
FPGA architecture for multi-style asynchronous logic

N. Huot, H. Dubreuil, L. Fesquet, M. Renaudin

TIMA Laboratory, 46, avenue Félix Viallet, 38031 Grenoble – France
Laurent.Fesquet@imag.fr

Abstract

This paper presents a novel FPGA architecture for

implementing various styles of asynchronous logic. The
main objective is to break the dependency between the
FPGA architecture dedicated to asynchronous logic and
the logic style. The innovative aspects of the architecture
are described. Moreover the structure is well suited to be
rebuilt and adapted to fit with further asynchronous
logic evolutions thanks to the architecture genericity. A
full-adder was implemented in different styles of logic to
show the architecture flexibility.

1. Introduction

With the ever-increasing integration level of
synchronous design, the industry is now facing problems
(heat dissipation, clock tree distribution, noise…) that
have led asynchronous logic to gain in popularity these
years. Many asynchronous demonstrators have been
implemented [1]. The methodologies have also been
developed to automatically synthesize asynchronous
circuits and dedicated synthesis tools have appeared [2].
Some dedicated FPGAs have also been developed in the
last decade to test asynchronous designs. Unfortunately,
these FPGAs are closely associated to a style of design.
For instance MONTAGE [4] and PGA-STC [5] are
based on a synchronous design, GALSA [6] and STACC
[7] are globally asynchronous FPGAs but locally
synchronous, and PAPA [8] is a fully asynchronous
FPGA dedicated to optimize pipeline circuits. The use of
synchronous FPGAs is possible but most of the FPGA
resources are then unexploited [3]. In this paper, a novel
and modular FPGA architecture is presented that is able
to implement various asynchronous styles, protocols and
data-encodings.

2. Principles of Asynchronous Logic

While in synchronous circuits a clock globally controls
activity, asynchronous circuit activity is locally
controlled using communication channels able to detect
the presence of data at their inputs and outputs [9]. This
is consistent with the so-called handshaking protocol.
Therefore asynchronous modules communicate with
each other using requests and acknowledges. One
transition on a request signal activates another module
connected to it. Therefore, signals must be valid all the
time. Hazard is not allowed on signals. Asynchronous

circuit synthesis must be thereby more strict, i.e. hazard-
free. In fact, different timing assumptions are considered
for different types of asynchronous circuits. The most
robust style is called Delay Insensitive (DI) because no
timing assumption is made. This means that the circuit
works correctly whatever the delays are in wires and
gates. Having such a circuit is really constraining for the
designer and costly in term of area. To reduce the
complexity of these circuits, it is possible to introduce an
assumption on forks: the forks must be “ isochronic” (the
delays in the branches of the fork are equal). This style
of circuits is named QDI (for Quasi-Delay Insensitive).
The “ isochronic fork” condition is very weak and many
asynchronous circuits have stronger timing assumptions,
as micropipeline circuits. The micropipeline circuits only
differ from the synchronous circuits by the controllers
that replace the clock. Many other asynchronous logic
styles exist, but are not presented in this paper. To
complete the huge possibilities in asynchronous designs
(contrarily to synchronous style), the designer can
change the handshake protocol or the data encoding.
That means that it is possible to implement asynchronous
logic with different protocols or data encoding, like dual-
rail (1 of 2 encoding) or multi-rail (1 of N encoding).
These choices permit the implementation of a same
design varying the electrical properties of the circuit, like
speed, power-consumption or electromagnetic emission.

3. Architecture

The FPGA architecture has been designed to be the best
compromise between the high flexibility needed to be
style-independent and the optimal use of FPGA
resources. The high flexibility is achieved by choosing
an “ island style” top view of our chip: the Programmable
Logic Blocks (PLBs), which implement the required
logical functions, are plunged into a routing network.
This network is a grid of interconnection busses,
connection boxes, and switch boxes.
The PLB implements the programmable logical
functions; it consists of an Interconnection Matrix (IM),
two Logic Elements (LE), and a Programmable Delay
Element (PDE) as shown in Figure 1. The LEs are
programmable combinatorial logic components which
host the programmed functions and the PDE gives to the
PLB the possibility to implement delayed logic. In
addition, the IM maps together PLB inputs, LEs inputs

1530-1591/05 $20.00 © 2005 IEEE

and outputs, and the PDE. The architecture of the PLB is
designed to ensure a correct implementation of memory
elements typically needed by the asynchronous logic,
such as Muller gates [9]. In fact, these memory elements
are implemented by mapping looped combinatorial logic
using the interconnection matrix integrated into the PLB.

Figure 1: Internal schematic view of a PLB.

A LE consists in a “multi-output LUT” , a LUT7-3 (7
inputs and 3 outputs), and a LUT2-1 connected together
as shown in Figure 2. As presented in Section 2,
asynchronous logic uses often 1 of N encoding. This
specificity needs to be supported at the hardware level to
have the best PLB filling ratio. The adopted solution was
to make externally available some internal signals of a
LUT; in particular, a LUT7-3 was chosen in the LE.
Thus, it becomes easier to implement 1 of N encoding,
as auxiliary outputs per LE are available for Multi-Rail
signals. Moreover, asynchronous logic also needs to
compute the data validity which is used for the
protocols; this is supported by adding a LUT2, directly
plugged to the multi-output LUT.

Figure 2: Internal schematic view of a LE.

The PDE, located in the PLB (Figure 1) can be used to
allow the implementation of asynchronous circuits that
need timing assumptions.

4. Example

To demonstrate the capabilities of the FPGA
architecture, a full adder has been implemented in two
different asynchronous logic styles: QDI and
micropipeline. In order to simplify the demonstration,
the encoding of the QDI adder only is limited to Dual-
Rail and the data encoding of the micropipeline adder is

bundled data (as in synchronous logic). Moreover, both
styles use the same 4-phase protocol.

 a) b)
Figure 3: Full Adder in a) micropipeline and b) QDI.

Figure 3a and 3b show the micropipeline and the
QDI implementation of a 1-bit full adder. The dashed
lines around the gates symbolize the mapping in the LEs
of the adder. A programmable delay element is used to
implement the timing assumption of the micropipeline
logic.

5. Conclusion and Future Works

A novel FPGA architecture has been presented that
is able to target multiple styles of asynchronous logic.
The asynchronous logic fits nicely into this dedicated
architecture with an overall filling ratio of 51% for the
micropipeline circuits and 76% for the QDI circuits. This
FPGA circuit will be a tool to evaluate asynchronous
designs and to spread this technology to a larger
community.

References
[1] K. Slimani, J. Fragoso, L. Fesquet, M. Renaudin, "Low
Power Asynchronous Processors", in Low Power Electronic
design, C. Piguet Ed., Chap. 22, CRC Press, July 2004.
[2]A.V. Dinh Duc, J.-B. Rigaud, A. Rezzag, A. Sirianni, J.
Fragoso, L. Fesquet, M. Renaudin, "TAST CAD Tools:
Tutorial", given at the Int. Symp. on Advanced Research in
Asynchronous Circuits and Systems ASYNC'02, Manchester,
UK, April 8-11, 2002, TIMA internal report.
 [3] Q.T. Ho, J.-B. Rigaud, L. Fesquet, M. Renaudin, R.
Rolland, "Implementing asynchronous circuits on LUT based
FPGAs", 12th Int. Conf. on Field Programmable Logic and
Applications (FPL), September 2-4, 2002, Montpellier, France.
[4] S. Hauck, S. Burns, G. Borriello, and C. Ebeling. “A FPGA
for Implementing Asynchronous Circuits” . IEEE Design and
Test of Computers, 11 (3): pp. 60–69, 1994.
[5] K. Maheswaran “ Implementing Self-Timed Circuits in
Field Programmable Gate Arrays” Master’s thesis, U.C.Davis,
1995.
[6] B. Gao. “A Globally Asynchronous Locally Synchronous
Configurable Array Architecture for Algorithm Embeddings”
PhD thesis, University of Edinburgh, December 1996.
[7] R. Payne “Self-Timed Field Programmable Gate Array
Architectures” PhD thesis, University of Edinburgh, 1997.
[8] J. Teifel, R. Manohar, “Programmable Asynchronous
Pipeline Arrays” Proc. of the 13th Int. Conf. on Field
Programmable Logic and Applications, pp. 345–354, Lisbon,
Portugal, September 2003
[9] J. Sparsø, S. Furber ,“Principles of Asynchronous Circuit
Design” , Kluwer Academic Publishers, Boston, 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

