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1. Introduction

Software Thread Integration (STI) [1] and Asynchronous
STI (ASTI) [2] are compiler techniques which interleave
functions from separate program threads at the assembly
language level, creating implicitly multithreaded functions
which provide low-cost concurrency on generic hardware.
This extends the reach of software and reduces the need to
rely upon dedicated hardware. STI and ASTI are driven by
two types of timing requirements: thread-level (e.g. the de-
lay between an event occuring and a service thread run-
ning) and instruction-level (e.g. when a specific instruc-
tion or code region must begin executing relative to the
start of the function or another such instruction or region).
These coarse- and fine-grain approach provide a precise
method of defining timing requirements. STI provides syn-
chronous thread progress; both functions proceed lock-step.
ASTI provides asynchronous (independent) thread progress
through the use of lightweight context switches (coroutine
calls) between primary and secondary threads. The primary
thread has hard-real-time constraints, while the secondary
thread is not real-time, or has much longer deadlines.

We assume that instructions take a predictable number
of cycles to execute. This implies a straightforward instruc-
tion execution pipeline (if used) and a predictable mem-
ory system (e.g. the cache is locked, software managed, or
not present). These requirements are met for the processors
we target: 8 and 16 bit microcontrollers. We target appli-
cations with only one hard real-time thread (the primary
thread, used for the communication protocol), although re-
cent extensions to STI [3] support multiple hard-real-time
primary threads. We have implemented a thread-integrating
compiler Thrint which implements many of these analyses
and transformations for the AVR architecture, which is 8-
bit, load/store, and optimized for embedded C code.

2. STI

STI targets functions which are independent, data ready
and can run to completion. This may require buffering work
for one function to ensure it is ready to run when the other
is released. For example, in a video controller, graphics ren-

Figure 1. STI interleaves functions at the assem-
bly code level.

dering work is buffered to be available whenever a peri-
odic scan line interrupt service routine runs [3]. STI works
by merging two functions into one implicitly multithreaded
function, as shown in Figure1. When used for real-time soft-
ware, it enables the placement of time-critical instructions
from one thread so they execute at a specific time relative
to the beginning of the integrated function, regardless of the
control or data flow characteristics of either thread.

STI begins with building a control-dependence graph
representation of the functions to be integrated. We parti-
tion the register file between threads at compile time, but
more sophisticated register allocation is possible. The best-
and worst-case timing of the code is derived statically. This
timing is then regularized; execution paths of uneven dura-
tion are padded to last the same amount of time (nops and
nop loops are used for space efficiency).

Code from one thread can now be moved to execute at
given time in the other, using code transformations such as
motion, replication, and various for loops (peeling, split-
ting, guarding, unrolling and fusion). Integration copies
code into each path of control flow in a location which
ensures it executes at the correct times regardless of the
thread progress. Integration involves control-dependence
graph traversal (and is hierarchical), and nested transforma-
tions are cumulative. Non-looping primary code regions are
handled individually. Moving a region into a conditional re-
quires replicating it into both sides, while entering a loop

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



Secondary 
Thread

Executive
ReceiveMessage
ReceiveBit

Coroutine calls
Primary 
Thread

Check for errors, 
save bit, 

update CRC
Executive
ReceiveMessage
ReceiveBit

Subroutine 
calls

Prepare message 
buffer

Read bit from bus
3 times and vote

Idle time
Return

Sample bus for 
resynchronization

Executive

ASTI

Integrated 
Secondary 

Thread

Primary
Thread ReceiveMessage

ReceiveBit

a) Timeline of original primary thread execution

b) Idle time recovered with coroutine calls

c) Idle time recovered with coroutine calls and integration

Figure 2. ASTI eliminates most context switches
and also recovers finer grain idle time.

requires either guarding the execution with a conditional
which triggers on a specific loop iteration or else split-
ting and peeling the loop. Looping primary function regions
are unrolled and treated as non-looping regions unless they
overlap with secondary function loops. In that case the over-
lapping iterations of the two loops are unrolled as needed to
match the secondary function loop body work to available
idle time in the primary function loop body, increasing ef-
ficiency. Integrated code may be also guarded by a condi-
tional test to allow execution based upon mode flags. Next,
the timing of the code is analyzed statically again to verify
that the transformations placed code properly. In the final
stage assembly code is regenerated from the control graph
to be assembled and linked with the rest of the application.

3. ASTI

ASTI targets applications with frequent context switches
and a requirement for asynchronous thread progress. For
example, in a software-implemented (bit-banged) commu-
nication protocol, the protocol thread must run whenever
there is bus activity. However, the idle time in the proto-
col thread is fragmented into pieces lasting less than a bit or
byte. To avoid starvation, other threads are integrated with
the protocol thread so they run during the idle time.

ASTI cuts the cost of context switching between the pri-
mary (e.g. protocol) and secondary threads by reducing the
number of switches, as shown in Figure 2. ASTI uses the
idle time TIdle within a frequently-called primary thread
function as a window in which to execute a segment of
a secondary thread via a coroutine call (or cocall). There
will be TSegmentIdle = TIdle − 2 ∗ TCocall of that time
available, given that two cocalls (TCocall long each) must

execute for each segment. After padding to equalize tim-
ing of conditionals and loops modulo TSegmentIdle, the en-
tire secondary thread is broken into segments of duration
TSegmentIdle. Intervening primary code within the idle time
window is removed and integrated into each segment of the
secondary thread, ensuring that running any segment of the
secondary thread will still result in the proper intervening
primary code executing at the correct times. Coroutine calls
are integrated in the secondary thread to ensure it yields
control back to the primary thread at the end of the seg-
ment, just before the available idle time expires.

4. Applications

In the STIGLitz project [3], STI enables an inex-
pensive 20 MHz AVR 8-bit microcontroller to gener-
ate monochrome NTSC video while servicing a high-speed
(115.2 kbaud) serial communication link. This system of-
fers graphics rendering speed-ups of 3.99x to 13.5x by
recovering fine-grain idle time in the display refresh func-
tion and using it for video rendering.

We used ASTI to create a bridge between an RS232 link
and a software-implemented J1850 automotive embedded
network protocol controller [2]. Compared to an interrupt-
based approach, ASTI results in a secondary thread speed-
ups of 1.56x (message reception) and 1.83x (transmission),
enabling the use of an 8 MHz AVR 8-bit microcontroller.
An interrupt-based approach would require a 14.7 MHz
clock to provide the same performance.

5. Conclusion

STI and ASTI extend the performance of commodity
low-end microcontrollers through static scheduling tech-
niques, potentially avoiding the need for dedicated hard-
ware or faster clock speeds.
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