and to im-
prove performance. We change the memory size by
allocating or releasing reserved memory pages in op-
erating systems since reserved pages are unavailable
to application programs. We adopt the timeout pol-
icy to manage the disks for three reasons: (a) Time-
out is widely used and outperforms many policies
[9]. (b) It assists some other policies, such as time-
index stochastic optimization [17]. (c) It is used as

1530-1591/05 $20.00 © 2005 IEEE

a “backup” scheme when a prediction policy has in-
sufficient history to predict [4]. The objective of this
study is to determine two parameters at run-time:
the timeout value for shutting down the disk and
the size of the physical memory. Our method con-
siders the interactions between the memory and the
disk to minimize the energy consumption.

Two major challenges exist in the joint manage-
ment: (a) determining disk IO (the number and
the interarrival time) at different sizes of memory
without running the same programs multiple times
and (b) adjusting the timeout values without of-
fline analysis. We use the concept of the ghost buffer
[11, 13] to predict the number of disk accesses at
different memory sizes. The ghost buffer records re-
placed memory pages as if they are stored in ad-
ditional physical memory. With the recorded infor-
mation, the ghost buffer can determine how many
disk accesses can be eliminated by adding certain
amount of memory. We model the distributions of
interarrival time of disk accesses as Pareto distribu-
tions. This is because previous studies [16, 18] and
our analysis of HP disk traces [15] show Pareto dis-
tributions can closely model disk IO. We evaluate
the joint management using a web server and use
SPECweb99 as the benchmark. Our experiment re-
sults show that the joint method can save more than
50% energy compared with a 2-competitive fixed-
timeout method.

2. Background

2.1. Power-Aware Storage Hierarchy

Hu et al. [6] turn off individual cache lines whose
data are unlikely to be accessed again. Their method
is 2-competitive by turning off a cache line 10000
cycles after the last access. Lebech et al. [8] use
multiple power modes of RDRAM and dynamically
turn off memory chips with power-aware page allo-
cation in operating systems. These studies suggest
that future memory should support power manage-
ment to turn on/off part of the memory. The en-
ergy to turn on and off memory chips is negligible
compared with the memory’s static energy. For ex-
ample, a 64MB RDRAM chip consumes less than
1µJ energy to change from a power-down state to
an active state [8]. Zhu et al. [21] show that lower
miss rates do not necessarily save disk energy. A
power model of hard disk is presented by Zedlewski
et al. [19]. Papathanasiou et al. [12] use prefetch-
ing to prolong the idle time of hard disks so that

they may stay off to save power. Two recent studies
calculate the sizes of prefetching buffers to optimize
power savings [1, 14]; both studies assume streaming
data that are not reused. Gurumurthi et al. [5] pro-
pose adjusting the rotation speed of disk platters to
reduce power consumption. Their approach is simi-
lar to frequency scaling in processors. Timeout is of-
ten used to predict long idle periods. Simunic et al.
[16] present a time-indexed Markov chain stochas-
tic model to optimize power management policies
based on Pareto distribution. Douglis et al. [2] dy-
namically adapt the disk timeout to save energy
while meeting the performance requirements. Lu et
al. [10] divide disk accesses into different sessions;
the method dynamically changes the timeout based
on the predicted duration of each session. These two
methods respond to the changes of disk IO patterns.
In contrast, our method proactively changes disk IO
by adjusting the size of physical memory.

2.2. Memory Size and Disk IO

Changing memory size can affect disk IO and
power consumption because more memory may re-
duce disk accesses and allow the disk to sleep longer.
One approach to obtain these relationships is run-
ning the same program multiple times with different
memory sizes. This is time-consuming and impossi-
ble if the programs need run-time inputs. Franklin
et al. [3] use Markov chains to model the probabili-
ties of page faults with different memory sizes. Their
method needs all memory references in advance so
it only applies to offline analysis. Mattson et al. [11]
use the inclusion property of many memory replace-
ment algorithms: the content of smaller-size mem-
ory is a subset of the content of larger memory for
the same memory access sequence. We use the least
recently used (LRU) replacement algorithm as an
example. An LRU list records the most recently ac-
cessed memory pages. If there are q pages, the LRU
list stores q most recently accessed pages. If there
are s pages and s < q, the list of s pages is a subset
of the list of q pages. Any reference to the s most
recently accessed pages hits in memory when the
memory size is either s or q pages. When the mem-
ory size is s pages, the references to the (s + 1)th to
qth most recently accessed pages are misses. These
accesses hit in memory when the size is q page. If we
count the references to the (s + 1)th to qth most re-
cently accessed pages, we can obtain the relation-
ship of memory sizes and the number of disk ac-
cesses. Specifically, we know the additional number

of disk accesses when the memory size changes from
q pages to s pages. This method can apply to de-
termining the effect of shrinking the physical mem-
ory. The same method is used to online predict page
miss ratio [20].

To determine the effect of enlarging the physi-
cal memory, a “ghost buffer” [13] is used to record
replaced pages. All pages in the ghost buffer form
a doubly-linked list and they are ordered based on
the time when they are replaced. Different from the
LRU list, the ghost buffer stores only the tags, such
as their inode IDs and offsets in the file; no actual
data are stored. Using the tags, we can uniquely
identify a page. When disk accesses happen, the tags
of the required pages are compared with the tags
stored in the ghost buffer. A match means that an
earlier replaced page is accessed again. This mem-
ory access would not cause disk IO if the memory
size is larger and the page was not replaced. If the
matched page is the ith page from the head of the
ghost buffer, i pages memory is needed to keep this
page in memory. Hence, by recording the position
of the matched pages and the number of matches,
this algorithm can determine the number of reduced
disk accesses when adding memory pages.

3. Joint Management

The joint manager periodically determines the
appropriate size of physical memory and the time-
out value to spin-down the disk. We use T to repre-
sent the period length. Every period we record the
number of disk accesses. Using this number and the
information from the LRU list and the ghost buffer,
our method predicts the disk accesses and the length
distribution of the idle time during next period for
the chosen memory size. The proper timeout and
memory size are chosen based on the their relation-
ships with the average power consumption. Table 1
lists the symbols used in our method.

3.1. Idle Time of Disks

Since disk accesses often occur in bursts, many
idle periods are very short and provide no opportu-
nity for power management. We remove these short
idle periods by using a sliding window. If one disk
access is followed by another and the idle time is
smaller than the window length, this idle period is
ignored. We use 0.1s as the window length since the
break-even time of most disks is much larger than
this value. Let ` be a random variable represent-

symbol description
N observed number of disk accesses
n predicted number of disk accesses
T period (s)
to disk timeout (s)
tbe break-even time of disk (s)
ts off time each T (s)
ns times to turn off disk each T

m memory size (page)
ed disk dynamic energy (J/page)
pd disk static power (W)
pm static power of memory (W/page)

Table 1. Symbols and their meanings.

ing the lengths of the disk’s idle time. We model
the probability by Pareto distributions:

f(`) =
αβα

`α+1
, ` > β, α > 1 (1)

Here, β is the length of the sliding window so
all idle periods are longer than β. The value of α

determines the distribution of `. When α is small,
it is more likely to have long idle periods. At run
time, we can calculate the average idle time to de-
termine α’s value. Let E(`) represent the mean of `:

E(`) = αβ

α−1 . The value of α is E(`)
E(`)−β

. We estimate

E(`) by the average length of idle time. For dura-
tion T , the average idle time is the ratio of T and the
number of accesses: E(`) = T

n
. Here, n is the pre-

dicted number of disk accesses each T . We use the
predicted value when the memory size changes (to
be explained later). Hence, we obtain

α =
T

T − βn
(2)

This paper considers only two power modes: on
and off, but the method can be extended to more
modes. To obtain the energy consumption of the
disk, we compute the disk’s off time from (1). All
idle periods longer than the timeout to will trigger
the disk to be turned off. The off time is the differ-
ence between the idle time and to, i.e. ` − to. For
the idle periods shorter than to, there is no off time.
The probability of an idle period longer than to is∫
∞

to

f(`)d`. The average off time of each idle period

is
∫
∞

to

(` − to)f(`)d` and there are n idle periods:

ts = n
∫
∞

to

(` − to)f(`)d` = n(β

to

)(α−1) β

α−1 (3)

If β is smaller than to (β

to

< 1), the off time is
longer with a smaller α. From (1), we also compute
the average number of the times to turn off disk each
T . This number is used to compute the energy con-
sumed to turn on and off disk.

ns = n

∫
∞

to

f(`)d` = n(
β

to
)α (4)

A smaller α means a larger ns because long idle
periods are more likely. In each T the memory and
the disk consume: (a) static energy for the disk and
m pages of memory: pmmT+pd(T−ts), (b) dynamic
energy: edn, and (c) turn-on energy: pdtbens. Each
time turning on and off disk consumes pdtbe based
on the definition of break-even time. We ignore the
energy consumed to turn on and off memory be-
cause this energy consumption is much smaller than
the static energy consumption of memory. We add
(a) (b) and (c) to obtain the total energy in T :

pmmT + pd(T − ts) + edn + pdtbens (5)

We use (3) and (4) to replace ts and ns in (5) to
obtain the energy consumption represented by to:

pmmT + pd[T −
nβα

(α − 1)t
(α−1)
o

] + edn + pdtben(
β

to
)α

(6)

We calculate the derivative of (6) with respect to
to and make it equal to zero.

pdn(β

to

)α − pdn(β

to

)α αtbe

to

= 0

⇒ to = αtbe

(7)

The second derivative is positive when to = αtbe.
Thus, we obtain the minimum power consumption
when to = αtbe. Since a larger α indicates more
short idle periods, increasing timeout can reduce the
probability to turn off the disk during short idle pe-
riods. The timeout value also increases when the
break-even time becomes larger. Larger break-even
time means more energy is consumed to turn on and
off disk; the power manager should increase timeout
to avoid turning off the disk.

3.2. Number of Disk Accesses

The joint manager decides the memory size and
the corresponding number of disk accesses using the
LRU list and the ghost buffer. The manager counts
the number of disk accesses in each T and predicts

a

page a

b

page b

d
b
a

page d

a
d
b

page a

d
a
b

page d

a
d
b

page asequence
reference

c[2]=0
c[3]=0

c[1]=0

c[4]=0

c[2]=0
c[3]=0

c[1]=0

c[4]=0

c[2]=0
c[3]=0

c[1]=0

c[4]=0

aLRU list

counters
c[2]=0
c[3]=1

c[1]=0

c[4]=0

c[2]=1
c[3]=1

c[1]=0

c[4]=0

c[2]=2
c[3]=1

c[1]=0

c[4]=0

Figure 1. The reference count of LRU list.

the access number for the next T . Let ni be the pre-
dicted number of accesses during [iT, (i + 1)T]. We
use a recursive formula to predict ni.

ni = kNi−1 + (1 − k)ni−1 (8)

The values of Ni−1 and ni−1 are the observed
and predicted numbers of accesses in the previous
period. We choose k = 0.5 to balance the recent
number and the previous number since ni−1 is pre-
dicted from previous numbers. This is similar to the
prediction used in [7]: exponentially reducing the ef-
fect of previous observations and predictions.

Formula (8) represents the number of disk ac-
cesses when the memory size remains constant. We
use the information from the LRU list and the ghost
buffer to obtain the values of ni with different mem-
ory sizes. Figure 1 illustrates how to count the ref-
erences to the LRU list for a system with four pages
of physical memory. A counter array c[.] is used to
record the reference number to each page in the
LRU list. When the referenced page is the ith page
from the head of the LRU list, the ith counter c[i]
increases one. For example, the memory is accessed
by a sequence of six references {a, b, d, a, d, a}. The
first three references need disk accesses since pages
{a, b, d} are not in memory. After these three ref-
erences, the values of all counters are zero and the
LRU list is {d, b, a}. The fourth reference is for page
a, the third page in the list. The counter c[3] incre-
ments by one. The fifth access is d and it is the sec-
ond page in the list; thus c[2] increments by one. Fi-
nally, the sixth access is page a again and it is the
second in the list; c[2] increments by one. The final
values of counters are {0, 2, 1, 0}. These values indi-
cate that there is no access to the first and fourth
page, two accesses to the second page, and one ac-
cess to the third page. Since c[4] = 0, no additional
disk access occurs if we reduce the memory to three
pages. Because c[3] is nonzero, reducing the memory
to two pages will add one (c[3] = 1) more disk ac-

symbol value symbol value
β 0.1s pm 5 × 10−5W/page
T 60s ed 0.42J/page
tbe 7.3s pd 3.99W

Table 2. Parameters in experiments.

cess and require totally four accesses. The value of
each counter indicates the additional disk accesses
when the corresponding page is removed. The ghost
buffer has the similar function except that the ghost
buffer records the numbers of the accesses to the re-
placed pages. Thus, the ghost buffer can predict how
many disk accesses can be removed by enlarging the
memory size. We enumerate possible memory sizes
with 1MB as the unit and compare the energy con-
sumption. This enumeration needs little time be-
cause the memory size is generally within several
thousand MBs and it is fast to compute the energy
consumption from (6).

4. Experiment

4.1. Experiment Configuration

We implement our method in Linux 2.4.20. Each
memory page has one entry in both the LRU list and
the ghost buffer. Each entry uses 8 bytes for two in-
teger variables recording the inode ID and the offset
in file and 16 bytes for four pointers storing previous
and next entries in two double-linked lists. Two in-
teger counter arrays are used to count the references
to the entries in the LRU list and the ghost buffer.
We use the LRU list in Linux and only add the ghost
buffer and two counter arrays. When the physical
memory is 1GB, the ghost buffer and each counter
array have 0.25M entries for 4KB pages. The over-
all memory usage is 0.25∗(8+16+4+4) = 8MB. An
Apache web server and SPECweb99 benchmarks are
used in the experiments. The numbers of simultane-
ous connections generate different amounts of work-
load. We conduct experiments under different con-
nection numbers and each experiment lasts for one
hour. One minute is chosen for T since it performs
well in our experiments. Because of the space limita-
tion, we will not discuss the detail of determining T .
Table 2 lists the parameters in the experiments. The
main memory is Micron MT48LC1M16A1S DRAM
and we obtain its static power from the specifica-
tion. We divide this power by the number of the
memory pages to estimate the value of pm. We use

pm to estimate the power consumption of different
sizes of physical memory since no existing commer-
cial memory chips allow run-time resizing. There-
fore, the system actually has a constant size of phys-
ical memory. Our modified operating system re-
stricts the available size to application programs in
order to create the effects of varying memory sizes.
In the experiments, the hard disk switches between
the idle and the standby modes. The disk’s off status
refers to standby and pd is the power difference be-
tween the idle and the standby states. We use a Sea-
gate ST340810A hard disk and it consumes 5.13W
and 1.14W power in the idle and standby modes, re-
spectively; the value of pd is 5.13 − 1.14 = 3.99W.
To obtain the dynamic energy of the hard disk (ed)
for accessing one page, we measure the disk’s en-
ergy consumption under different workloads. After
subtracting the static energy, we divide the differ-
ence by the number of accessed pages. The quo-
tient is used as the disk’s dynamic energy per page.
The value of ed varies with the rate of disk accesses.
Our experiments use the average value. We measure
the energy consumed by the hard disk when it is
switched from idle to standby and back to idle. This
energy is divided by pd to calculate tbe. The formu-
las derived in Section 3 are used to compute the en-
ergy consumption of the memory and the disk. Our
method is compared with the 2-competitive time-
out methods using tbe as the timeout value. These
timeout methods use the physical memory of the
size from 64MB to 1024MB.

4.2. Energy Consumption

Figure 2 shows the power consumption of the
joint management and the fixed-timeout methods
with different memory sizes. When the memory size
is 1 GB, the system consumes the most power and
we use its power as the base (100%) for compari-
son. The workload varies from 10 to 70 client con-
nections because the server starts denying requests
when the number of connections exceeds 70. The fig-
ure shows that our method achieves the best power
savings, from 48% to 62%. When the numbers of
connections are below 30, the timeout method with
128 MB memory consumes comparable power with
our management scheme. However, the power in-
creases dramatically as the number of connections
grows if the memory size remains 128 MB. This is
because that the small memory size causes many
disk accesses. In contrast, the power increases much
slower with our scheme because it chooses appropri-

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

connections

po
w

er
 c

on
su

m
pt

io
n(

%
)

128MB
512MB
256MB
joint

Figure 2. Power consumption of the joint
method and fixed-timeout methods. The
power consumption percentage is based on
the timeout method with 1GB memory.

C 10 20 30 40 50 60 70
m 113 123 126 244 246 247 248
tmo 7.4 7.4 7.4 7.4 7.4 7.5 7.5
tMo 9.0 11.2 14.5 14.6 15.5 16.4 19.7

Table 3. Memory size and timeout used in
the joint method. C:connections; m:average
memory size(MB); tmo and tMo : minimum and
maximum timeout(s).

ate memory sizes and timeout values as the work-
load varies. Table 3 lists the average memory sizes
and the minimum and maximum timeout values
used in the joint method. When the workload is
light, the joint method uses a smaller size of memory
to save power. When the workload becomes heav-
ier, the joint method uses more memory to reduce
disk IO and to reduce the disk’s power consump-
tion. For memory sizes above 256 MB, the power
consumption remains almost constant. This is be-
cause large memory cannot completely eliminate all
disk accesses. The workload varies even in an exper-
iment with a constant number of client connections.
The joint method adapts the timeout to the work-
load variation.

5. Conclusion

In this paper, we present a joint method for
memory management and power management. This
method uses the close relationship between mem-
ory management and disk IO to save power. Our

method provides an analytic model to compute the
proper disk timeout to minimize the energy con-
sumption. We predict the number and the inter-
arrival time of disk IO for different memory sizes
without offline analysis. Our experimental results
show that the joint method can save more power
than timeout methods with fixed memory sizes.

References
[1] L. Cai and Y.-H. Lu. Dynamic Power Management Using

Data Buffers. In DATE, pages 526–531, 2004.
[2] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk

Spin-down Policies for Mobile Computers. InUSENIX Sym-
posium on Mobile and Location-Independent Computing,
pages 121–137, 1995.

[3] M. A. Franklin and R. K. Gupta. Computation of Page Fault
Probability From Program Transition Diagram. Communi-
cations of The ACM, 17(4):186–191, April 1974.

[4] C. Gniady, Y. C. Hu, and Y.-H. Lu. Program Counter Based
Techniques for Dynamic Power Management. In HPCA,
pages 24–35, 2004.

[5] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic Speed Control for Power Man-
agement in Server Class Disks. In Proc. Int. Symp. on Com-
puter Architecture, pages 169–181, 2003.

[6] Z. Hu, S. Kaxiras, and M. Martonosi. Let Caches Decay: Re-
ducing Leakage Energy Via Exploitation of Cache Genera-
tional Behavior. ACM Transactions on Computer Systems,
20(2):161–190, May 2002.

[7] C.-H. Hwang and A. C.-H. Wu. A Predictive System Shut-
down Method for Energy Saving of Event-driven Computa-
tion. ACM Transactions on Design Automation of Elec-
tronic Systems, 5(2):226–241, April 2000.

[8] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware
Page Allocation. In ASPLOS, pages 105–116, 2000.

[9] Y.-H. Lu, E.-Y. Chung, T. Simunic, L. Benini, and G. D.
Micheli. QuantitativeComparison ofPowerManagementAl-
gorithms. In DATE, pages 20–26, 2000.

[10] Y.-H. Lu and G. D. Micheli. Adaptive Hard Disk Power Man-
agement onPersonalComputers. InGreat Lakes Symposium
on VLSI, pages 50–53, 1999.

[11] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal,
12(2):78–117, 1970.

[12] A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. In USENIX Annual Technical
Conference, 2004.

[13] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. In ACM
SOSP, pages 79–95, 1995.

[14] N. Pettis, L. Cai, and Y.-H. Lu. Power Management by
Prefetching Streaming Data. In ISLPED, pages 62–65, 2004.

[15] C. Ruemmler and J. Wilkes. UNIX Disk Access Patterns. In
USENIX Winter Conference, pages 405–420, 1993.

[16] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli. Dy-
namic Power Management for Portable Systems. In Mobi-
Com, pages 11–19, 2000.

[17] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli. Event-
Driven Power Management. IEEE Transactions on CAD,
20(7):840–857, July 2001.

[18] W. Vogels. File System Usage in Windows NT 4.0. In ACM
SOSP, pages 93–109, 1999.

[19] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy,
and R. Wang. Modeling Hard-Disk Power Consumption. In
Conference on File and Storage Technologies, pages 217–
230, 2003.

[20] P.Zhou,V.Pandey, J. Sundaresan,A.Raghuraman,Y.Zhou,
and S. Kumar. Dynamic tracking of page miss ratio curve for
memory management. In ASPLOS, pages 177–188, Octo-
ber 2004.

[21] Q. Zhu, F. M. David, C. Devaraj, Z. Li, Y. Zhou, and P. Cao.
ReducingEnergyConsumption ofDisk StorageUsingPower-
Aware Cache Management. In HPCA, pages 118–129, 2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

