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Abstract  

 
This paper presents a novel FPGA architecture for 

implementing various styles of asynchronous logic. The 
main objective is to break the dependency between the 
FPGA architecture dedicated to asynchronous logic and 
the logic style. The innovative aspects of the architecture 
are described. Moreover the structure is well suited to be 
rebuilt and adapted to fit with further asynchronous 
logic evolutions thanks to the architecture genericity. A 
full-adder was implemented in different styles of logic to 
show the architecture flexibility. 
 
1. Introduction 
 
With the ever-increasing integration level of 
synchronous design, the industry is now facing problems 
(heat dissipation, clock tree distribution, noise…) that 
have led asynchronous logic to gain in popularity these 
years. Many asynchronous demonstrators have been 
implemented [1]. The methodologies have also been 
developed to automatically synthesize asynchronous 
circuits and dedicated synthesis tools have appeared [2]. 
Some dedicated FPGAs have also been developed in the 
last decade to test asynchronous designs. Unfortunately, 
these FPGAs are closely associated to a style of design. 
For instance MONTAGE [4] and PGA-STC [5] are 
based on a synchronous design, GALSA [6] and STACC 
[7] are globally asynchronous FPGAs but locally 
synchronous, and PAPA [8] is a fully asynchronous 
FPGA dedicated to optimize pipeline circuits. The use of 
synchronous FPGAs is possible but most of the FPGA 
resources are then unexploited [3]. In this paper, a novel 
and modular FPGA architecture is presented that is able 
to implement various asynchronous styles, protocols and 
data-encodings.  
 
2. Principles of Asynchronous Logic 
 
While in synchronous circuits a clock globally controls 
activity, asynchronous circuit activity is locally 
controlled using communication channels able to detect 
the presence of data at their inputs and outputs [9]. This 
is consistent with the so-called handshaking protocol. 
Therefore asynchronous modules communicate with 
each other using requests and acknowledges. One 
transition on a request signal activates another module 
connected to it. Therefore, signals must be valid all the 
time. Hazard is not allowed on signals. Asynchronous 

circuit synthesis must be thereby more strict, i.e. hazard-
free. In fact, different timing assumptions are considered 
for different types of asynchronous circuits. The most 
robust style is called Delay Insensitive (DI) because no 
timing assumption is made. This means that the circuit 
works correctly whatever the delays are in wires and 
gates. Having such a circuit is really constraining for the 
designer and costly in term of area. To reduce the 
complexity of these circuits, it is possible to introduce an 
assumption on forks: the forks must be “ isochronic”  (the 
delays in the branches of the fork are equal). This style 
of circuits is named QDI (for Quasi-Delay Insensitive). 
The “ isochronic fork”  condition is very weak and many 
asynchronous circuits have stronger timing assumptions, 
as micropipeline circuits. The micropipeline circuits only 
differ from the synchronous circuits by the controllers 
that replace the clock. Many other asynchronous logic 
styles exist, but are not presented in this paper. To 
complete the huge possibilities in asynchronous designs 
(contrarily to synchronous style), the designer can 
change the handshake protocol or the data encoding. 
That means that it is possible to implement asynchronous 
logic with different protocols or data encoding, like dual-
rail (1 of 2 encoding) or multi-rail (1 of N encoding). 
These choices permit the implementation of a same 
design varying the electrical properties of the circuit, like 
speed, power-consumption or electromagnetic emission. 
 
3. Architecture 
 
The FPGA architecture has been designed to be the best 
compromise between the high flexibility needed to be 
style-independent and the optimal use of FPGA 
resources. The high flexibility is achieved by choosing 
an “ island style”  top view of our chip: the Programmable 
Logic Blocks (PLBs), which implement the required 
logical functions, are plunged into a routing network. 
This network is a grid of interconnection busses, 
connection boxes, and switch boxes.  
The PLB implements the programmable logical 
functions; it consists of an Interconnection Matrix (IM), 
two Logic Elements (LE), and a Programmable Delay 
Element (PDE) as shown in Figure 1. The LEs are 
programmable combinatorial logic components which 
host the programmed functions and the PDE gives to the 
PLB the possibility to implement delayed logic. In 
addition, the IM maps together PLB inputs, LEs inputs 
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and outputs, and the PDE. The architecture of the PLB is 
designed to ensure a correct implementation of memory 
elements typically needed by the asynchronous logic, 
such as Muller gates [9]. In fact, these memory elements 
are implemented by mapping looped combinatorial logic 
using the interconnection matrix integrated into the PLB.  

 
Figure 1: Internal schematic view of a PLB. 

A LE consists in a “multi-output LUT” , a LUT7-3 (7 
inputs and 3 outputs), and a LUT2-1 connected together 
as shown in Figure 2. As presented in Section 2, 
asynchronous logic uses often 1 of N encoding. This 
specificity needs to be supported at the hardware level to 
have the best PLB filling ratio. The adopted solution was 
to make externally available some internal signals of a 
LUT; in particular, a LUT7-3 was chosen in the LE. 
Thus, it becomes easier to implement 1 of N encoding, 
as auxiliary outputs per LE are available for Multi-Rail 
signals. Moreover, asynchronous logic also needs to 
compute the data validity which is used for the 
protocols; this is supported by adding a LUT2, directly 
plugged to the multi-output LUT. 

 

 
Figure 2: Internal schematic view of a LE. 

The PDE, located in the PLB (Figure 1) can be used to 
allow the implementation of asynchronous circuits that 
need timing assumptions.  
 
4. Example 
 

To demonstrate the capabilities of the FPGA 
architecture, a full adder has been implemented in two 
different asynchronous logic styles: QDI and 
micropipeline. In order to simplify the demonstration, 
the encoding of the QDI adder only is limited to Dual- 
Rail and the data encoding of the micropipeline adder is 

bundled data (as in synchronous logic). Moreover, both 
styles use the same 4-phase protocol. 

 
        a)          b) 
Figure 3: Full Adder in a) micropipeline and b) QDI. 

Figure 3a and 3b show the micropipeline and the 
QDI implementation of a 1-bit full adder. The dashed 
lines around the gates symbolize the mapping in the LEs 
of the adder. A programmable delay element is used to 
implement the timing assumption of the micropipeline 
logic.  
 
5. Conclusion and Future Works 
 

A novel FPGA architecture has been presented that 
is able to target multiple styles of asynchronous logic. 
The asynchronous logic fits nicely into this dedicated 
architecture with an overall filling ratio of 51% for the 
micropipeline circuits and 76% for the QDI circuits. This 
FPGA circuit will be a tool to evaluate asynchronous 
designs and to spread this technology to a larger 
community.  
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