The Challenges of Hardware Synthesis from C-like Languages

Stephen A. Edwards
Department of Computer Science, Columbia University, NenkY

MANY TECHNIQUES for synthesizing digital hardware fromCones [23] Early, combinational only
C-like languages have been proposed, but none have emeltfggwareC [12] Behavioral synthesis-centric
as successful as Verilog HDL for register-transfer-level de- Transmogrifier C [8] - Limited scope

. . stemC [9 Verilog in C++
sign. This paper Igoks at two of the fundamental challeng Sapi [19][] Algoritgi]mic structural descriptions
concurrency and timing control. C2Verilog [21] Comprehensive; company defunct

Familiarity is the main reason C-like languages have be@poer [24] Restricted C with extensionsg(c)

proposed for hardware synthesis. Synthesize hardware figfgel-c [2] C with CSP (Celoxica)

C, proponents claim, and we will be able to turn a C progra®pecc [7] Resolutely refinement-based
mer into a hardware designer. Another common motivationssch C [10] Untimed semantics (Sharp)
hardware/software codesign: today’s systems usuallyagoat cAsH[1] Synthesizes asynchronous circuits

mix of hardware and software, and it is often unclear ifitial
which portions to implement in hardware. Here, using a gingl
language should simplify the migration task. classes provide mechanisms for specifying datapathsg-finit
C was developed by Dennis Ritchie in the early 1970s [18]state machines, etc. (Pasko et al. [16] adds RAM interjaces
it was derived from BCPL [17]. Both languages’ abstractiorthe result is translated into a language such as Verilog and
are close to processor data types and operations. BCPk treghthesized. Lipton et al.BDL++ [14] is similar.

memory as an array of words; integers, pointers, and clasact C2Verilog, developed at CompiLogic (renamed C Level De-
are represented as a word. For the PDP-11, Ritchie added ckigh then bought by Synopsys in November 2001) has truly
acter, integer, and floating-point types. C’s arrays areda sbroad support foansi C. It can translate pointers, recursion,
effect of its pointer semantics, which enables simple, ieffic dynamic memory allocation, and other thorny C constructs.
implementations, but also demands compilers with aggresoderman and Panchul [21, 22] hold a broad patent on C-to-
optimization to perform costly pointer analysis. Verilog translation [15] describing the compiler.

That C has types that match what the processor directly maNec’s Cyber system [24] accepts a C variant dubbed
nipulates and pointers instead of a first-class array typeus that contains hardware extensions but prohibits recufsive-
bling when synthesizing hardware from C. Bit vectors are n@ibns and pointers. Timing can be implicit or explicit.
ural in hardware, yet C only supports four sizes. C's memoryCeloxica’s Handel-C [2] adds constructs for parallel state
model is an undifferentiated array of bytes, yet many smatients andbccawm-like rendezvous communication. Each as-
varied memories are most effective in hardware. signment statement runs in one cycle.

C-like hardware synthesis languages have been proposed Gajski et al.'s SpecC [7] adds constructs for finite-state ma
since the late 1980s (Table 1). Surveys include a longer Vgiiines, concurrency, pipelining, and structure througttyth
sion of this paper [6] and De Micheli [3]. three keywords [5]. Systems written in the complete languag

Stroud et al.’s early Cones [23] synthesized each functiangst be refined into the synthesizable subset.
in a combinational block. Its strict C subset handled coodit Sharp’s Bach C [10] adds explicit concurrency and rendez-
als; loops, which it unrolled; and arrays treated as bitect vous communication. The compiler does the scheduling; the

As input for their Olympus synthesis system [4], Ku andumber of cycles taken by each construct is not set by a rule.
De Micheli developed HardwareC [12], a behavioral hardwaggupports arrays but not pointers.
language with support for hardware structure and hierarchy Budiu et al.’scAsH [1] is unique because it generates asyn-

Galloway’s Transmogrifier C [8] supports loops, conditiorchronous hardware. It identifies instruction-level padain
als, and integer arithmetic. It places cycle boundariearatf in AnsI C and generates asynchronous dataflow circuits.
tion calls and at the beginning wile loops. Concurrency is the biggest difference between hardware, for

The SystemC [9] C++ library supports hardware and systeyhich is is fundamental, and software. Efficient softwagmall
modeling. While most popular for modeling (it provides conithms are rarely the best choice in hardware. More dishgybi
currency with lightweight threads [13]), a subset of the-las that C and C++ are optimized for expressing sequentiatalg
guage can be synthesized. Classes model hierarchicat stitléms and contain no language-level support for concayen
tures containing combinational and sequential processes. in part because there is no agreed-upon model for paratiel pr

In IMEC’s Ocapi system [19], the user's C++ program rungramming [20]. The absence of concurrency support means it
to generate a data structure that represents hardwardi€lppust be added or inferred by the compiler.

*sedwards@cs.columbia.edu http://www.cs.columbia’eddyvards About half th_e Ianguages require the programmer to express
Edwards is supported by arsF cAREERaward, a grant from Intel corpora- cOncurrency with parallel constructs. HardwareC, SystemC
tion, an award from therg, and from New York State’'systar program. and Ocapi all use process-level constructs; Handel-C, Bach

Table 1: C-like languages/compilers (chronological oyder

1530-1591/05 $20.00 © 2005 IEEE

and SpecC can also group concurrent statements. SystenrCtsvo cycles.” While such constraints can be subtle for the
parallelism resembles Verilog ®HDL’s: a system is a collec- designer and challenging for the compiler, they allow easie
tion of clock-edge-triggered processes. Handel-C, Span€, design-space exploration. Bach C is similar.
Bach C’s approaches are more software-like: their contstruc The C2Verilog compiler inserts cycles using complex rules
dispatch groups of instructions in parallel. and provides mechanisms forimposing timing constraints. U
Concurrency introduces a fundamental change to the léke HardwareC, these constraints are outside the language
guage, demanding substantially different programmerkthin Transmogrifier C and Handel-C use implicit rules for insert-
ing. Even if s/he is experienced with concurrent prograngmiing clocks. In Handel-C, only assignment atelaystatements
with the usual thread-and-shared-memory model, the ghralhke a clock cycle. In Transmogrifier C, only loop iterations
constructs in hardware languages differ substantially. and function calls take a cycle. While simple to understand,
Other languages present a sequential model to the prograuech rules can require recoding to meet timing. Handel-C may
mer and rely on the compiler to identify parallelism. Whileequire assignment statements to be fused and loops may need
compilers for languages with parallel constructs alsoftifien to be unrolled in Transmogrifier C.
parallelism, Cones, Transmogrifier C, C2Verilog, anwisH
rely on the compiler completely. Cones flattens each fun¢t] M.Budiuand S. C. Goldstein. Compiling application-sifie hardware.
tion, including loops and conditionals, into a single tvevd! In Proc. FPL LNCS2438, pp. 853-863, Montpellier, France, 2002.

networks.CASH, by contrast, takes aLiw -compiler-like ap- [fﬂizﬁa’zogt;pﬁmdg‘gixga'Com' Handel-C Language Reference

proach, analyzing inter-instruction dependencies anddith (3] G. De Micheli. Hardware synthesis from C/C++ modelsPhoc. DATE
ing instructions to maximize parallelism. pp. 382—383, Munich, Germany, Mar. 1999.

Two common approaches to |dent|fy|ng para"e”sm d|ffei4] G.De MIChelI, D. Ku, F. Mailhot, and T. Truong. The Olynwsynthesis
in their granularity. Instruction-level parallelism.¢) groups ;Ysltjebnr;.ESSEnGirTs%satu%fr’Cgrr:Lpngt'erg;jSS)I:(?gp—eSC% ?gthglf:gé Reference
nearby instructions that can run simultaneously. Now tlge pr- ~ Manual SpecC consortium, version 2.0, Mar. 2001.
ferred approach in the computer architecture community, 8] S. A. Edwards. The challenges of hardware synthesis fEalike lan-
seems thatLP beyond about five simultaneous instructions_9uages. Irroc. IWLS Temecula, California, June 2004.

. . . T [7] D. D. Gajski, J. Zhu, R. Ddémer, A. Gerstlauer, and S. Zh&pecC:
is unlikely due to fundamental limits [25, 26]. Pipelinirthe Specification Language and Methodologgiuwer, 2000.

second approach, requires less hardware tharbut can be (8] D. Galloway. The Transmogrifier C hardware descriptianduage and

less effective. Again, dependencies and control-flow feaas compiler for FPGAs. IrProc. FCCM pp. 136-144, Napa, CA, 1995.

limit parallelism. Pipelining works well on regular loopesg., [Iér;;éoi(ﬁizv; Z'é’gf' Martin, and 5. SwaBystem Design with Sys-

in scientific computation [11], but is less effective in geaie [10] T. Kambe et al. A C-based synthesis system, Bach, arbjification.
For hardware, relying on the compiler to expose parallelism in Proc. ASP-DACpp. 151155, Yokohama, Japan, 2001.

is awkward because using it effectively requires undeditan [11] K. Ker'l\?edy an}g Rf- Allenggt(i)nlﬂizing Compilers for Modern Architec-

H H 3 H R H : tures organ Kaurmann, .

details of the comp|_lers operation. E_ffICI_er_lt |mplemeruas \IH(Z D. C. Ku and G. De Micheli. HardwareC: A language for haade

demand careful coding, and appropriate idioms would be awk-" gesign. T.R. CSTL-TR-90-419, Stanford University, CA, Ad§90.

ward for programmers accustomed to writing efficient C. [13] S. Liao et al. An efficient implementation of reactivifgr modeling

Time is absent from the C programming model. It guaran- hardware in the Scenic design environmentPioc. DAG 1997.

- : : . {14] R.J.Lipton et al. PDL++: an optimizing generator langa for register
tees causality, but says nothing about execution time. A sitH transfer design. IProc. ISCASpp. 1135-1138 vol. 2, 1990.

ple model for both programmers and compilers, it can Ma}§; v, panchul et al. System for converting hardware design high-

achieving timing constraints difficult. The transparenéyCo level programming language to hardware implementationS. Pdtent

software compilation makes gross improvements easy, but I[r%] g,Zggng)Gé{VI;y ZT?e?:ﬁm ues to evolve a C++ based sysesigrdlan

proving an already-optimized fragment is difficult. g(;age. IrProc. DATE p;“ 302-309, 2002. yse=ig
Meeting a performance target under power and cost C@i¥| M. Richards and C. Whitby-StrevensBCPL: The Language and its

straints is usually mandatory in hardware, since it is alvay Compiler Cambridge University Press, 1979.

easierto implement afunction in software. Thus, any hardwélg] D. M. Ritchie. The development of the C language.History of Pro-

thesis techni d ¢ t timi traint gramming Languages,|Cambridge, Massachusetts, April 1993.
synthesis technique needs a way o meet iming constrain ?19] P. Schaumont et al. A programming environment for thegteof com-

The C-like languages in this paper generate synchronous piex high speed ASICs. IRroc. DAG pp. 315-320, 1998.
hardware (except Cones, which generates combinatiorial Iof20] D. B. Skillicorn and D. Talia. Models and languages faradlel com-

andcasH, which generates asynchronous), so there must be putation. ACM Computing Survey80(2):123-169, June 1998.
hani for dividi . . lock | uti [21] D. Soderman and Y. Panchul. Implementing C algorithmeeconfig-
mechanism for dividing time into clock cycles. Solutionsga urable hardware using C2Verilog. Rroc. FCCM pp. 339-342, 1998.

from mandatory cycle annotations to implicit rules. [22] D. Soderman and Y. Panchul. Implementing C designs itvhare: a
A designer using Ocapi specifies state machines and each full-featuredansi C to RTL Verilog compiler in action. IfProc. IVG
state gets a cycle. State machines in the SpecC refinement c&g\fvpp' 22-29, Santa Clara, CA, 1998
e

e .. . C. E. Stroud, R. R. Munoz, and D. A. Pierce. Behavioratiglsynthesis
may start with implicit clock boundaries, but they are ma with cones.Design & Test of Computers(3):22—30, July 1988.

concrete eventually. SystemC’s combinational processes [24] K. Wakabayashi. C-based synthesis experiences wigthawior synthe-

come combinational logic, but its sequential processestﬂen[%] gz\e/\f/, ‘;,?/yltl)erli-_ Ir_lF’rO;t._ DATE pp. |390|—393,“19|99. Proc. ASPLOS
. Wall. Limits of instruction-level parallelism.niFroc.

cycle boundaries witait calls. - _ SIGPLAN Notices, 26(4):176-189, New York, NY, 1991.

. Typical n high-level synthesis, HardwareC supports tine] p.w. wall. Speculative execution and instructiondkparallelism. T.R.

ing constraints such as “these three statements must execut TN-42, DEC Western Research Laboratory, Palo Alto, CA, MI884.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

