
A Study of the Speedups and Competitiveness of FPGA
Soft Processor Cores using Dynamic Hardware/Software

Partitioning
Roman Lysecky and Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside

{rlysecky, vahid}@cs.ucr.edu, http://www.cs.ucr.edu/{~rlysecky,~vahid}
*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
Field programmable gate arrays (FPGAs) provide designers with
the ability to quickly create hardware circuits. Increases in FPGA
configurable logic capacity and decreasing FPGA costs have
enabled designers to more readily incorporate FPGAs in their
designs. FPGA vendors have begun providing configurable soft
processor cores that can be synthesized onto their FPGA
products. While FPGAs with soft processor cores provide
designers with increased flexibility, such processors typically
have degraded performance and energy consumption compared to
hard-core processors. Previously, we proposed warp processing,
a technique capable of optimizing a software application by
dynamically and transparently re-implementing critical software
kernels as custom circuits in on-chip configurable logic. In this
paper, we study the potential of a MicroBlaze soft-core based
warp processing system to eliminate the performance and energy
overhead of a soft-core processor compared to a hard-core
processor. We demonstrate that the soft-core based warp
processor achieves average speedups of 5.8 and energy
reductions of 57% compared to the soft core alone. Our data
shows that a soft-core based warp processor yields performance
and energy consumption competitive with existing hard-core
processors, thus expanding the usefulness of soft processor cores
on FPGAs to a broader range of applications.

Keywords
Hardware/software partitioning, warp processing, FPGA, dynamic
optimization, soft cores, MicroBlaze.

1. Introduction
Field programmable gate arrays (FPGAs) provide great flexibility
to hardware designers. While past designers primarily used
FPGAs for prototyping and debugging purposes, many
commercial end-products now incorporate FPGAs. Designers
using FPGAs can quickly build entire systems or hardware
components while still leveraging the prototyping and debugging
advantages that FPGAs have over ASIC (application-specific
integrated circuit) designs. Continuing increases in FPGA
capacity, performance, and architectural features are enabling
more designs to be implemented using FPGAs. Additionally,
FPGAs costs are decreasing, allowing designers to incorporate
FPGAs with one million equivalent gates for less than $12 [27].

While designers can use FPGAs to quickly create efficient
hardware designs, many systems require a combination of both
software and hardware. In the late 1990s, FPGA vendors began
introducing single-chip microprocessor/FPGA devices. Such
devices include one or more hard-core (implemented directly

using IC transistors/gates) microprocessors and an FPGA fabric
on a single IC, and provide efficient mechanisms for
communication between the microprocessor and FPGA. Atmel [2]
and Triscend [23] were the first to make these devices available,
both incorporating low-end microprocessors and FPGAs
supporting tens of thousands of gates. More recently, Altera
developed the Excalibur devices having an ARM9 processor and
a one million gate FPGA [1]. Xilinx offers the VirtexII Pro
devices incorporating two or more PowerPC processors and an
FPGA fabric with tens of millions of gates [26].

While single-chip hard-core microprocessor/FPGA platforms
offer excellent packaging and communication advantages, a soft-
core approach offers the advantage of flexibility and lower part
costs. Many FPGA vendors are now offering such soft processor
cores that designers can implement using a standard FPGA. Altera
offers both the NIOS and more recently the NIOS II soft
processor cores [1]. The NIOS II processor is a 32-bit
configurable processor supporting clock frequencies as high as
135 MHz. Xilinx offers the PicoBlaze and MicroBlaze soft
processor cores [26]. The MicroBlaze processor is 32-bit
configurable processor core capable of supporting clock
frequencies as high 150 MHz. These soft processor cores offer
designers tremendous flexibility during the design process,
allowing the designers to configure the processor to meets the
needs of their systems (e.g., adding custom instructions or
including/excluding particular datapath coprocessors) and to
quickly integrate the processor within any FPGA. Unlike single-
chip microprocessor/FPGA systems using hard-core processors,
soft processor cores allow designers to incorporate varying
numbers of processors within a single FPGA design depending on
an application’s needs. While some embedded system designs
may require a few processors, other designs can include 64
processors [11] or more. Furthermore, as reported in [11],
customers of Tensilica [22], who provide customizable soft
processor core solutions, are creating chip designs that
incorporate over five processors on average.

Unfortunately, soft processor cores implemented using
FPGAs typically have higher power consumption and decreased
performance compared with hard-core processors. To alleviate the
performance and power overhead, a designer can potentially use
hardware/software partitioning to increase software performance
while decreasing energy. Hardware/software partitioning is the
process of dividing an application among software (running on a
microprocessor) and hardware co-processors. By identifying the
critical kernels within the software application, one can re-
implement those software kernels as a hardware coprocessor on
the FPGA. Extensive research has shown that hardware/software

1530-1591/05 $20.00 © 2005 IEEE

partitioning can result in overall software speedups of 200%-
1000% [3][7][8][9][14][24], as well as reducing system energy by
up to 99% [12][13][20][25].

However, hardware/software partitioning requires a special
compiler that profiles, estimates hardware size, and generates an
application binary that communicates with a hardware description
that implements the software kernels. Thus, partitioning imposes a
significant increase in tool complexity, and results in non-
standard output having greatly reduced portability compared to a
standard binary. Recently, we showed [21] that designers could
perform desktop hardware/software partitioning starting from
binaries rather than from high-level code, with competitive
resulting performance and energy. Binary-level partitioning
approaches can produce excellent results by using decompilation
techniques to retrieve most of the high-level information typically
lost at the binary level [5].

Binary-level partitioning opens the door to dynamic
hardware/software partitioning, in which an executing binary is
dynamically optimized by moving software kernels to
configurable logic, a process we call warp processing
[15][16][19]. However, warp processors previously only targeted
single-chip multiprocessor/FPGA devices incorporating a hard-
core processor. Extensive details of warp processing are beyond
the scope of this paper and appear in other publications. Our
purpose in this paper is to study whether warp processing methods
could potentially make a soft processor core competitive with a
hard-core processor with respect to performance and energy.
Because warp processing occurs dynamically and transparently,
soft-core warp processing could open the door to a much wider
use of FPGA soft-cores.

In this paper, we investigate the benefits of warp processing
for soft processor cores. We present a warp processing system
consisting of a soft processor core that a designer can implement
using any FPGA. While we could potentially target any soft
processor core, we focus our efforts on the MicroBlaze processor.
By utilizing a warp processor based on a soft processor core, a
designer can quickly implement a software system using a low
cost FPGA, potentially incorporating several processors, with
increased performance and lower energy consumption compared
with the soft processor core alone, and comparable with hard-core
processors.

2. MicroBlaze Soft Processor Core
The MicroBlaze soft processor core provided by Xilinx is a 32-bit
configurable processor core. A designer can create a system
incorporating a MicroBlaze using the Xilinx Platform Studio in
which a designer can quickly build a MicroBlaze processor
system by instantiating and configuring cores from the provided
libraries. Figure 1 presents a simple MicroBlaze system
incorporating the MicroBlaze processor along with several
components to create a complete system. The MicroBlaze
processor utilizes a three-stage pipeline with variable length
instruction latencies typically ranging from one to three cycles.
The MicroBlaze has a Harvard memory architecture and utilizes
two Local Memory Busses (LMB) for instruction and data
memory. The system shown in Figure 1 includes two Block
RAMs (BRAM), one for instruction memory and one for data
memory, whose sizes are user defined. A local memory bus to
BRAM interface connects the MicroBlaze with the instruction
and data memories. The system also includes two peripherals
connected via the On-Chip Peripheral Bus (OPB). After

specifying the system architecture and configuring the
MicroBlaze processor, the Xilinx Platform Studio tools synthesize
the design and create a bitstream for the system as well a generate
a set of software libraries that a design can use to interface with
the various components in the system. Finally, a designer can
compile their application and combine the application’s binary
with the bitstream to produce the final system bitstream.

Key features of the MicroBlaze processor, as well as other
soft processor cores, include the user configurable options that
allow a designer to tailor the processor’s functionality to their
specific design. The MicroBlaze’s user-configurable options
include configurable instruction and data caches, incorporating a
hardware multiplier to enable the mul instruction, incorporating a
hardware divider to enable the idiv instruction, and incorporating
a barrel shifter to enable the bs and bsi instructions.

Many of the MicroBlaze processor’s configurable options can
have a significant impact on performance. While the impacts on
performance of incorporating or excluding caches is well known
and widely understood, the impact of other configurable options
such as the inclusion of a hardware barrel shifter is also extremely
important, especially in embedded systems in which bit
manipulation is often used.

We therefore analyzed two embedded system benchmark
applications, brev and matmul, from the Powerstone benchmark
suite (which we obtained from Motorola). The critical kernel of
the benchmark brev performs an efficient bit reversal but heavily
relies on shift operations. If the MicroBlaze processor is
configured without the hardware barrel shifter or hardware
multiplier, the resulting application binary will perform an n-bit
shift by using n successive add operations each of which doubles
the values of the variable being shifted. Compared with a
MicroBlaze processor including a barrel shifter and multiplier, the
absence of these configurable options results in a 2.1X longer
execution time for the application brev. For the application
matmul, the critical region is a matrix multiplication. Without a
hardware multiplier, the compiler will use a software function to
perform every multiplication, thereby increasing the execution
time for matmul by 1.3X. However, with knowledge of the final
software application, a designer can reduce the amount of
configurable logic used within the FPGA if they do not require a
hardware barrel shifter, multiplier, or divider.

Another potential drawback of the MicroBlaze processor is
the lack of floating point instructions, requiring software routines
to perform these operations. However, as FPGAs continues to
increase in complexity, soft processor cores will likely begin to
incorporate more functionality possibly allowing designers to
configure the processor with a hardware floating point unit.

Figure 1: Simple MicroBlaze processor system.

MicroBlaze

Periph 1

lmb_cntrl
Data

BRAM

lmb_cntrl Instr.
BRAM

i_lmb

d_lmb

opb

Periph 2

The most significant drawbacks to using a soft core processor
are the performance and energy overhead. Although the
MicroBlaze processor has a three-stage pipeline, during the
execute phase of the pipeline, instructions have different
latencies. For example, an addition operation has a latency of only
one cycle, whereas a multiply operation requires three cycles.
Other instructions such as branch instructions have latencies
anywhere from one cycle to three cycles depending on the
instruction and whether or not the branch is taken. However, of
the applications we analyzed, most branch instructions had a
latency of two cycles, as the compiler often did not utilize the
branch delay slot. While the performance overhead can
significantly impact the overall energy consumption, FPGAs also
consume more power than ASICs or custom designs. This
increased power consumption and performance overhead results
in a system that consumes more energy than a similar hard-core
processor.

3. MicroBlaze-based Warp Processor
Figure 2 presents a single processor MicroBlaze-based warp
processor. The warp processor consists of a main processor with
instruction and data caches, an efficient on-chip profiler, a warp
configurable logic architecture (WCLA), and a dynamic
partitioning module (DPM). Initially, the software application
executing on the warp processor will execute only on the
MicroBlaze processor. During execution of the application, the
profiler monitors the execution behavior to determine the critical
kernels within the application. After identifying the critical
regions, the dynamic partitioning module re-implements the
critical software regions as a custom hardware component within
the WCLA using our Riverside On-Chip Partitioning Tools
(ROCPART). Extensive discussion of the ROCPART tools is
beyond the scope of this paper and has been published in
[15][16][19]. We highlight the key features in this section enough
to better understand the experimental study that we performed.

The MicroBlaze warp processor includes a profiler within the
warp processor to determine the critical kernels within the
executing application that the warp processor could implement as
hardware. Based on the profiler presented in [10], the profiler
incorporated in our warp processor design is a non-intrusive
profiler that monitors the instruction addresses seen on the local
instruction memory bus. Whenever a backward branch occurs, the
profiler updates a small cache that stores the branch frequencies.

The dynamic partitioning module executes the ROCPART
partitioning and synthesis algorithms. ROCPART first analyzes
the profiling results for the executing application and determines

which critical region the warp processor should implement in
hardware. After selecting the software region to implement in
hardware, the DPM accesses the application’s software binary by
interfacing with the dual ported instruction BRAM. The
partitioning tool then decompiles the critical region into a control-
dataflow graph and synthesizes the graph to create the hardware
circuit [19]. The hardware circuit is then optimized and mapped
onto the WCLA by performing technology mapping, placement,
and routing to produce the final hardware bitstream [16][17].
Finally, the DPM configures the configurable logic and updates
the executing application’s binary code to utilize the hardware
within the configurable logic fabric.

Currently, we implement the dynamic partitioning module as
another embedded MicroBlaze processor core including separate
instruction and data memories, which can either be located on-
chip or off-chip depending on what is acceptable for a given warp
processor implementation. Alternatively, one could eliminate the
need for the DPM by executing the partitioning tools as a
software task on the main processor sharing computation and
memory resources with the main application.

Figure 3 shows the overall organization of our warp
configurable logic architecture. The WCLA consists of a data
address generator (DADG) with loop control hardware (LCH),
three input and output registers, a 32-bit multiplier-accumulator
(MAC), and utilizes the unused configurable logic within the
FPGA to implement the partitioned critical regions. The
configurable logic architecture handles all memory accesses to
and from the configurable logic using the data address generator.
Furthermore, the data retrieved and stored to and from each array
is located within one of the three registers Reg0, Reg1, and Reg2.

Figure 2: MicroBlaze single-processor warp processing system.

Figure 3: Warp configurable logic architecture (WCLA) for
dynamic hardware/software partitioning.

MicroBlaze lmb_cntrl
Data

BRAM

profiler

lmb_cntrl Instr.
BRAM

WCLA

i_lmb

d_lmb

opb

DPM

BRAM
Interface

DADG
&

LCH

Existing FPGA

To MicroBlaze/Data BRAM

Reg1 Reg2Reg0

32-bit MAC

These three registers also act as the inputs to the configurable
logic fabric and can be mapped as inputs to the 32-bit (MAC) or
directly mapped to the configurable logic fabric. Finally, the
WCLA connect the outputs from the configurable logic fabric as
inputs to the three registers using a dedicated bus.

Since warp processing targets critical loops that typically
iterate many times before completion, the WCLA must be able to
access memory and to control the execution of the loop.
Therefore, the WCLA includes a DADG with LCH to handle all
memory accesses as well as to control the execution of the loop.
The DADG within the WCLA can handle memory accesses that
follow a regular access patterns. The DADG and LCH interface
with the MicroBlaze system by accessing the dual ported data
BRAM to read and write data during the hardware execution. The
WCLA also communicates with the MicroBlaze processor using
the on-chip peripheral bus.

Ideally, our proposed MicroBlaze-based warp processor
would utilize the FPGA’s unused configurable logic to re-
implement the application’s critical regions. However, developing
computer aided design tools for existing FPGAs capable of
executing on-chip using very limited memory resources is a
difficult task [16][17]. Instead, our MicroBlaze warp processor
utilized a simple configurable logic fabric for re-implementing the
critical kernels in hardware that we developed simultaneously
with a set of lean synthesis, technology mapping, placement, and
routing algorithms [15]. By targeting a simplified configurable
logic fabric, our ROCPART tools can execute on a small,
embedded processor requiring very little memory and execution
time while producing good results. Alternatively, we could create
a virtual configurable logic fabric by superimposing our custom
configurable logic fabric on top of the underlying physical FPGA
fabric, which we are currently investigating.

As mentioned earlier, one the benefits of using a soft
processor core is the ability for designers to build systems with
multiple processors using the same FPGA. The number of
processors a designer can incorporate within any given FPGA is
only limited by the size of the FPGA itself. However, in building
a multi-processor warp processor device, simply instantiating
multiple warp processors as shown in Figure 2 would results in a
very large overhead as multiple DPMs and WCLAs are not
needed to support a multi-processor system. Instead, a single
DPM is sufficient for performing partitioning and synthesis for
each of the processors in a round robin or similar fashion.
Furthermore, one could again implement the partitioning tools as
a software task executing on any of the multiple processors.

Figure 4 presents a multi-processor MicroBlaze warp
processor. For each individual MicroBlaze processor we include a
profiler. While we could create a profiler capable of monitoring
all processors simultaneous, the profiler is very small compared
with the processor and should not have significant impact on area
or energy consumption. The dynamic partitioning module in a
multiprocessor system needs to be able to interface to all
processors individually. Therefore, we include a simple BRAM
Interface that allows the DPM to select which processor’s
memory to access. Finally, we need to modify our original
WCLA to include separate data address generators, loop control
hardware, registers, and MAC for each of the processors.
However, as the requirements for the applications executing on
each of the processors are likely to differ, the critical regions
implemented in hardware for the various processors can share the
available configurable logic.

4. Experiments
In determining the performance and energy benefits of warp
processing for the MicroBlaze soft processor core, we analyzed
the execution time and power consumption of several embedded
systems applications from the Powerstone and EEMBC
benchmark suites. Our experimental setup considers a MicroBlaze
processor system implemented using the Spartan3 FPGA. When
implemented on a Spartan3 FPGA, the MicroBlaze processor core
has a maximum clock frequency of 85 MHz. However, the
remaining FPGA circuits can operate at up 250 MHz. We
configured the processor to include a barrel shifter and multiplier,
as the applications we considered required both operations.

Figure 6 and Figure 7 present the speedup and energy
reduction of the MicroBlaze-based warp processor compared with
a standard MicroBlaze processor. We simulated the software
application execution on the MicroBlaze using the Xilinx
Microprocessor Debug Engine and obtained an instruction trace
for each application. We used the instruction trace to simulate the
behavior of the on-chip profiler to determine the single most
critical region within each application. Using the profiling results,

Figure 4: MicroBlaze multi-processor warp processing system.

Figure 5: Equation for determining energy consumption
after hardware/software partitioning.

totalstaticstatic

activeHWHW

activeactiveMBidleidleMBMB

staticHWMBtotal

tPE
tPE

tPtPE
EEEE

×=
×=

×+×=
++=

)()(

MicroBlaze

DPM

lmb_cntrl
Data

BRAM

profiler

lmb_cntrl Instr.
BRAM

i_lmb

d_lmb

opb

MicroBlaze lmb_cntrl
Data

BRAM

profiler

lmb_cntrl Instr.
BRAM

i_lmb

d_lmb

opb

BRAM
Interface

To WCLA

To WCLA

To WCLA To WCLA

we executed our ROCPART partitioning tools for each
application to create the hardware circuit implementations
targeting our simple configurable logic fabric. To determine the
performance and power consumption of the WCLA, we
implemented our configurable logic architecture in VHDL and
synthesized the design using Synopsys Design Compiler targeting
the UMC 0.18 µm technology library. Then, using the execution
traces, we simulated the hardware circuits for each partitioned
critical region using the VHDL model of the WCLA to determine
the final application performance with warp processing. Finally,
we calculated the energy consumption of each of the applications
using the equations in Figure 5. With the exception of the
configurable logic fabric, we determined the power consumption
of the MicroBlaze processor and system components using the
Xilinx XPower power estimation tool to determine the dynamic
and static power consumption. We also compared the
performance and energy consumption of the MicroBlaze
processor and MicroBlaze warp processor to several ARM
processors. For each application, we determined the execution for
the ARM processors using the SimpleScalar simulator ported for
the ARM processor [4].

Figure 6 presents the speedups of a MicroBlaze-based warp
processor and several ARM hard-core processors compared with a
MicroBlaze soft processor core. The MicroBlaze warp processor
is able to improve the performance of a MicroBlaze system,
achieving an average of speedup of 5.8. The largest speedup is for
the application brev, achieving a speedup 16.9. As we described
earlier, brev’s critical kernel is a bit reversal implemented using
shift operations and other bit manipulations. However, after
partitioning the kernel to hardware, the result hardware circuit is
much more efficient, requiring only wires to implement the bit
reversal. Excluding the application brev, which is a special

situation in which a hardware implementation is much more
efficient than software, the MicroBlaze warp processor achieves
an average speedup of 3.6 over a MicroBlaze processor alone. We
note that the MicroBlaze warp processor achieves these
performance results using the simple configurable logic fabric and
not the more robust native configurable logic of the Spartan3
FPGA. Instead, if we could target the native Spartan3 fabric, we
would expect to see additional performance improvements.

Figure 7 presents the normalized energy consumption of the
MicroBlaze-based warp processor and several ARM hard-core
processors compared with a MicroBlaze soft processor core.
While having the lowest clock frequency, the MicroBlaze
processor has the highest energy consumption, requiring 48%
more energy than the ARM11, which has the second highest
overall energy consumption. However, the MicroBlaze warp
processor is able reduce the energy consumption by an average of
57%, with a maximum energy reduction of 94% for the
application brev. Excluding brev, the MicroBlaze warp processor
achieves an average energy reduction of 49%.

While the MicroBlaze warp processor provides increased
performance and lower energy consumption compared to the
MicroBlaze processor, we also need to compare the MicroBlaze
warp processor with readily available hard-core processors.
Overall, the MicroBlaze warp processor has better performance
than the ARM7, ARM9, and ARM10 processors and requires less
energy than the ARM10 and ARM11 processors. The ARM11
processor executing at 550 MHz is on average 2.6X faster than
the MicroBlaze warp processor but requires 80% more energy.
Furthermore, compared with the ARM10 executing at 325 MHz,
the MicroBlaze warp processor is on average 1.3X faster while
requiring 26% less energy. Therefore, while the MicroBlaze warp
processor is not the fastest nor the lowest energy alternative, the

Figure 6: Speedups of MicroBlaze-based warp processor and ARM7, ARM9, ARM10, and ARM11 (MHz in parentheses) processors
compared to MicroBlaze processor alone for various Powerstone and EEMBC benchmark applications.

Figure 7: Normalized energy consumption of MicroBlaze-based warp processor and ARM7, ARM9, ARM10, and ARM11 (MHz in
parenthesis) processors compared to MicroBlaze processor alone for various Powerstone and EEMBC benchmark applications.

16.9

0
1
2
3
4
5
6
7
8

brev g3fax canrdr bitmnp idct matmul Average:
Benchmark

Sp
ee

du
p

MicroBlaze (85) ARM7 (100) ARM9 (250) ARM10 (325) ARM11 (550) MicroBlaze (Warp)

0.0
0.2
0.4
0.6
0.8
1.0

brev g3fax canrdr bitmnp idct matmul Average:
Benchmark

N
or

m
al

iz
ed

 E
ne

ry
C

on
su

m
pt

io
n

MicroBlaze (85) ARM7 (100) ARM9 (250) ARM10 (325) ARM11 (550) MicroBlaze (Warp)

MicroBlaze warp processor is comparable and competitive with
existing hard-core processors, while having all the flexibility
advantages associated with soft-core processors.

Of course, one could also consider applying warp processing
to a single-chip hard-core microprocessor/FPGA device, and in
fact that was the original focus our warp processing technique.
What we have shown in this paper is that warp processing can
make a soft-core FPGA processor competitive with a standalone
hard-core processor, which simply expands the usefulness of soft-
cores on FPGAs to cover a broader range of applications with
tighter performance and power constraints, providing a
competitive alternative to a hard-core processor.

5. Conclusions
Soft-core processors provided by FPGA vendors give designers
the flexibility to configure the processors and enable those
designers to quickly build FPGA systems incorporating one or
more processors. However, these soft processor cores, such as the
MicroBlaze, typically require longer execution times with higher
energy consumption compared with hard-core processors, limiting
the number of potential applications in which a designer would
choose to use a soft processor core. We studied a MicroBlaze-
based warp processor that dynamically and transparently
optimizes the executing application by re-implementing critical
software kernels in hardware using the configurable logic
available within the FPGA. The MicroBlaze warp processor
eliminates the performance and energy overhead by improving
performance on average by 5.8X and reducing energy
consumption on average by 57%, making them competitive with
current hard-core processors. Designers using MicroBlaze warp
processors can quickly build FPGA systems incorporating a
MicroBlaze or similar soft processor core with performance and
energy consumption comparable to standard hard-core processors
such as an ARM processor. With warp processing, soft processors
cores can be used in a wider range of application in which using a
soft-core processor would not have been previously feasible due
to performance and/or energy requirements.

Our current future work includes creating physical
implementations of warp processing, improving warp
processing’s tools to provide speedups for a wider range of
applications, and making use of advanced on-chip configurable
structures for further improvements [18].

6. Acknowledgements
This research was supported in part by the National Science
Foundation (CCR-0203829), the Semiconductor Research
Corporation (2003-HJ-1046G), and Xilinx Corp.

7. References
[1] Altera Corp. http://www.altera.com, 2004.
[2] Atmel Corp. http://www.atmel.com, 2004.
[3] Balboni, A., W. Fornaciari and D. Sciuto. Partitioning and

Exploration in the TOSCA Co-Design Flow. International
Workshop on Hardware/Software Codesign, pp. 62-69, 1996.

[4] Burger, D., T. Austin. The SimpleScalar Tool Set, version
2.0. SIGARCH Computer Architecture News, Vol. 25, No. 3,
1997.

[5] Cifuentes, C., M. Van Emmerik, D.Ung, D. Simon, T.
Waddington. Preliminary Experiences with the Use of the
UQBT Binary Translation Framework. Proceedings of the
Workshop on Binary Translation, 1999.

[6] Critical Blue, http://www.criticalblue.com, 2003.

[7] Eles, P., Z. Peng, K. Kuchchinski and A. Doboli. System
Level Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer's Design Automation
for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[8] Ernst, R., J. Henkel, T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. IEEE Design & Test of
Computers, pages 64-75, October/December 1993.

[9] Gajski, D., F. Vahid, S. Narayan and J. Gong. SpecSyn: An
Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE
Trans. on VLSI Systems, Vol. 6, No. 1, pp. 84-100, 1998.

[10] Gordon-Ross, A., F. Vahid. Frequent Loop Detection Using
Efficient Non-Intrusive On-Chip Hardware. Conf. on
Compilers, Architecture and Synthesis for Embedded
Systems (CASES), 2003.

[11] Halfhill, T. MIPS embraces configurable technology.
Microprocessor Report, March 2003, pp. 7-15.

[12] Henkel, J. A low power hardware/software partitioning
approach for core-based embedded systems. Design
Automation Conference (DAC), 1999.

[13] Henkel, J., Y. Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Intl. Workshop on Hardware/Software Codesign, 1998.

[14] Henkel, J., R. Ernst. A Hardware/Software Partitioner using
a Dynamically Determined Granularity. Design Automation
Conference, 1997.

[15] Lysecky, R., F. Vahid. A Configurable Logic Architecture
for Dynamic Hardware/Software Partitioning. Design
Automation and Test in Europe Conference (DATE), 2004.

[16] Lysecky, R., F. Vahid, S. Tan. Dynamic FPGA Routing for
Just-in-Time FPGA Compilation. Design Automation
Conference (DAC), 2004.

[17] Lysecky, R., F. Vahid. On-chip Logic Minimization. Design
Automation Conference (DAC), 2003.

[18] Stitt, G., Z. Ghou, F. Vahid and W. Najjar. Techniques for
Synthesizing Binaries to an Advanced Register/Memory
Structure. ACM/SIGDA Int. Symposium on FPGAs, 2005.

[19] Stitt, G., R. Lysecky, F. Vahid. Dynamic Hardware/Software
Partitioning: A First Approach. Design Automation
Conference (DAC), 2003.

[20] Stitt, G. and F. Vahid. The Energy Advantages of
Microprocessor Platforms with On-Chip Configurable Logic.
IEEE Design and Test of Computers, Nov/Dec 2002.

[21] Stitt, G., F. Vahid. Hardware/Software Partitioning of
Software Binaries. IEEE/ACM International Conference on
Computer Aided Design (ICCAD), 2002.

[22] Tensilica, Inc. http://www.tensilica.com, 2003.
[23] Triscend Corp. http://www.triscend.com, 2003.
[24] Venkataramani, G., W. Najjar, F. Kurdahi, N. Bagherzadeh,

W. Bohm. A Compiler Framework for Mapping Applications
to a Coarse-grained Reconfigurable Computer Architecture.
Conf. on Compiler, Architecture and Synthesis for
Embedded Systems (CASES), 2001.

[25] Wan, M., Y. Ichikawa, D. Lidsky, L. Rabaey. An Energy
Conscious Methodology for Early Design Space Exploration
of Heterogeneous DSPs. ISSS Custom Integrated Circuits
Conference (CICC).

[26] Xilinx, Inc. http://www.xilinx.com, 2003.
[27] Xilinx, Inc. Xilinx Press Release #03142,

http://www.xilinx.com/prs_rls/silicon_spart/03142s3_pricing
.htm, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

