
An Infrastructure to Functionally Test Designs Generated by
Compilers Targeting FPGAs*

Rui Rodrigues, and João M. P. Cardoso**

Faculty of Sciences and Technology / University of Algarve
Campus de Gambelas, 8000 – 117 Faro, Portugal

Email: jmpc@acm.org

Abstract

This paper presents an infrastructure to test the func-
tionality of the specific architectures output by a high-
level compiler targeting dynamically reconfigurable
hardware. It results in a suitable scheme to verify the ar-
chitectures generated by the compiler, each time new op-
timization techniques are included or changes in the com-
piler are performed. We believe this kind of infrastructure
is important to verify, by functional simulation, further re-
search techniques, as far as compilation to Field-
Programmable Gate Array (FPGA) platforms is con-
cerned.

1. Introduction
Compilation of software programs to reconfigurable

hardware (e.g., FPGAs) is an important research subject
(see, for instance, [1]). It promises both to shrink the long
design cycles needed to develop systems using reconfigur-
able hardware components and to take advantage of the
large number of resources available in FPGA devices.

In order to test new techniques, researchers working on
compilation techniques for FPGA-based runtime recon-
figurable platforms usually use a HDL (Hardware Descrip-
tion Language) simulator or go directly to the implementa-
tion on the FPGA. Both flows are not appropriate to con-
duct an efficient test, which requires among other issues
automation mechanisms. Although going to the implemen-
tation of the architecture on the FPGA permits a fast exe-
cution of the reconfigurable hardware structures, it re-
quires long design cycles due to the need to perform logic
synthesis and place and route. Furthermore, testing by im-
plementation imposes other difficulties, such as the ones
related to the following requirements: access to values on
certain connections, assertions, inclusion of probes and
stop mechanisms, automation needed to test the results for
all the set of test cases used during the test, etc.

Certain algorithms, such as the ones computing on
large data sizes (e.g., in image and video processing), may
require simulation of a large number of clock cycles and

therefore a fast simulation engine is needed. Previous
work has shown that RTL (Register Transfer Language)
simulation based on software languages can be faster than
commercial HDL simulators [2][3].

Implementations with several configurations need an
appropriate scheme to simulate the flow of configurations
and the communication between them. Since HDLs have
not been developed for programming dynamically recon-
figurable hardware devices, they do not directly support
those features. Trying to solve these issues, tools for simu-
lation of partial runtime reconfigurable hardware have al-
ready been presented (e.g., [4]).

Previous work on research and developing a compiler
for FPGA-based reconfigurable platforms [5] has revealed
difficulties to test designs output by the compiler, each
time modifications were carried-on. Those modifications
may include code restructuring or addition of new optimi-
zation techniques. Checking the overall test suite required
long time efforts.

Furthermore, coupling the reconfigurable hardware
component to a microprocessor model might be required
and therefore hardware/software co-simulation features are
also important. The use of the same language for modeling
both components permits to mix both software and recon-
figurable hardware components without specialized co-
simulation environments [3].

Aiming at addressing these issues, we developed an in-
frastructure suitable to verify, by functional simulation, re-
search efforts on compilation techniques at high-
abstraction levels. It extensively uses XML (eXtensible
Markup Language) [6], XSL (eXtensible Stylesheet Lan-
guage), and Java technologies. The infrastructure is cur-
rently being used in Galadriel and Nenya [5], a framework
to compile Java algorithms to FPGA-based platforms.

2. Infrastructure
The test infrastructure (see Figure 1) uses Hades [7] as

simulation engine. Hades is a publicly available, event-
based simulator developed in Java. Since it supports be-
havioral Java descriptions, we are able to take profit of all
the Java features.

The Galadriel and Nenya compiler [5] has been modi-
fied to output the specification of the datapaths, control
units, and the Reconfiguration Transition Graph (RTG),

* This work is partially supported by the Portuguese Foundation for Sci-
ence and Technology (FCT) - FEDER and POSI programs - under the
CHIADO project.
** The authors are also affiliated with INESC-ID, Lisbon, Portugal.

1530-1591/05 $20.00 © 2005 IEEE

using XML dialects. Note that the RTG is used when the
compiler maps the input algorithm onto multiple configu-
rations (temporal partitions) [5]. Those XML files are then
translated to the required language by XSLT (XSL Trans-
formation) engines. This permits users to define their own
XSL translation rules to output representations using the
chosen language (e.g., Verilog, VHDL, SystemC, etc.).

As far as the test infrastructure is concerned, the XML
representations of the datapaths are translated to the Hades
input format, the XML representations of the behavioral
descriptions of the FSMs to Java code representing their
behavior, and the RTG to Java code that controls the exe-
cution of the simulation through the set of temporal parti-
tions. XML representations can also be translated to graph
descriptions to be visualized with Graphviz [8].

Memory contents and I/O data are stored in files. Those
files are used when executing the Java input algorithm. A
specific Java class with methods to interface to those files
is provided. After simulation, a simple comparison of data
content is performed to verify results.

datapath.xmldatapath.xml fsm.xmlfsm.xml rtg.xmlrtg.xml

datapath.dot datapath.hds fsm.dot fsm.java rtg.javartg.dotGraphVizGraphViz

to dotty to hds to dotty to java to dotty to java

fsm.class rtg.classHADESLibrary of
Operators

(JAVA)

I/O data
(RAMs and Stimulus)

ANT build

XSLTs

Figure 1. Diagram of the test infrastructure.

3. Experimental results and discussion
Table I shows results with a fast algorithm for the Dis-

crete Cosine Transform (FDCT) and with a Hamming de-
coder. The simulations have been performed in a Pentium
4, at 2.8 GHz, under Windows XP, and with 512 MB of
RAM. For each algorithm, the number of lines of the
source code (loJava) and of the XML and Java descrip-
tions is shown. The column “operators” shows the number
of functional units used for each datapath.

The FDCT performs 8×8 DCT blocks over an input im-
age. We show results for two implementations of the algo-
rithm. The first one, FDCT1, with only one configuration
(i.e., the algorithm is implemented in a single datapath and
control unit) and the second one, FDCT2, with two con-

figurations. In the later case, the implementation uses two
separate designs that respect the functionality of the origi-
nal application by executing the two configurations in se-
quence. Both implementations use three SRAMs to store
input, output, and intermediate images.

The simulation time results for the FDCTs are related
to the computation with an input image of 4,096 pixels (64
DCT blocks). With images of 65,536 and 345,600 pixels,
FDCT1 is simulated in 1 and 6.5 minutes, respectively.

Table I. Results using the test infrastructure.

Example loJava loXML
FSM

loXML
datapath

loJava
FSM

Operators Simulation
time (s)

FDCT1 138 512 1,708 1,175 169 6.9
FDCT2 138 258

256
860
891

667
606

90
90

2.9
2.9

Hamming 45 38 322 134 37 1.5

The results show that the test environment is fast
enough to our purposes. It can be used to verify, at high
abstraction levels, compiler results over a complete test
suite in feasible time. The infrastructure does not require
commercial tools to accomplish its goals, which has been
one of our pragmatic requirements. Also note that with
Hades, Java GUI features can be easily included, e.g., to
graphically show input/output data when dealing with im-
age processing algorithms.

Further work will focus on functional simulation of a
microprocessor tightly coupled to reconfigurable hardware
components.

4. References
[1] B. So, M. Hall, and P. Diniz, “A Compiler Approach to Fast De-

sign Space Exploration in FPGA-based Systems,” In Proc. of
ACM Conference on Programming Language Design and Im-
plementation (PLDI'02), ACM Press, New York, June, 2002.

[2] T. Kuhn, W. Rosenstiel, and U. Kebschull, “Object Oriented
Hardware Modeling and Simulation Based on Java,” in Proc. of
Int’l Workshop on IP Based Synthesis and System Design,
Grenoble, France, 1998.

[3] L. Séméria, et al., “RTL C-Based Methodology for Designing
and Verifying a Multi-Threaded Processor,” in Proc. of Design
Automation Conference (DAC’02), June 2002, New Orleans,
USA.

[4] I. Robertson, and J. Irvine, “A Design Flow for Partially Recon-
figurable Hardware,” in ACM Transactions on Embedded Com-
puting Systems, Vol. 3, No. 2, May 2004, pp. 257–283.

[5] J. M. P. Cardoso, and H. C. Neto, “Compilation for FPGA-Based
Reconfigurable Hardware,” in IEEE Design & Test of Com-
puters Magazine, March/April, 2003, vol. 20, no. 2, pp. 65-75.

[6] W3C: Extensible markup language (XML),
http://www.w3.org/XML/.

[7] N. Hendrich, “A Java-based Framework for Simulation and
Teaching,” in Proc. of 3rd European Workshop on Microelec-
tronics Education (EWME’00), Aix en Provence, France, May
2000, Kluwer Academic Publishers, pp. 285-288.

[8] Graphviz - open source graph drawing software, ATT Inc.,
http://www.research.att.com/sw/tools/graphviz/.

http://www.research.att.com/sw/tools/graphviz/

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

