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Abstract

This paper presents a System-on-a-Chip (SoC) archi-
tecture for Elliptic Curve Cryptosystems (ECC) which tar-
gets reconfigurable hardware. A four-level partitioning
scheme is described for exploring the area and speed trade-
offs. A design generator is used to generate parameteris-
able building blocks for the configurable SoC architecture.
A secure web server, which runs on a reconfigurable soft-
processor and an embedded hard-processor, shows over
2000 times speedup when the computationally-intensive op-
erations run on the customised building blocks. The embed-
ded on-chip timer block gives accurate performance infor-
mation. The design factors of configurable SoC architec-
tures are also discussed and evaluated.

1 Introduction
Field Programmable Gate Arrays (FPGAs) enable a high

degree of parallelism and can achieve orders of magnitude
speedup over general purpose processors [5]. Many appli-
cations such as signal, image, video, networking and se-
curity have been successfully mapped into reconfigurable
hardware, for exploring the on-chip parallelism and achiev-
ing design flexibility. As the design moves to system-
level integration, the control logic and the computationally-
intensive logic are usually separated. Configurable System-
on-Chip (CSoC) devices [3, 11], which are a combination
of embedded microprocessors, memory and embedded pro-
grammable logic, have attracted academic research and also
resulted in industrial products such as Triscend A7, Xilinx
VirtexII Pro and Altera Excalibur. Each of them has one
or more embedded microprocessors using different instruc-
tion set architectures at different clock speeds, and large
programmable logic resources. Previous work mainly fo-
cuses on the speedup from using pure FPGAs over proces-
sors, and analyses the mapping from different application
domains to different configurable resources [14].

In this paper, we aim to explore the huge design spaces
provided by CSoC devices, to describe the limiting factors
in designing CSoC applications and to predict the dominat-

ing factors as the technology grows. It is clear that in this
design space, the two extreme cases are the pure software
implementation running on a generic processor which has
no additional area overhead, and the hardware implementa-
tion purely running on configurable logic which gives the
best performance but uses the largest area. As shown in
Figure 1, the software program can be run on a PC or an
embedded processor, or the design could be fully mapped
into hardware. On the other hand, there are several design
parameters such as the processor speed, the reconfigurable
logic speed, the memory speed and the CoreConnect [13]
bus speed connecting the processor and user logic. We
define Intellectual Property (IP) block as a building block
which contains customisable user logic. In this paper, we
address the following two questions:

1 How much application logic should we put into the re-
configurable fabric?

2 What are the limiting factors on the performance for a
CSoC design; in particular, which factor dominates?

Running on
Pentium class

PC
2.6GHz

Running on
embedded uP

300MHz

Speed of logic

Speed of memory
bus

Speed of
CoreConnect bus

Speed of processor

High speed
ASIC

Software HardwareConfigurable SoC

Reconfigurable
FPGA

Figure 1: The limiting factors for Configurable SoC.

Elliptic curve cryptography (ECC) is a public key cryp-
tography system superior to the well-known RSA cryptog-
raphy: for the same key size, it gives a higher security level
than RSA [5]. ECC has been adopted in a wide variety of
applications from digital certificates in webserver authenti-
cation [6] to embedded processors in wearable devices. A
major trend of research work is hardware acceleration, and
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some recent work addresses system integration [6, 7] using
the PCI interface and proprietary interconnect. In this paper
we propose an SoC approach and evaluate the effect of par-
titioning in a single chip. Our main contributions include:

• A building block containing a field multiplier where
degree of parallelism can be varied (Section 3).

• Customisable IP blocks for four-level partitioning of
ECC operations (Section 3).

• An SoC architecture and design generator for ECC IPs
incorporating embedded processors (Section 4).

• Performance evaluations of individual IP blocks and
the configurable SoC chip (Section 5).

The rest of the paper is organized as follows. Section 2
describes related work on ECC. Section 3 presents the ar-
chitectures of the relevant customisable IP blocks. Section 4
describes the design generator of our approach, and the sys-
tem integration between IP blocks and embedded micro-
processors. Section 5 evaluates our results and compares
the software and hardware designs. Section 6 describes a
framework of a secure web server system running on the
CSoC chip. Finally, Section 7 summarises our current and
future research.

2 Background and Related Work

The difficulty of the underlying Elliptic Curve Discrete
Logarithm Problem (ECDLP) makes ECC cryptosystems
suitable for applications that need long-term security and
low bandwidth measurements. For instance, the NIST
has recommended specific curves for implementations [12]
and the IEEE has provided detailed specifications for the
choices of private key length and fields [5].

ECC research can be first divided into two groups de-
pending on the underlying field representation: prime field,
GF (p) and binary field, GF (2m). Two bases, Optimal
Normal Basis (ONB) and Polynomial Basis (PB), are com-
monly used for manipulating binary fields. It is known that
the binary field is more suitable for hardware implementa-
tion, and squaring is very fast using ONB. However, point
multiplication requires efficient design for field multiplica-
tion, inversion, squaring and efficient coordinate systems.
In recent years, there has been much software [1] and hard-
ware [2] research work on both GF (p) and GF (2m) fo-
cusing on the performance of point multiplication, and it is
obvious that a fast point multiplication design is crucial.

Previous hardware work includes: the first ASIC design
with a Motorola M68008 microcontroller which calculates
9 point multiplication per second, an ECC design on a 8051
microprocessor in smart cards, and recent FPGA implemen-
tations for ECC designs [9]. System level work has also
been reported such as a secure web server [6] and a recon-
figurable computer [7]. In this paper, we build a flexible

CSoC using configurable logic and embedded processors,
and apply it to applications such as a secure web server sys-
tem.

3 Design Partitioning

This section describes the operations in our ECC archi-
tecture using GF (2m) with ONB. Section 3, 4, 5 use a
bottom-up approach, we first break down the ECC opera-
tions and put them into IP blocks in Section 3, then describe
the design flow and how we construct the hardware architec-
ture in Section 4. An overview of the interactions amongst
ECC routines is shown in Figure 2. Our architecture sup-
ports point multiplication, addition and substraction, in this
paper we focus on the design partitioning of point multi-
plication. The arrows in the figure show the dependencies
amongst different operations.

ECC protocols

Point multiplication

ECC operations

Point operations Point addition

Auxiliary operation

Field operations

Data
embedding

Field multiplication Field inversion Field squaring

Figure 2: Interactions between different operations.

3.1 Level 1 - Pure Software

In this paper, we adopt the open source software from
Rosing [10]. The basic routines such as the field and point
multiplications are implemented in C and compiled for both
Pentium PC and embedded processors. Table 1 shows the
number of field multiplications and field inversions for one
point multiplication. By using this information, we can
evaluate the effect of replacing the software routine by con-
figurable logic.

field size m 53 113 131 233 270

no. of multiplications 612 1530 1760 3732 4758
no. of inversions 68 153 176 311 366

Table 1: Statistics of field multiplication and field inversion
for different field size m.

3.2 Level 2 - Field Multiplication

In our ECC cryptosystem, the field multiplier as shown
in Figure 3 is based on our previous work [8]. This field
multiplier is repeatedly used by other operations as shown
in Figure 2. The datapath of our system for various op-
erations is shown in Figure 4. For the pure hardware ar-
chitecture, users are able to select the second level paral-
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lelism in terms of the number of executable field multipli-
ers up to a maximum four parallel field multipliers. Differ-
ent scheduling optimizations have been applied to the cor-
responding designs. Using more than four field multipli-
ers does not bring further speed improvement but induces
an area penalty. There is a tradeoff between efficiency and
area, and the designer must select the best design.
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Figure 3: Parallel field multiplier IP block.

Since field multiplication is the most computationally-
intensive operation, we separate and build it as a single IP
block using the design flow as shown in Figure 5. The in-
puts to this block are two m-bit values, and another m-bit
data are generated at the end of the computation.
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Figure 4: Datapath of the customisable ECC system.

3.3 Level 3 - Field Inversion
In level 3, we develop an IP solely for computing field in-

version. The algorithm we used for field inversion is based
on the Fermat’s theorem which states that in a normal basis:

a−1 = a2m

−2 = (a(2m−1
−1))

2

The pseudo-code for this field inversion can be found in
our previous work [8]. The basic idea is to find an inverse
m-bit field element by inputting an arbitrary m-bit field el-
ement. In this field inversion block, the field multiplication
circuit described in level 2 is reused and is placed as a com-
ponent inside this block.

3.4 Level 4 - Point Multiplication

Point multiplication is the key operation in ECC and it is
the most time-consuming process. We adopt the improved
Montgomery Scalar multiplication [4] in our design. In our
embedded logic core, users are able to preload some of the
system options such as the base point and the curve infor-
mation. This could save time as the basic point multiplica-
tion “Q = k×P ” where P = P (x, y) that has two compo-
nents. The bus width of our prototyping platform is 32-bit,
as a result, the k and P values are tokenized and then sent
between the embedded logic and the embedded processor.

4 Design Generator

In this section, we describe a design generator that pro-
duces high-level Handel-C code for arbitrary field size and
degree of parallelism. The generated Handel-C is then
translated into VHDL; we use a developed wrapper to con-
nect this user logic with the interface connect core. As
shown in Figure 5, the customised IP block is thus con-
nected to the bus with its own address space such that the
embedded processor can directly send data to it.

ECC design
generator

Handel-C code

DK3 synthesisVHDL code

EDK

PowerPC
embedded

microprocessor

MicroBlaze
softprocessor

IP interface
(VHDL code)

Custom IP block

Figure 5: Diagram of the design flow.

The system overview that makes use of embedded pro-
cessors and configurable logic IP blocks which are gener-
ated in the design flow. As shown in Figure 6, the On-Chip
Peripheral Bus (OPB) provides a fast link between logic
cores such as the configurable user IP block and the on-chip
timer. The PowerPC processor is first connected to the high-
speed Processor Logic Bus (PLB) and then uses a bridge to
connect to the OPB peripherals.

5 Performance Evaluation
The results are divided into two parts. (1) Evaluation

of a standalone ECC IP block using the Celoxica RC2000
board containing an XC2V6000 FPGA chip. This compares
the speed of point multiplication using different hardware
and software. (2) Evaluation of the CSoC design using the
Xilinx ML310 board containing an XC2VP30 FPGA chip.
This compares the speed of implementing different IPs us-
ing configurable logic. The reported timing information and
area usage are collected from the Xilinx place-and-route
tools and the OPB on-chip hardware timer.
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Figure 6: Architectural components in a single chip.

5.1 Individual IP Block

We compare the performance of various software and
hardware implementations for point multiplication, which
is the bottleneck for ECC systems. We have implemented
the software design [10] on a dual-processor Intel Xeon
2.66GHz with 4GB of RAM. The comparison for serial and
parallel designs on different m and p values, where p refers
to the degree of parallelisation, is presented in Table 2. Note
that Place-and-Route (P&R) results refer to those obtained
from the Celoxica DK3 and Xilinx ISE 6.2 tools, and mea-
sured results refer to those from hardware realisation. We
have also verified each design using 300,000 consecutive
point multiplications using data sent and received from the
PC. The “Speedup” column shows the performance gain
of our design over other methods. This gain is due to our
highly parallel architecture which does not involve instruc-
tion fetch and decode.
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Figure 7: Area usage for various p and m values.

As shown in Figure 7, the area requirements for various
designs such as m = 113, 162 using 1, 2 and 4 field multi-
pliers (1FM, 2FM and 4FM) show a linear growth when the

degree of parallelism p increases. The speed for performing
one point multiplication is shown in Figure 8 with respect
to four different cases: m is not divisible by p using 1FM,
m is divisible by p using 1FM, 2FM and 4FM. The ECC IP
block designed in this paper is highly customisable and can
cope with different area and speed tradeoffs.
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Figure 8: Speed comparison for various p and m values.

5.2 CSoC Design
Figure 9 shows the speed of field multiplication and field

inversion for different m values using the embedded Pow-
erPC. We can see that the time spent on one inversion grows
faster than that on field multiplication. We also measure the
time for transferring one data item and for transferring 1000
consecutive data items using the CoreConnect bus. From
Table 3, the overhead of consecutive transfers is smaller.
The measured speed by using configurable logic for differ-
ent levels are given in Table 4, 5 and 6. Note that the cycle
count starts once the processor enables the operation and
ends when a “done” signal is received from the configurable
logic. The software running on the embedded processor is
responsible for controlling data transfer.
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Parallelism P&R results Measured results Software [10] Hardware (serial) [9]
p clock time(ms) clock time(ms) clock time(ms) speedup clock time(ms) speedup

m = 113
2 42MHz 0.36 56MHz 0.27 2.6GHz 15.99 59.22 31MHz 4.3 15.93
8 42MHz 0.13 56MHz 0.09 2.6GHz 15.99 177.67 31MHz 4.3 47.78

16 42MHz 0.08 56MHz 0.06 2.6GHz 15.99 266.50 31MHz 4.3 71.67
32 42MHz 0.07 56MHz 0.04 2.6GHz 15.99 399.75 31MHz 4.3 107.5
56 42MHz 0.05 56MHz 0.04 2.6GHz 15.99 399.75 31MHz 4.3 107.5

m = 162
2 40MHz 0.83 54MHz 0.55 2.6GHz 45.67 83.04 29MHz* 9.39* 17.07
8 40MHz 0.27 54MHz 0.17 2.6GHz 45.67 268.65 29MHz* 9.39* 55.24

16 40MHz 0.18 54MHz 0.11 2.6GHz 45.67 415.18 29MHz* 9.39* 85.36
32 40MHz 0.13 54MHz 0.07 2.6GHz 45.67 652.43 29MHz* 9.39* 134.14
56 40MHz 0.10 54MHz 0.06 2.6GHz 45.67 761.17 29MHz* 9.39* 156.5

m = 270
2 24MHz 3.28 35MHz 2.24 2.6GHz 196.71 87.82 26MHz* 27.99* 12.50
8 24MHz 0.92 35MHz 0.63 2.6GHz 196.71 312.24 26MHz* 27.99* 44.43

16 24MHz 0.53 35MHz 0.36 2.6GHz 196.71 546.42 26MHz* 27.99* 77.75
32 24MHz 0.35 35MHz 0.24 2.6GHz 196.71 819.63 26MHz* 27.99* 116.63
56 24MHz 0.25 35MHz 0.17 2.6GHz 196.71 1157.12 26MHz* 27.99* 164.65

Table 2: Comparison between our design and the reference designs [9, 10]. The symbol (*) denotes extrapolated results
based on published data for different m values.

In Table 5, the required I/O cycles mean that in order to
replace the software routine by programmable logic, four
read cycles and four write cycles are needed. We can see
that if the operation performed in logic is very fast and the
I/O transfer cycles will dominate this overhead. In Table 4,
there is actually no performance gain when the degree of
parallelism is equal to or larger than four. On the other hand,
there is no I/O overhead for the result using embedded mi-
croprocessor. In Table 4, we use the on-chip timer to mea-
sure the number of cycles taken to perform one field multi-
plication for both embedded processor and the IP block.

Single read Singe write Mult. read Mult. write
Cycle 100 102 65 58

Table 3: Read/Write cycles using the CoreConnect bus,
sharing reduced cycles for multiple Read/Write.

parallelism 1 2 4 8 16

cycle count 297 239 181 181 181
speed (us) 3.15 2.62 1.99 1.92 2.18

area (slices) 2063 2199 2487 2691 3494
embedded PowerPC 117591 cycles

Table 4: Level 2: Comparison of one field multiplication
when m = 113 (I/O cycles: 8W+4R).

parallelism 1 2 4 8 16

cycle count 1109 703 471 355 297
speed (us) 13.70 8.78 4.99 3.94 3.87

area (slices) 2708 2966 3251 3528 4299
embedded PowerPC 972098 cycles

Table 5: Level 3: Comparison of one field inversion when
m = 113 (I/O cycles: 4W+4R).
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parallelism 1 2 16

m = 53

cycle count 19411 16555 3603
speed (us) 206.04 175.63 47.09

area (slices) 3712 3869 4529
embedded PowerPC 19591629 cycles

m = 113

cycle count 79761 42767 9875
speed (us) 1021.82 570.73 123.01

area (slices) 6001 6344 7677
embedded PowerPC 166950475 cycles

Table 6: Level 4: Comparison of one point multiplication
when m = 53 (I/O cycles: 6W+4R) and m = 113 (I/O
cycles: 12W+8R) using one field multiplier.
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5.3 Technology Trend Discussion

The limiting factors of most CSoC systems are the speed
of configurable logic, speed of the bus or switch connect-
ing between the embedded processor and the configurable
logic, the speed of embedded processors and the memory
bandwidth. As shown in our results, the major bottleneck
of the CSoC designs is the bandwidth and the latency of
the bus connecting the embedded processors and the config-
urable logic. For instance, an elliptic point in the size 113
field needs to be divided into eight 32-bit words for data
transmission. As shown in Table 3, each single R/W opera-
tion takes 100 cycles of embedded on-chip timer that is very
expensive in high performance applications. We expect that
using a wider bus-width in CSoC is the major trend.

Our results show that the clock speed of all synthe-
sized designs is around 70-90MHz which is slower than the
embedded processors. The next generation reconfigurable
logic is able to achieve up to 500MHz and it will enlarge the
forementioned bottleneck. For the memory bus, many sys-
tems use the CoreConnect/AMBA bus for connecting the
embedded memory and the microprocessors. We expect
that a wide low-latency bus, which is tightly coupled the
processor, memory and configurable logic will be crucial.

6 Secure Web Server
A secure web server using our CSoC framework is de-

picted in Figure 10. In this system, a network logic core [13]
is added to the OPB bus for communicating between the
web server program running on the embedded processors
and the network. From Table 6, a speedup factor of 2000
is achieved when we replace the m = 113 point multiplica-
tion running on the embedded processor by the customised
level 4 IP block including the read/write bus overheads.

PC Xilinx ML310 PC

FPGA
MB/PPC

Web
Server

UART

Custom
IP block

Ethernet

Timer
Web

Clients

Stress
test

debug

x86

x86

UART

Figure 10: Secure web server overview.

We also illustrate that our CSoC chip can benefit an-
other secure web service. Previous work [6] describes an
ECC hardware system that accelerates the Secure Socket
Layer (SSL) in a client/server system. The ECC keys are
embedded into the generated X.509 certifcates. Their im-
plementation involves an FPGA on a PCI bus at 66.4MHz,
and achieves 12.5 times speedup for the Elliptic Curve Key
exchange when comparing with pure software implementa-
tion. Since the point multiplication in our design is twice as
fast, our design could achieve up to 25 times speedup.

7 Conclusions

This paper presents a configurable SoC architecture for
Elliptic Curve Cryptosystem and an embedded secure web
system using reconfigurable hardware. A four-level parti-
tioning scheme is proposed for exploring the area and speed
tradeoff of pure software implementation on embedded pro-
cessor and the customisable building blocks approach. Our
experience shows that performance in CSoC designs is dic-
tated mainly by data transfer speed, hence it is desirable to
have a wide bus-width and a wide memory bus with low
latency for most embedded system designs. Future work
includes CSoC designs for other application domains and
the use of run-time reconfiguration.
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