
Applying UML and MDA to Real Systems Design

Ian Oliver
Nokia Research Center, Finland

ian.oliver@nokia.com

1 UML and MDA

Traditionally system design has been made from a black
box/functionality only perspective which forces the devel-
oper to concentrate on how the functionality can be decom-
posed and recomposed into so called components. While this
technique is well established and well known it does suffer
from some drawbacks; namely that the systems produced can
often be forced into certain, incompatible architectures,diffi-
cult to maintain or reuse and the code itself difficult to debug.
Now that ideas such as the OMG’s Model Based Architecture
(MDA) or Model Based Engineering (MBE)1 and the ubiq-
uitous modelling language UML are being used (allegedly)
and desired we face a number of challenges to existing tech-
niques.

When working with the UML, onemust take into consid-
erationobject orientation. The UML is a language for ex-
pressing systems (or whatever) in terms of object oriented
concepts and its meta-model and its semantics make this ex-
plicit. Object orientation, unlike functional based approaches
makesboth functionalityand data first-class modelling ele-
ments. Whenever anything is specified in UML, that mod-
elling element is either based on the notion of a class or is
directly related to a class. Some methods appear to adhere to
this but fail to use classes in this way by assuming the exis-
tence of a ‘global’ system and then just using classes as data
elements. Effectively the UML equivalent of programming
Fortran in C++.

Use case based development makes this situation worse by
only concentrating only on behaviour and then also by not by
integrating with the class-object concepts of OO. Use cases
are often ‘realised’ as sequence diagrams, where the objects
are never shown nor specified in a class diagram so that anal-
ysis of how the objects may be correctly connected or related
is never achieved. In this approach objects themselves are
just the objectification of functions.

The result of this is that systems developed using use cases
suffer from poor or non existence object orientation, little
or impossible to achieve reuse, every object in the system
can communicate and be related to every other object in the
system (coupling tends to be very high if not total) and that
if a class structure is reverse engineered then it is often the
case that most classes contain a single function which is often
redefined in very deep inheritance hierarchies. Inheritance

1we use MDA in this article but the terms are generally interchangeable

here often gets used as a development mechanism rather than
the taxonomy mechanism it really is.

If use cases are to be used then they must either be as very
high level requirements which are then subjected toproper
OO analysis2 and/or they are later used as tests to the system
(cf: Model Based Testing). Use cases here are being used as
the basis of scenarios that the customer believes they want;
they can be thought of as scripts or constraints in the model
checking sense. There is almost never a one-to-one mapping
between the use cases and the functionality of the system
that is finally constructed, just that the system is capable of
providing the services or functionality required to enact the
described scenario.

In an OO based system, the global behaviour or functionality
is emergent from the particular collaborations and config-
urations of objects and their relationships rather than being
specified explicitly for the whole system. Use cases in this
respect are preferably used as (high level) tests to the model
rather than first-class development artifacts.

The Model Driven Architecture is based around the concepts
of models and transformations (or mappings) between those
models. A transformation is a kind of model which contains
information about the platform onto which you are mapping
its source model(s). In a more generic scenario, a model
may actually be a structure of models and a transformation
a generic engine that takes a model of a platform as its pa-
rameter. The source models of a transformation are known as
platform independent models (PIMs) and the target models
as platform specific models (PSMs). These terms arerela-
tive to a given platform - given any model one can not state
whether it is platform independent or platform specific with-
out a second model related to it by one or more transforma-
tions.

What the MDA is trying to achieve is the axiomatisation
of development and architectural principles; the knowledge
held by engineers on solving certain problems is embodied
inside the transformations. The situation however is no dif-
ferent from the ideas of compilation of 3

��
generation lan-

guages into machine code - transformation engines in some
MDA tools are known as model compilers.

The MDA as defined by the OMG is based around that mod-
els are expressed in the UML or one of its profiles and that
their meta-models are expressed in the Meta Object Facility
or MOF. Transformations then act on the meta-model level

2Uses cases are not object oriented!

1

1530-1591/05 $20.00 © 2005 IEEE

transforming the concepts in one meta-model to concepts in
another meta-model. However, as MOF can be considered a
form of graphical BNF then any language’s meta-model can
be expressed in this form. Note that transformations operate
at asemantic level rather than syntactic and may take a large
amount of contextual or platform information into consider-
ation. Compare this with the generally poor attempts at au-
tomatic code generation seen in many tools which seemingly
equate the notion of a class at any abstraction level with that
of a class in some 3GL programming language. A syntac-
tic transformation implies that no change of abstraction level
is made between the input and output of the transformation
and effectively the input and output are the same but just ex-
pressed in different formalisms with the same semantics; this
is commonly seen with say, SDL and C or UML or Java/C++.

2 Application in System Development

To correctly apply UML/MDA one must have a much greater
understanding and adherence to the various levels of abstrac-
tion that are possible, a well defined separation of concerns
and a process/method that actively supports modelling.

Abstraction relates to what information is required in models
and how these models relate to each other. One of the prob-
lems with UML is that it is often used at the same level of ab-
straction as the implementation. There are very few tools that
allow much further abstraction in a meaningful way. This is
then coupled with areas where OO is unknown, for example
hardware or protocol development, which gives way to con-
cerns about the models not containing enough information
or being too abstract for meaningful development. UML is
designed as an extensible language which can be tailored for
particular domains, it is in the system domain and the hard-
ware aspects, that currently UML is particularly lacking.

MDA requires that, ideally, for each particular aspect or con-
cern and at each level of abstraction a model is constructed.
This separation of concerns, while good engineering prac-
tise, is rarely seen. Deciding which aspects are necessary for
successful system development is difficult as is maintaining
these concerns. At each abstraction level a well defined set of
tests must be performed upon this system and maintained as
the ‘system models’ are developed. At minimum one must
have a separation between the domain of the system (what
the system is) and the potential platforms (or architectures)
onto which the system may be mapped. Separation of ‘do-
main’ and ‘platform’ is the key to success here and avoiding
polluting either model with information from the other.

The language of these models varies depending upon abstrac-
tion level and aspect. There do exist numerous UML pro-
files for this work and in particular we note UML for QoS
and Fault Tolerance, UML Profile for Schedulablity, Perfor-
mance and Time, the UML Testing Profile, the Systems Mod-
elling Language (SysML) and the UML for Communicating
Systems (ETSI). Unfortunately these languages lack overall
coherence, unless you count the core UML they are based
upon, and lack of tool support. The other major problem here
is that the concepts in these languages are often ambiguous
even at a platform independent or generic level, for example,

“what is a process?”

UML2 is not going to solve any problems here as to the ca-
sual user nothing has changed although there are new dia-
gram types but less information on the semantics of these di-
agrams and once again how the diagrams and their elements
relate to each other in the model. Classes are classes regard-
less of whether UML1.x or 2.x is used and their meaning
context dependent.

This leads to then methodology (meaning the combination of
methods and process). While we have languages and con-
cepts for expressing artifacts and modelling elements rele-
vant to systems development we are sorely lacking in con-
sistent, well defined methods for the utilisation of these lan-
guages. As yet, while the MDA provides us with a method-
ological structure we are still missing how the modelling lan-
guages fit into that structure. A well defined set of semantic
transformations do not exist for manipulating those models
at their various levels of abstractions; those transformation
that do exist are often syntactic in nature and do not effec-
tively take into consideration the mapping via a platform into
a more platform specific model.

Much of the methodology work required is deciding which
languages (UML profile + extensions) to use at which level of
abstraction and how each level of abstraction relates to each
other. Certainly a core, basic language must be used at higher
level of abstraction, eg: plain UML with each level progres-
sively adding more information and changing the language.
This change is dictated somewhat by the chosen platforms
for mapping and thus the target implementation.

Finally if one is to model then one must have a reason about
why those models are being produced. If a model can not
be tested somehow then there is little point in producing that
model - models must convey information to the users of those
models. Testing here can mean metrics, validations (simula-
tion, animation etc), verification (proof, model checking)and
so on.

3 Conclusion

The problems faced by UML and MDA in systems develop-
ment are broadly the same as in any other development area.
The main problem we have encountered faced is that OO is
not common in this area and that the UML is being misun-
derstood and not being applied correctly - the wrong types of
analysis are being made (functional vs OO). Often it is just
the case that the models do not contain any relevant informa-
tion and are not being used to support the system under devel-
opment - this is commonly seen with documentation oriented
methods in which the documentation is more important than
the actual product itself and thus the quality of that product.
While UML has the potential to support other development
paradigms it is stillinherently an object oriented language
and requires support from external processes and methods -
this must be understood first before successful application.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

