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Abstract 
Field programmable gate arrays (FPGAs) provide designers with 
the ability to quickly create hardware circuits. Increases in FPGA 
configurable logic capacity and decreasing FPGA costs have 
enabled designers to more readily incorporate FPGAs in their 
designs. FPGA vendors have begun providing configurable soft 
processor cores that can be synthesized onto their FPGA 
products. While FPGAs with soft processor cores provide 
designers with increased flexibility, such processors typically 
have degraded performance and energy consumption compared to 
hard-core processors. Previously, we proposed warp processing, 
a technique capable of optimizing a software application by 
dynamically and transparently re-implementing critical software 
kernels as custom circuits in on-chip configurable logic. In this 
paper, we study the potential of a MicroBlaze soft-core based 
warp processing system to eliminate the performance and energy 
overhead of a soft-core processor compared to a hard-core 
processor. We demonstrate that the soft-core based warp 
processor achieves average speedups of 5.8 and energy 
reductions of 57% compared to the soft core alone. Our data 
shows that a soft-core based warp processor yields performance 
and energy consumption competitive with existing hard-core 
processors, thus expanding the usefulness of soft processor cores 
on FPGAs to a broader range of applications. 
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1. Introduction 
Field programmable gate arrays (FPGAs) provide great flexibility 
to hardware designers. While past designers primarily used 
FPGAs for prototyping and debugging purposes, many 
commercial end-products now incorporate FPGAs. Designers 
using FPGAs can quickly build entire systems or hardware 
components while still leveraging the prototyping and debugging 
advantages that FPGAs have over ASIC (application-specific 
integrated circuit) designs. Continuing increases in FPGA 
capacity, performance, and architectural features are enabling 
more designs to be implemented using FPGAs. Additionally, 
FPGAs costs are decreasing, allowing designers to incorporate 
FPGAs with one million equivalent gates for less than $12 [27]. 

While designers can use FPGAs to quickly create efficient 
hardware designs, many systems require a combination of both 
software and hardware. In the late 1990s, FPGA vendors began 
introducing single-chip microprocessor/FPGA devices. Such 
devices include one or more hard-core (implemented directly 

using IC transistors/gates) microprocessors and an FPGA fabric 
on a single IC, and provide efficient mechanisms for 
communication between the microprocessor and FPGA. Atmel [2] 
and Triscend [23] were the first to make these devices available, 
both incorporating low-end microprocessors and FPGAs 
supporting tens of thousands of gates. More recently, Altera 
developed the Excalibur devices having an ARM9 processor and 
a one million gate FPGA [1]. Xilinx offers the VirtexII Pro 
devices incorporating two or more PowerPC processors and an 
FPGA fabric with tens of millions of gates [26].  

While single-chip hard-core microprocessor/FPGA platforms 
offer excellent packaging and communication advantages, a soft-
core approach offers the advantage of flexibility and lower part 
costs. Many FPGA vendors are now offering such soft processor 
cores that designers can implement using a standard FPGA. Altera 
offers both the NIOS and more recently the NIOS II soft 
processor cores [1]. The NIOS II processor is a 32-bit 
configurable processor supporting clock frequencies as high as 
135 MHz. Xilinx offers the PicoBlaze and MicroBlaze soft 
processor cores [26]. The MicroBlaze processor is 32-bit 
configurable processor core capable of supporting clock 
frequencies as high 150 MHz. These soft processor cores offer 
designers tremendous flexibility during the design process, 
allowing the designers to configure the processor to meets the 
needs of their systems (e.g., adding custom instructions or 
including/excluding particular datapath coprocessors) and to 
quickly integrate the processor within any FPGA. Unlike single-
chip microprocessor/FPGA systems using hard-core processors, 
soft processor cores allow designers to incorporate varying 
numbers of processors within a single FPGA design depending on 
an application’s needs. While some embedded system designs 
may require a few processors, other designs can include 64 
processors [11] or more. Furthermore, as reported in [11], 
customers of Tensilica [22], who provide customizable soft 
processor core solutions, are creating chip designs that 
incorporate over five processors on average.  

Unfortunately, soft processor cores implemented using 
FPGAs typically have higher power consumption and decreased 
performance compared with hard-core processors. To alleviate the 
performance and power overhead, a designer can potentially use 
hardware/software partitioning to increase software performance 
while decreasing energy. Hardware/software partitioning is the 
process of dividing an application among software (running on a 
microprocessor) and hardware co-processors. By identifying the 
critical kernels within the software application, one can re-
implement those software kernels as a hardware coprocessor on 
the FPGA. Extensive research has shown that hardware/software 
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partitioning can result in overall software speedups of 200%-
1000% [3][7][8][9][14][24], as well as reducing system energy by 
up to 99% [12][13][20][25]. 

However, hardware/software partitioning requires a special 
compiler that profiles, estimates hardware size, and generates an 
application binary that communicates with a hardware description 
that implements the software kernels. Thus, partitioning imposes a 
significant increase in tool complexity, and results in non-
standard output having greatly reduced portability compared to a 
standard binary. Recently, we showed [21] that designers could 
perform desktop hardware/software partitioning starting from 
binaries rather than from high-level code, with competitive 
resulting performance and energy. Binary-level partitioning 
approaches can produce excellent results by using decompilation 
techniques to retrieve most of the high-level information typically 
lost at the binary level [5].  

Binary-level partitioning opens the door to dynamic 
hardware/software partitioning, in which an executing binary is 
dynamically optimized by moving software kernels to 
configurable logic, a process we call warp processing 
[15][16][19]. However, warp processors previously only targeted 
single-chip multiprocessor/FPGA devices incorporating a hard-
core processor. Extensive details of warp processing are beyond 
the scope of this paper and appear in other publications. Our 
purpose in this paper is to study whether warp processing methods 
could potentially make a soft processor core competitive with a 
hard-core processor with respect to performance and energy. 
Because warp processing occurs dynamically and transparently, 
soft-core warp processing could open the door to a much wider 
use of FPGA soft-cores.  

In this paper, we investigate the benefits of warp processing 
for soft processor cores. We present a warp processing system 
consisting of a soft processor core that a designer can implement 
using any FPGA. While we could potentially target any soft 
processor core, we focus our efforts on the MicroBlaze processor. 
By utilizing a warp processor based on a soft processor core, a 
designer can quickly implement a software system using a low 
cost FPGA, potentially incorporating several processors, with 
increased performance and lower energy consumption compared 
with the soft processor core alone, and comparable with hard-core 
processors.  

2. MicroBlaze Soft Processor Core 
The MicroBlaze soft processor core provided by Xilinx is a 32-bit 
configurable processor core. A designer can create a system 
incorporating a MicroBlaze using the Xilinx Platform Studio in 
which a designer can quickly build a MicroBlaze processor 
system by instantiating and configuring cores from the provided 
libraries. Figure 1 presents a simple MicroBlaze system 
incorporating the MicroBlaze processor along with several 
components to create a complete system. The MicroBlaze 
processor utilizes a three-stage pipeline with variable length 
instruction latencies typically ranging from one to three cycles. 
The MicroBlaze has a Harvard memory architecture and utilizes 
two Local Memory Busses (LMB) for instruction and data 
memory. The system shown in Figure 1 includes two Block 
RAMs (BRAM), one for instruction memory and one for data 
memory, whose sizes are user defined. A local memory bus to 
BRAM interface connects the MicroBlaze with the instruction 
and data memories. The system also includes two peripherals 
connected via the On-Chip Peripheral Bus (OPB). After 

specifying the system architecture and configuring the 
MicroBlaze processor, the Xilinx Platform Studio tools synthesize 
the design and create a bitstream for the system as well a generate 
a set of software libraries that a design can use to interface with 
the various components in the system. Finally, a designer can 
compile their application and combine the application’s binary 
with the bitstream to produce the final system bitstream. 

Key features of the MicroBlaze processor, as well as other 
soft processor cores, include the user configurable options that 
allow a designer to tailor the processor’s functionality to their 
specific design. The MicroBlaze’s user-configurable options 
include configurable instruction and data caches, incorporating a 
hardware multiplier to enable the mul instruction, incorporating a 
hardware divider to enable the idiv instruction, and incorporating 
a barrel shifter to enable the bs and bsi instructions.  

Many of the MicroBlaze processor’s configurable options can 
have a significant impact on performance. While the impacts on 
performance of incorporating or excluding caches is well known 
and widely understood, the impact of other configurable options 
such as the inclusion of a hardware barrel shifter is also extremely 
important, especially in embedded systems in which bit 
manipulation is often used.  

We therefore analyzed two embedded system benchmark 
applications, brev and matmul, from the Powerstone benchmark 
suite (which we obtained from Motorola). The critical kernel of 
the benchmark brev performs an efficient bit reversal but heavily 
relies on shift operations. If the MicroBlaze processor is 
configured without the hardware barrel shifter or hardware 
multiplier, the resulting application binary will perform an n-bit 
shift by using n successive add operations each of which doubles 
the values of the variable being shifted. Compared with a 
MicroBlaze processor including a barrel shifter and multiplier, the 
absence of these configurable options results in a 2.1X longer 
execution time for the application brev. For the application 
matmul, the critical region is a matrix multiplication. Without a 
hardware multiplier, the compiler will use a software function to 
perform every multiplication, thereby increasing the execution 
time for matmul by 1.3X. However, with knowledge of the final 
software application, a designer can reduce the amount of 
configurable logic used within the FPGA if they do not require a 
hardware barrel shifter, multiplier, or divider. 

Another potential drawback of the MicroBlaze processor is 
the lack of floating point instructions, requiring software routines 
to perform these operations. However, as FPGAs continues to 
increase in complexity, soft processor cores will likely begin to 
incorporate more functionality possibly allowing designers to 
configure the processor with a hardware floating point unit.  

Figure 1: Simple MicroBlaze processor system. 
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The most significant drawbacks to using a soft core processor 
are the performance and energy overhead. Although the 
MicroBlaze processor has a three-stage pipeline, during the 
execute phase of the pipeline, instructions have different 
latencies. For example, an addition operation has a latency of only 
one cycle, whereas a multiply operation requires three cycles. 
Other instructions such as branch instructions have latencies 
anywhere from one cycle to three cycles depending on the 
instruction and whether or not the branch is taken. However, of 
the applications we analyzed, most branch instructions had a 
latency of two cycles, as the compiler often did not utilize the 
branch delay slot. While the performance overhead can 
significantly impact the overall energy consumption, FPGAs also 
consume more power than ASICs or custom designs. This 
increased power consumption and performance overhead results 
in a system that consumes more energy than a similar hard-core 
processor. 

3. MicroBlaze-based Warp Processor 
Figure 2 presents a single processor MicroBlaze-based warp 
processor. The warp processor consists of a main processor with 
instruction and data caches, an efficient on-chip profiler, a warp 
configurable logic architecture (WCLA), and a dynamic 
partitioning module (DPM). Initially, the software application 
executing on the warp processor will execute only on the 
MicroBlaze processor. During execution of the application, the 
profiler monitors the execution behavior to determine the critical 
kernels within the application. After identifying the critical 
regions, the dynamic partitioning module re-implements the 
critical software regions as a custom hardware component within 
the WCLA using our Riverside On-Chip Partitioning Tools 
(ROCPART). Extensive discussion of the ROCPART tools is 
beyond the scope of this paper and has been published in 
[15][16][19]. We highlight the key features in this section enough 
to better understand the experimental study that we performed. 

The MicroBlaze warp processor includes a profiler within the 
warp processor to determine the critical kernels within the 
executing application that the warp processor could implement as 
hardware. Based on the profiler presented in [10], the profiler 
incorporated in our warp processor design is a non-intrusive 
profiler that monitors the instruction addresses seen on the local 
instruction memory bus. Whenever a backward branch occurs, the 
profiler updates a small cache that stores the branch frequencies.  

The dynamic partitioning module executes the ROCPART 
partitioning and synthesis algorithms. ROCPART first analyzes 
the profiling results for the executing application and determines 

which critical region the warp processor should implement in 
hardware. After selecting the software region to implement in 
hardware, the DPM accesses the application’s software binary by 
interfacing with the dual ported instruction BRAM. The 
partitioning tool then decompiles the critical region into a control-
dataflow graph and synthesizes the graph to create the hardware 
circuit [19]. The hardware circuit is then optimized and mapped 
onto the WCLA by performing technology mapping, placement, 
and routing to produce the final hardware bitstream [16][17]. 
Finally, the DPM configures the configurable logic and updates 
the executing application’s binary code to utilize the hardware 
within the configurable logic fabric. 

Currently, we implement the dynamic partitioning module as 
another embedded MicroBlaze processor core including separate 
instruction and data memories, which can either be located on-
chip or off-chip depending on what is acceptable for a given warp 
processor implementation. Alternatively, one could eliminate the 
need for the DPM by executing the partitioning tools as a 
software task on the main processor sharing computation and 
memory resources with the main application.  

Figure 3 shows the overall organization of our warp 
configurable logic architecture. The WCLA consists of a data 
address generator (DADG) with loop control hardware (LCH), 
three input and output registers, a 32-bit multiplier-accumulator 
(MAC), and utilizes the unused configurable logic within the 
FPGA to implement the partitioned critical regions. The 
configurable logic architecture handles all memory accesses to 
and from the configurable logic using the data address generator. 
Furthermore, the data retrieved and stored to and from each array 
is located within one of the three registers Reg0, Reg1, and Reg2. 

Figure 2: MicroBlaze single-processor warp processing system. 

Figure 3: Warp configurable logic architecture (WCLA) for 
dynamic hardware/software partitioning. 

MicroBlaze lmb_cntrl 
Data 

BRAM 

profiler 

lmb_cntrl Instr. 
BRAM 

 
 
 

WCLA 

i_lmb 

d_lmb 

opb 

DPM 

BRAM 
Interface

DADG 
& 

LCH 

Existing FPGA 

To MicroBlaze/Data BRAM  

Reg1 Reg2Reg0

32-bit MAC 



These three registers also act as the inputs to the configurable 
logic fabric and can be mapped as inputs to the 32-bit (MAC) or 
directly mapped to the configurable logic fabric. Finally, the 
WCLA connect the outputs from the configurable logic fabric as 
inputs to the three registers using a dedicated bus. 

Since warp processing targets critical loops that typically 
iterate many times before completion, the WCLA must be able to 
access memory and to control the execution of the loop. 
Therefore, the WCLA includes a DADG with LCH to handle all 
memory accesses as well as to control the execution of the loop. 
The DADG within the WCLA can handle memory accesses that 
follow a regular access patterns. The DADG and LCH interface 
with the MicroBlaze system by accessing the dual ported data 
BRAM to read and write data during the hardware execution. The 
WCLA also communicates with the MicroBlaze processor using 
the on-chip peripheral bus.  

Ideally, our proposed MicroBlaze-based warp processor 
would utilize the FPGA’s unused configurable logic to re-
implement the application’s critical regions. However, developing 
computer aided design tools for existing FPGAs capable of 
executing on-chip using very limited memory resources is a 
difficult task [16][17]. Instead, our MicroBlaze warp processor 
utilized a simple configurable logic fabric for re-implementing the 
critical kernels in hardware that we developed simultaneously 
with a set of lean synthesis, technology mapping, placement, and 
routing algorithms [15]. By targeting a simplified configurable 
logic fabric, our ROCPART tools can execute on a small, 
embedded processor requiring very little memory and execution 
time while producing good results. Alternatively, we could create 
a virtual configurable logic fabric by superimposing our custom 
configurable logic fabric on top of the underlying physical FPGA 
fabric, which we are currently investigating. 

As mentioned earlier, one the benefits of using a soft 
processor core is the ability for designers to build systems with 
multiple processors using the same FPGA. The number of 
processors a designer can incorporate within any given FPGA is 
only limited by the size of the FPGA itself. However, in building 
a multi-processor warp processor device, simply instantiating 
multiple warp processors as shown in Figure 2 would results in a 
very large overhead as multiple DPMs and WCLAs are not 
needed to support a multi-processor system. Instead, a single 
DPM is sufficient for performing partitioning and synthesis for 
each of the processors in a round robin or similar fashion. 
Furthermore, one could again implement the partitioning tools as 
a software task executing on any of the multiple processors. 

Figure 4 presents a multi-processor MicroBlaze warp 
processor. For each individual MicroBlaze processor we include a 
profiler. While we could create a profiler capable of monitoring 
all processors simultaneous, the profiler is very small compared 
with the processor and should not have significant impact on area 
or energy consumption. The dynamic partitioning module in a 
multiprocessor system needs to be able to interface to all 
processors individually. Therefore, we include a simple BRAM 
Interface that allows the DPM to select which processor’s 
memory to access. Finally, we need to modify our original 
WCLA to include separate data address generators, loop control 
hardware, registers, and MAC for each of the processors. 
However, as the requirements for the applications executing on 
each of the processors are likely to differ, the critical regions 
implemented in hardware for the various processors can share the 
available configurable logic. 

4. Experiments 
In determining the performance and energy benefits of warp 
processing for the MicroBlaze soft processor core, we analyzed 
the execution time and power consumption of several embedded 
systems applications from the Powerstone and EEMBC 
benchmark suites. Our experimental setup considers a MicroBlaze 
processor system implemented using the Spartan3 FPGA. When 
implemented on a Spartan3 FPGA, the MicroBlaze processor core 
has a maximum clock frequency of 85 MHz. However, the 
remaining FPGA circuits can operate at up 250 MHz. We 
configured the processor to include a barrel shifter and multiplier, 
as the applications we considered required both operations.  

Figure 6 and Figure 7 present the speedup and energy 
reduction of the MicroBlaze-based warp processor compared with 
a standard MicroBlaze processor. We simulated the software 
application execution on the MicroBlaze using the Xilinx 
Microprocessor Debug Engine and obtained an instruction trace 
for each application. We used the instruction trace to simulate the 
behavior of the on-chip profiler to determine the single most 
critical region within each application. Using the profiling results, 

Figure 4: MicroBlaze multi-processor warp processing system. 

Figure 5: Equation for determining energy consumption 
after hardware/software partitioning. 
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we executed our ROCPART partitioning tools for each 
application to create the hardware circuit implementations 
targeting our simple configurable logic fabric. To determine the 
performance and power consumption of the WCLA, we 
implemented our configurable logic architecture in VHDL and 
synthesized the design using Synopsys Design Compiler targeting 
the UMC 0.18 µm technology library. Then, using the execution 
traces, we simulated the hardware circuits for each partitioned 
critical region using the VHDL model of the WCLA to determine 
the final application performance with warp processing. Finally, 
we calculated the energy consumption of each of the applications 
using the equations in Figure 5. With the exception of the 
configurable logic fabric, we determined the power consumption 
of the MicroBlaze processor and system components using the 
Xilinx XPower power estimation tool to determine the dynamic 
and static power consumption. We also compared the 
performance and energy consumption of the MicroBlaze 
processor and MicroBlaze warp processor to several ARM 
processors. For each application, we determined the execution for 
the ARM processors using the SimpleScalar simulator ported for 
the ARM processor [4]. 

Figure 6 presents the speedups of a MicroBlaze-based warp 
processor and several ARM hard-core processors compared with a 
MicroBlaze soft processor core. The MicroBlaze warp processor 
is able to improve the performance of a MicroBlaze system, 
achieving an average of speedup of 5.8. The largest speedup is for 
the application brev, achieving a speedup 16.9. As we described 
earlier, brev’s critical kernel is a bit reversal implemented using 
shift operations and other bit manipulations. However, after 
partitioning the kernel to hardware, the result hardware circuit is 
much more efficient, requiring only wires to implement the bit 
reversal. Excluding the application brev, which is a special 

situation in which a hardware implementation is much more 
efficient than software, the MicroBlaze warp processor achieves 
an average speedup of 3.6 over a MicroBlaze processor alone. We 
note that the MicroBlaze warp processor achieves these 
performance results using the simple configurable logic fabric and 
not the more robust native configurable logic of the Spartan3 
FPGA. Instead, if we could target the native Spartan3 fabric, we 
would expect to see additional performance improvements. 

Figure 7 presents the normalized energy consumption of the 
MicroBlaze-based warp processor and several ARM hard-core 
processors compared with a MicroBlaze soft processor core. 
While having the lowest clock frequency, the MicroBlaze 
processor has the highest energy consumption, requiring 48% 
more energy than the ARM11, which has the second highest 
overall energy consumption. However, the MicroBlaze warp 
processor is able reduce the energy consumption by an average of 
57%, with a maximum energy reduction of 94% for the 
application brev. Excluding brev, the MicroBlaze warp processor 
achieves an average energy reduction of 49%. 

While the MicroBlaze warp processor provides increased 
performance and lower energy consumption compared to the 
MicroBlaze processor, we also need to compare the MicroBlaze 
warp processor with readily available hard-core processors. 
Overall, the MicroBlaze warp processor has better performance 
than the ARM7, ARM9, and ARM10 processors and requires less 
energy than the ARM10 and ARM11 processors. The ARM11 
processor executing at 550 MHz is on average 2.6X faster than 
the MicroBlaze warp processor but requires 80% more energy. 
Furthermore, compared with the ARM10 executing at 325 MHz, 
the MicroBlaze warp processor is on average 1.3X faster while 
requiring 26% less energy. Therefore, while the MicroBlaze warp 
processor is not the fastest nor the lowest energy alternative, the 

Figure 6: Speedups of MicroBlaze-based warp processor and ARM7, ARM9, ARM10, and ARM11 (MHz in parentheses) processors 
compared to MicroBlaze processor alone for various Powerstone and EEMBC benchmark applications. 

 

Figure 7: Normalized energy consumption of MicroBlaze-based warp processor and ARM7, ARM9, ARM10, and ARM11 (MHz in 
parenthesis) processors compared to MicroBlaze processor alone for various Powerstone and EEMBC benchmark applications.  
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MicroBlaze warp processor is comparable and competitive with 
existing hard-core processors, while having all the flexibility 
advantages associated with soft-core processors.  

Of course, one could also consider applying warp processing 
to a single-chip hard-core microprocessor/FPGA device, and in 
fact that was the original focus our warp processing technique. 
What we have shown in this paper is that warp processing can 
make a soft-core FPGA processor competitive with a standalone 
hard-core processor, which simply expands the usefulness of soft-
cores on FPGAs to cover a broader range of applications with 
tighter performance and power constraints, providing a 
competitive alternative to a hard-core processor. 

5. Conclusions 
Soft-core processors provided by FPGA vendors give designers 
the flexibility to configure the processors and enable those 
designers to quickly build FPGA systems incorporating one or 
more processors. However, these soft processor cores, such as the 
MicroBlaze, typically require longer execution times with higher 
energy consumption compared with hard-core processors, limiting 
the number of potential applications in which a designer would 
choose to use a soft processor core. We studied a MicroBlaze-
based warp processor that dynamically and transparently 
optimizes the executing application by re-implementing critical 
software kernels in hardware using the configurable logic 
available within the FPGA. The MicroBlaze warp processor 
eliminates the performance and energy overhead by improving 
performance on average by 5.8X and reducing energy 
consumption on average by 57%, making them competitive with 
current hard-core processors. Designers using MicroBlaze warp 
processors can quickly build FPGA systems incorporating a 
MicroBlaze or similar soft processor core with performance and 
energy consumption comparable to standard hard-core processors 
such as an ARM processor. With warp processing, soft processors 
cores can be used in a wider range of application in which using a 
soft-core processor would not have been previously feasible due 
to performance and/or energy requirements. 

Our current future work includes creating physical 
implementations of warp processing, improving warp 
processing’s tools to provide speedups for a wider range of 
applications, and making use of advanced on-chip configurable 
structures for further improvements [18]. 
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