
Layout Conscious Bus Architecture Synthesis for Deep
Submicron Systems on Chip

Nattawut Thepayasuwan, Alex Doboli
Department of Electrical and Computer Engineering

State University of New York at Stony Brook, Stony Brook, NY, 11794-2350
{nattawut, adoboli}@ece.sunysb.edu

Abstract

System-level design has a disadvantage in not knowing im-
portant aspects about the final layout. This is critical for
SoC, where uncertainties in communication delay by very
deep submicron effects cannot be neglected. This paper presents
a layout-aware bus architecture (BA) synthesis algorithm for
designing the communication sub-system of an SoC. BA syn-
thesis includes finding bus topology and routing individual
buses, so that constraints like area, bus speed and length, are
tackled at the physical level. The paper presents the BA au-
tomatically synthesized for a network processor and a JPEG
SoC.

1. INTRODUCTION
Systems on chip (SoC) include multiple IP cores con-

nected through complex data, address and control buses.
Over the next 4-7 years, it is foreseen that the number
of SoC cores will steadily increase, while clock frequencies
will range around 10-15 GHz. For very deep submicron
designs (VDSM), physical attributes such as interconnect
parasitics, substrate coupling, and substrate noise signifi-
cantly influence system performance, e.g., bus communica-
tion speed, system latency, power consumption, and signal
integrity [12]. Hence, the usual design paradigm of abstract-
ing physical details during system-level design is of limited
use for SoC implemented in a VDSM process. To success-
fully address the myriad of emerging challenges, research
must focus on incorporating relevant layout elements into
system-level synthesis.

The motivating example illustrates the impact of layout
on bus architecture design and communication speed allo-
cation. Figure 1 shows a set of three Power PC 405GP
cores, which exchange data as part of their functionality.
The physical dimensions of cores are presented in the figure.
Without considering layout, the system design step decides
to allocate a single system bus of speed 266MHz for all core
communications. However, given the physical dimensions of
the cores, it is difficult to implement a bus of this speed.
The same latency performance can be obtained with three
buses of lower speed, as shown in the figure. The bus speeds
of 133MHz, 133MHz and 33 MHz were found based on the
physical locations of cores, and the RLC effects of the routed
buses [12]. This example argues that the communication
sub-system of an SoC, including the bus architecture and
bus speed allocation, needs to be designed while contem-
plating layout feasibility criteria, e.g., achievable bus speeds
in the presence of parasitic.

Length = approx. 7.0mm
Speed < 133MHz

Length = approx. 7.0mm
Speed < 133MHz

Length = approx. 14.637mm
Speed < 33MHz

Bus 1
~6.97mm
(Power PC 405GP)

~6.97mm

~6.97mm

~6.97mm

~6.97mm

~6.97mm

IP core 3

IP core 2

Bus 2

IP core 1

Bus 3

(Power PC 405GP)

(Power PC
405GP)

Figure 1: Impact of layout on BA and bus speed

This paper presents a layout parasitic aware bus architec-
ture (BA) synthesis algorithm for designing the communi-
cation sub-system of an SoC implemented using a VDSM
process. This is important, because it is difficult to pos-
tulate a unique BA as optimal for various applications and
performance requirements. Instead, BA must be customized
depending on the application specifics and design needs.
BA synthesis includes finding the bus topology, and rout-
ing the individual buses. The paper presents BA for flat
architectures, with and without redundant communication
links. The BA synthesis algorithm first identifies the set
of possible building blocks, and then assembles them into a
topology using simulated annealing (SA) as an exploration
engine. The cost function models bus length, bus topology
complexity, potential for communication conflicts over time,
and amount of unnecessary core connectivities in a topology
(unnecessary connectivity needlessly increases bus length
and decrease bus speed). We propose a special table struc-
ture (called BA synthesis table) and select-eliminate method
to prune poor solutions. For example, buses with complex
and redundant connectivity are early removed. This effec-
tively reduces the exponential number of possible BA. The
paper offers results of BA synthesis for a network proces-
sor using CoreConnect bus architecture [2], and for a JPEG
SoC design.

Bus design and routing are critical problems for SoC de-
sign. Early work on bus and communication synthesis [4]
[7] [10] [13] focuses on multiprocessor embedded systems.
Research addresses interface design [4] [10], communication
packeting, mapping and scheduling [13]. However, this work
does not tackle details of hardware implementation and lay-
out design. In many approaches, bus topology is assumed
as given [7] [8]. Finding a very good bus architecture is a te-

1530-1591/04 $20.00 (c) 2004 IEEE

dious task for SoC with large number of cores, and involves
extensive designer knowledge. Dick et al [5] discuss bus syn-
thesis as a part of the core-based synthesis tool MOCSYN.
Floorplanning and placement are iteratively conducted in-
side a feedback loop to obtain point-to-point delay estima-
tion. The delay information is used for recalculating link
priorities of a core graph. Our method differs in that it does
not require the number of buses as an input constraint, since
it can be only determined after the optimized bus struc-
ture is available. More recently, Drinic et al [6] [9] present
a method for SoC bus network design to maximize overall
processing throughput. The design flow includes two steps:
one produces the communication topology, and the other
finds the core floorplanning. Our work partially resembles
the methodology of Drinic et al [6]. However, it differs in
considering more layout knowledge for BA synthesis, and
suggesting a new pruning method to remove poor quality
BA. This is important, because the BA with the highest
speed critically depends on IP core placement. Also, the
solution space is difficult to traverse without good pruning.

Section 2 discusses modeling for BA synthesis. Section 3
presents non-redundant flat BA synthesis, and Section 4 in-
troduces redundant flat BA synthesis. Experimental results
are given in Section 5. Finally, we offer conclusions.

2. MODELING FOR BUS ARCHITECTURE
SYNTHESIS

Definition: A core graph (CG) is a graph (V,E), where vi

∈ V is the ith core in the architecture, and eij ∈ E is the
communication link between core i and core j. The weight
wij is the communication load between core i and core j. The
communication load (Cl) is the amount of data exchanged
between two cores. The core size hi x wi is described along
with node vi.

The CG representation of a system architecture is used for
BA synthesis. Similar concepts to CG are defined in [8] and
[5]. CG has been illustrated in Figure 2(a.1). For simplicity
of modeling, CG do not distinguish between unidirectional
and bi-directional dataflow. Communication direction de-
pends on whether an operation is a read or a write, and it
isn’t specified directly in a CG. However, the core graph can
be modified in order to address the direction of data. Figure
2(a.2) presents the core graph for bi-directional communi-
cations.

Industrial bus standards can be expressed using the CG
formalism. The superposition principle can be applied, if
an industrial bus standard is used at the transaction level
(post-topology synthesis). This can be done by classifying
links according to their bandwidth (low, medium, and high),
and generating CG for each category. This is sound because
most industry standards for SoC, i.e., AMBA [1] and IBM
CoreConnect [2], have different buses for data communica-
tion at different bandwidth. Bus architectures associated
with different bandwidths are combined together to get the
final solution.

Definition: Primary bus structure (PBS) is defined as a
potential cluster of connected cores. PBS are the building
blocks for bus architecture synthesis. A PBS is valid, if its
node connectivities exist in the original CG. Otherwise, it is
invalid.

W

1 2

3 4

W
W

13

14
24W

12W

1

3 4

2 51

3

52

4

60 80

8090

90

70

A High Communication
Core Graph (RNH) Bus Architecture

Redundant, Non−Hierarchical

PBS25

PBS134

PBS1234

1

3 4

1 2

4

1

3

2

1

1 2

3 2

1 4

4

1

3 4

2

1 2 1 2

3 443

PBS1

PBS4

A Redundancy StructureA Non−Redundancy

PBS3PBS2

1 2

3 4
13w

W13r

W12w

W12r

W34w

W24w

34rW

1) An Undirected Graph 2) A Non−Redundancy

Core Graph Examples
Structure

Bus Architectures with different PBSs

Examples of RNH Bus ArchitectureA Set of Primary Bus Architectures

(a)

(c)

(b)

(d)

Figure 2: Examples of Core Graph, PBS and Bus

Architecture

Figures 2(b) and 2(c) show eight PBS for the CG in Figure
2(a.1). PBS in Figure 2(b) are valid. PBS are characterized
by following physical and topological properties:

• PBS utilization percentage: Utilization is defined as
the communication spread in a structure. For example,
a PBS corresponds to two links in the CG, i.e., l12 and
l13. This PBS can also contain l23, the connection
between core 2 and core 3. There might, however,
be no communication between these cores. Therefore
the PBS under-uses its structure. We can also consider
the unused element l23 as a redundant link of the PBS.
The PBS utilization percentage, Pu, is defined as Pu =

2Nb

n(n−1)
× 100%, where Nb is number of links in a PBS,

and n is number of associated cores in a PBS. The
maximum PBS utilization occurs when all associated
cores communicate between each other, and the PBS
corresponds to a clique in the CG.

• Communication conflict: A PBS is implemented as a
shared bus. For a static time scheduling of tasks, it
is important to evaluate if there is a communication
conflict in a PBS. Communication conflict of a PBS,
Cconflict, is the amount of time overlap between com-
munications mapped to the same link.

• PBS bus length: PBS bus length is a vital attribute for
evaluating the bus speed in the presence of VDSM ef-
fects. Longer buses require more silicon area and addi-
tional circuitry like bus drivers [12]. Also, larger cross
coupling and parasitic capacitances of longer buses
increase interconnect delay [12]. Larger power dissi-
pation for interconnect and drivers can be caused by
longer buses. It is, however, difficult at the architec-
ture level to estimate PBS bus length with high ac-
curacy without contemplating the SoC layout. As ex-
plained in Section 3, hierarchical cluster growth place-
ment is used for placing IP cores, and estimating PBS
bus lengths.

Definition: Bus architecture synthesis table (BAST) presents
the relationship between a set of PBS and the connectivity
requirements in a CG. The number of rows is equal to the
number of links in the CG. The number of columns is the

i = 1;
L = number of communication link elements;

do

eliminate all PBS which cover link i;
for all links k satisfied by PBS p do

eliminate all PBS which cover link k;
end for;
i = i + 1;

until i > L

select a PBS p to satisfy communication link i;

B12 B13 B14 B24 B123 B124B134 B1234

X

X X

X X

X

X

XXXX

X XX

l

l

l

l

12

13

14

24

X

e1

e2

e3

e11 e21 e12 e22 e13 e14

Primary Bus Structures Connectivity Requirem
ents

Figure 3: Select-eliminate algorithm

dimension of the PBS set. An entry in the table has value
“X”, if the PBS for the column includes the link element
specific to the row. Figure 3 presents a bus architecture
synthesis table.

3. NON-REDUNDANT FLAT BUS ARCHI-
TECTURES

Depending on their structure, bus architectures (BA) can
be either non-redundant or redundant structures, and non-
hierarchical (flat) or hierarchical. The core connectivity of-
fered by a non-redundant bus tightly matches the nature of
the communication links in the CG of the application. Also,
there is a single connection through a bus for any CG link.
There are no core connections, which do not correspond to
a link. Non-redundant structures have the benefits of using
minimal resources for offering the needed core connectiv-
ity. They require no additional control circuitry (like for
segmented buses), because a single channel is used to com-
municate between any two IP cores. The structure is sim-
ple, and thus simplifies the bus routing step. In contrast,
redundant structures have superior concurrency, and thus
decrease communication conflicts. However, expensive con-
trol logic is required to intelligently drive the shared bus. In
flat BA there are no bus-to-bus communications, as buses
link only cores. Hierarchical BA include bus-to-bus com-
munications through bridge circuits [2]. Examples of non-
redundant, non-hierarchical (NRNH) and redundant, non-
hierarchical (RNH) BA are given in Figure 2(b). The left
NRNH BA in Figure 2(b) uses the shared bus B124 to serve
communications links l12,l14,l24, and the point-to-point bus
B13 for the link l13. The right part of Figure 2(b) shows
a RNH BA, in which two buses are used to implement link
l12.

We propose the select-eliminate (SE) algorithm to gen-
erate NRNH BA based on the satisfaction of the core con-
nectivity requirements. SE algorithm is shown in Figure 3.
To illustrate the algorithm, we use the simple BA synthesis
table in Figure 3. For example, to satisfy the l12 connectiv-
ity, one of the four PBS {B12, B123, B124,B1234} has to be
chosen. Suppose PBS B123 is chosen, the rest of the can-
didates must be eliminated, so that there is no redundancy
in the final structure. The horizontal dash line S1 repre-

1

2

3

4

5

6
7

9
8

10

e

g

f

ik

l

m

n
o

A

B

b

a

c

h

j

p

d

cluster 1

cluster 2

IP MACRO 1

Routing Channel

IP MACRO 3

IP MACRO 2

Bus wiring around IP macro 1A routing example

(a) (b)

Figure 4: Routing example

sents eliminated structures. Once a structure is eliminated,
it automatically voids the whole column. Vertical dash lines
e11,e12,e13,e14 show the eliminated column. PBS B123 does
not satisfy only the l12 and l13 connectivity. Therefore, an-
other horizontal line S2 is created with vertical lines e21 and
e22. Connectivity l14 is considered next. There is a candi-
date left, namely, PBS B14. Once PBS B14 is chosen, we
have only one candidate, PBS B24, left to satisfy l24 connec-
tivity. The generated NRNH BA is composed of PBS B123,
PBS B14, and PBS B24. Circled structures in Figure 3 show
the final BA.

The size of a synthesis table grows depending on the num-
ber of cores, and the amount of inter-core communication.
If number of cores and interconnects between them is small,
the SE algorithm contemplates all possible coverings of the
CG links using the available PBS structures. However, if
a system consists of more than 20 cores intensively tied up
together, the exhaustive SE algorithm becomes infeasible.
To allow SE algorithm to explore the PBS candidate space
efficiently, we employed a simulated annealing algorithm to
search different candidate PBSs while satisfying connectiv-
ity requirements. The algorithm randomly chooses a PBS
from each requirement row, and combines it into a bus ar-
chitecture. The total cost function that guides simulated
annealing is given by the formula

Total cost = wlLt + wnNb + wcCc + wmlMl - wuCu,
where Lt is the total bus length, Nb is the number of shared
buses, Cc is the communication conflict, Ml is the maxi-
mum loss, and Cu is the total bus utilization percentage.
wl, wn, wc, wml, wu are weight factors. The cost function
parameters are defined in Section 2. Maximum loss reflects
the maximum data loss in a bus architecture, if there is a
conflict in a particular PBS. The algorithm objective is to
minimize this cost function.

Buses are routed based on the IP core placement. IP cores
are placed using a variant of the cluster growth placement
algorithm [11]. The layout is described as an intersection
graph [11] to diminish the size of the routing space. Depend-
ing on the IP vendor, a number of metal layers is available.
To easy the analysis of VDSM effects, inter-macro commu-
nication uses only routing channels along the macro borders.
To calculate the bus length of a PBS, inter-core routing path
and bus wiring on a macro are taken into account. Inter-
core routing algorithm starts by finding the shortest path
of the link with the lowest communication load. This strat-

egy is motivated by the placement method always placing
two highly communicating cores close together. This im-
plies that the longest path between two cores is at the link
with the lowest communication load. Therefore, this link
influences the total bus length of a PBS. We thus give it the
highest priority to find the shortest path. Pin assignment
along a core is considered for routing.

The shortest path between two cores is defined as the
shortest path between any pair of intersection nodes around
the border of two clusters. An intersection graph is illus-
trated in Figure 4(a). Cluster 1 contains core 1, with the
interconnect set {a,b,c,d,e}, and cluster 2 contains cores 8
and 10 with the interconnect set {f,g,h,i,j,k,l,m,n,o,p}. The
shortest path between clusters 1 and 2 is the shortest path
from any two nodes of the two interconnect sets. If an inter-
section point of a core is chosen, all the wires which connect
to every pin have to route around the core from the pin to
a chosen intersection point. As seen in the bus routing di-
agram in Figure 4(b), the bus length is approximately half
of the core perimeter. Therefore, if there is also another
intersection point at point B, which is the longest distance
from point A, all the wires have to route against the original
direction. That is the total bus length is approximately a
perimeter. This is considered to be the worst case, however,
it is a good approximation if a macro has several intersection
points required for inter-core routing. We use this worse case
approximation in our bus length calculation. Lets lPBSi be
the bus length of the ith PBS, linter be the inter-core bus
length of the ith PBS, and lmacros be the length of the bus-
wiring around the cores associated with ith PBS, the PBS
bus length is defined as lPBSi = linter + lmacros.

4. REDUNDANT FLAT BUS ARCHITECT-
URES

A redundant, non-hierarchical (RNH) BA allows more
than one communication channel per connectivity, so that
communication load can be shared across buses. This is to
distribute communication load, and reduce the total amount
of communication conflicts. Figure 2(d) represents a CG
with high communication loads, and its possible RNH BA.
The communication between core 3 and core 4 is satisfied
either by PBS1234 or by PBS134. Since RNH BA can have
more than one channel to initiate communication, the syn-
thesis algorithms must calculate the exact amount of com-
munication occurred at each channel. For example, com-
munication load of link l34 is 90. The synthesis algorithm
may assign the load 63 (70%) to PBS134, and 27 (30%) to
PBS1234. This is because PBS134 has more available band-
width than PBS1234.

RNH BA can be synthesized by extending the proposed
BA synthesis table (BAST) concept. The synthesis algo-
rithm is described in Figure 5. Using the method presented
in Section 3, BA synthesis (using Select-Eliminate algorithm
and SA) proceeds in line 2 after generating the initial BAST.
Then, for the resulted BA (PBS set is the collection of PBS
in a BA), the links with maximum communication load in
each conflicted PBS are propagated to a new BAST. These
links are the connectivity requirements for the new BAST.
Once the second set of PBSs is generated using the table,
communication load is divided across the PBS, and the com-

4. begin

9. PBS_set = PBS_set + new_PBS_set;

10. load_sharing(PBS_set);

5. conflicted_PBS_set = conflict_extract(PBS_set);

7. new_table = build_new_BAST(propagated_link);

8. new_PBS_set = synthesis(new_table);

6. propagated_links = max_load(conflicted_PBS_set,threshold);

1. table = generate_initial_BAST(core_graph);

2. PBS_set = synthesis(table);

3. while conflict(PBS_set) = true do

11. end

Figure 5: RNH BA synthesis algorithm

munication conflict for each PBS is re-calculated. If there
are still PBS with communication conflicts, maximum com-
munication load links for the PBS will be propagated to
generate a new BAST. The algorithm stops when there is
no communication conflicts in all PBS. The link, which has
more than one PBS, equally distributes the communication
load to the associated PBS. Such a load sharing is suitable
for low communication CG or for CG with small number of
cores. Then the total communication load per PBS is rela-
tively low, and thus the instantaneous power consumption
or switching noise is low. In contrast, a high communica-
tion CG, or a CG with high number of cores will potentially
increase the number and size of the newly produced BAST.
To limit the growth of the new BAST, any conflicted PBS in
the previous table has to distribute a maximum load to the
PBS in the current table, while not violating the conflict con-
straints. The BA synthesis method is efficient because the
maximum communication loads aggressively decrease in ev-
ery iteration. Therefore, the number and size of new BAST
gradually decreases. Furthermore, load balancing can be ap-
plied to this iterative method as an additional constraint, so
that communication loads of basis-elements are balanced.

Example: Figure 6(a) shows the initial BAST for the
CG in Figure 2(d). Lets assume that the algorithm chooses
PBS12, PBS134, and PBS245 as the first BA. The com-
munication conflict of each PBS is calculated by summa-
tion of associated communication links in the PBS. PBS134

and PBS245 have communication conflicts. The algorithms
therefore propagates the maximum load links (L24, L25, L34)
of these PBS to generate a new BAST, Table 6 (b). The se-
lected PBS are excluded, as no replicated PBS are in the
final BA. Once PBS2345 is selected, communication load of
conflicted PBS are shared to the chosen PBS. In this case,
L34 of PBS134 and PBS2345 and L24,L25 of PBS245 share
communication load of 40, 40, and 45 each to the PBS2345,
respectively. Total communication loads and conflicts are
then updated. Table 6(c) is generated, and this results in
conflict free communication across the BA.

5. EXPERIMENTAL RESULTS
The first experiment presents the BA synthesis results

for a network processor [3]. The processor receives Inter-
net packets, reroutes them, and sends them out. A packet
arrives through an Ethernet media access controller inter-
face core (EMAC), and is sent to the multi-channel memory
access layer core (MCMAL), a specialized DMA controller.
MCMAL stores the packet in a buffer, and then transmits
the buffer descriptor to the processor. The processor calcu-
lates the new destination address for the packet. MCMAL

L12
L13
L14
L24
L25

b12 b13 b14 b24 b25 b34 b123 b124 b134 b125 b234 b245 b1234 b1245 b2345 b1235 b12345
X

X
X

X
X

L34 X

X
X

X

X
X

X

X

X

X

X
X

X

X
X

X

X
X
X
X X

X
X
X

X
X
X

X

X
X X

X
X
X
X
X

 b12
comm. load

PBS total comm.load conflict

 b134
comm. load

comm. load
 b245

extracted links
[L12]

90
[L34,L14,L13]

90 70 60
[L24,L25]

80 80

90

220

160

0

1

1

L14
L34

b13 b14 b24 b25 b34 b123 b124 b125 b234 b1234 b1245 b1235 b12345
X X X X

X
X

X X X

 b12
comm. load

PBS total comm.load conflict

 b134
comm. load

comm. load
 b245

extracted links
[L12]

90
[L34,L14,L13]

[L24,L25]

90

80

80

0

comm. load
b2345 [L24,L25,L34]

20 40 15 75

b1234
comm. load

[L12,L13,L14,L24,L34]
0 30 35 20 15

40 40

15 35 30

100

0

0

0

0

L24
L25
L34

b13 b14 b24 b25 b34 b123 b124 b125 b234 b1234 b1245 b2345 b1235 b12345
X

X
X

X
X

XX

X X X
X

X
X
X

X
X
X
X

 b12
comm. load

PBS total comm.load conflict

 b134
comm. load

comm. load
 b245

extracted links
[L12]

90
[L34,L14,L13]

45 70 60
[L24,L25]

40 40

90

175

80

0

0

1

comm. load
b2345 [L24,L25,L34]

40 40 45 125 1

a) An Initial Synthesis Table with A Selected Bus Architecture

b) A Synthesis Table with propagated links

c) The Final Synthesis Table with propagated links

Figure 6: Example for RHN BA synthesis

Node 2 − DDR−SRAM
Node 3 − PCI−X
Node 4 − MCMAL
Node 5 − DMA
Node 6,7,8,9 − EMAC cores
Node 10,11 − HDLC
Node 12 − I2C

SRAM Controller
Node 1 − PowerPC core,on−chip SRAM and

Node 13 − UART
Node 14 − GPIO
Node 15 − EBC

Mixed Bandwidth Parition

High Bandwidth Partition

Low Bandwidth Parition

1

2

3

4

6

7

8

9

10

11

12

13

14

15

5

70
70

70

70

30

30

80

25

25

30

30
30

30

50

90

25
25

20

20

PowerPC PPC440GX Core Graph

Figure 7: Core graph for the network processor

and one of the EMAC will send the packet out. Figure 7
shows the network processor CG.

For NRNH BA synthesis, the CG was divided into high
speed and low speed parts according to their bandwidth
requirements. Each part was separately synthesized. The
cost function used following weights: wc = wml = 0.1, and
wl = wu = wn = 1.0. These weights encouraged the using
of shared PBS rather than point-to-point structures. The
final architecture is shown at the top of Figure 8. There are
three PBS in each of the high speed and low speed parts.
The only conflicted PBS (with 360% conflict rate) is the
one which connects three EMAC cores and PCI-X core to
MCMAL core. Using this BA, the RNH BA was synthesized,
and the result is shown at the bottom of Figure 8. Five
maximum load links are propagated to a new BAST, and two
additional PBS are added as a result. The maximum load
is shared with the two new PBS. The amount of conflict for
the original PBS is reduced to 161%. Then, four maximum

10/100 Mbps

Ethernet
MAC

10/100 Mbps

Ethernet
MAC

Ethernet
MAC

10/100 Mbps

DMA
Controller

PLB
arbiter

McMAL

Ethernet
MAC

10/100 Mbps

PPC440
CORE on−chip

SDRAM
Controller

256 K
On−Chip

SDRAM

EXT
SDRAM DDR

Controller

HDLC

HDLC

arbiter
OPB

EBC UART

OPB
arbiter

arbiter
OPB

I2C GPIO

PCI−X

133/66MHz

PLB
arbiter

DMA
Controller

McMAL

Ethernet
MAC

10/100 Mbps

PPC440
CORE on−chip

SDRAM
Controller

256 K
On−Chip

SDRAM

EXT
SDRAM DDR

Controller

HDLC

HDLC

arbiter
OPB

EBC UART

OPB
arbiter

arbiter
OPB

I2C GPIO

ARB

ARB

AR

10/100 Mbps

Ethernet
MAC

10/100 Mbps

Ethernet
MAC

Ethernet
MAC

10/100 Mbps

PCI−X

133/66MHz

Figure 8: Bus architecture for network processor

load links are propagated to the third BAST, and another
PBS is added. No conflicts result for this final BA. The
RNH BA offers a higher communication concurrency at the
transaction level. PCI-X core can send data packets to PPC
core via the on-chip SRAM controller, while MCMAL core
is receiving packets from EMACS core. However, RNH BA
increases the total bus length, and leads to larger routing
areas. Hence, NRNH BA can be used in resource constraint
designs (i.e. smart sensors), while RNH BA are for high-
performance applications.

BA synthesis was used to automatically produce opti-
mized BA for the SoC of an JPEG image compression en-
coder. The task graph for the JPEG encoder included three
identical and parallel sequences of tasks. Each sequence pro-
cesses a different color of an image (RGB), and includes five
consecutive tasks: preprocessing, FDCT, quantization, zig-
zag, and RLE & Huffman coding. The used architecture
included three processor cores (a distinct core for each par-
allel sequence), an ASIC for the FDCT tasks, and mem-
ory modules for data communication. Each processor has
its own local memory. Processors and ASIC communicate
through shared memory. To decrease memory access times,
the architecture used the interleaved memory blocks M4-M9.
Figure 10 shows the resulting CG. The considered process-
ing technology was 0.18µ TSMC. Microprocessor cores are

P1µ µ

M7

µ

ASIC

M1M1 M2 M3

P2

M4 M5 M6 M8

P3

M9

40 40 40

20 20 20 20 20 20

20
20

20
20

20
20

Pµ 3

Pµ 2

2

4

6

1
MEM1

13
ASIC

MEM8
11 12

MEM9

5
MEM3

3
MEM2

µP1

7
MEM4

10
MEM7

8
MEM5

9
MEM6

Figure 9: Core Graph for JPEG

about 5 × 5 mm2, memory cores are about 25% and ASIC
about 30% of the processor area.

Figure 10 shows BA synthesis results for the CG in Fig-
ure 9. The hierarchical cluster growth algorithm generated
the core placement shown in Figure 9. The BA synthesis
goal was to generate a fast architecture. BA complexity
was not a major concern, because the number of IP cores
is reasonably high. Also, for comparing NRNH BA and
RNH BA, the communication conflict got a low priority
(wc = wml = 0.1), since RNH synthesis algorithm guar-
antees conflict free buses. Thus, the goal of BA synthesis
was to minimize the total bus length (wl = 1.0), while dis-
regarding the number of buses and redundant structures in
a BA (wn = wu = 0.1). After bus architecture genera-
tion, each of the buses was routed, and the resulting delays
are indicated in Figure 10. Please note that the bus delay
of PBS5 (10.927 nsec) is larger than that of PBS3 (4.028
nsec), but PBS3 carries a lower communication load (20).
Even though it is against common sense, this result is correct
because the bus length depends on the distances between
cores and core perimeters (see Section 3). In this case, the
core size dominated the total bus length and speed. For the
RNH BA in Figure 10, two new PBS (PBS5 and PBS6)
were introduced to share the communication load from the
conflicted PBS1. As a result, the communication load of
PBS1 decreased by 50%. The two additional PBS have less
time delay, and thus enhance performance. However, the
RNH BA increases routing area by 60%.

Note that the best NRNH BA is not perfectly regular,
even though the CG is regular. Processor P1, and mem-
ory modules M1, M4 and M5 are linked through a shared
bus, similar to processor P3 and memory blocks M3 and
M9. This happens because the placements of these blocks is
similar and close to each other. However, processor P2 and
memories M2, M6 and M7 are linked through a different
structure, which improves the bus speed for these blocks.
This explains that optimized BA do not depend only on
architectural elements (like the amount of exchanged data
between cores), but on layout aspects, also.

6. CONCLUSIONS
This paper presents a BA synthesis method for designing

the communication part of SoC fabricated in a VDSM pro-
cess. BA synthesis creates customized BA depending on the
application specifics and performance requirements. Synthe-
sis includes finding the bus topology, allocating bus speeds,
and routing individual buses. The algorithm identifies the

MEM
9

MEM
3

µP3MEM
8

ASIC

µP1
MEM

5
MEM

4
MEM

1

MEM
2

µP2MEM
6

MEM
7

µP3

µP2

ASIC MEM
8

MEM
2MEM

6

MEM
7

ARB

MEM
4

MEM
5 µP1

ARB

MEM
1

ARB

MEM
9

MEM
3

ARB
PBS 1

P
B

S
 4

P
B

S
 5

ARB

ARB

P
B

S
 3

P
B

S
 5

P
B

S
 2

PBS 6

PBS 1

PBS

2
3
4

94.288

8.028

Td (nsec)

4.028
23.429

5

1

10.927

RNH Bus Architecture of JPEG SoC

5
6

PBS

3
4

4.028
23.429

26.983
51.861

7

10.927

Td (nsec.)

2
94.2881

8.028

NRNH Bus Architecture of JPEG SoC

PBS 2

P
B

S
 3

PBS 4

PBS 7

Figure 10: Bus architecture for JPEG SoC

set of possible BA building blocks, and assembles them us-
ing simulated annealing as an exploration engine. The paper
discusses generation of flat BA with and without redundant
connections. The method employs a BA synthesis table and
select-eliminate algorithm to prune poor solutions. This re-
duces the exponential number of potential solutions. The
synthesis method is capable of exploring in short time the
large solution space for SoC with many cores. Its layout
awareness resulted in BA of higher speed.

7. ACKNOWLEDGEMENTS
This work was supported by a DAC graduate scholar-

ship awarded to Nattawut Thepayasuwan, and IBM Faculty
Partnership Award received by Dr. A. Doboli in 2001. The
authors want to thank Dr. N. Dhanwada for his comments
and suggestions.

8. REFERENCES
[1] “DesignWare AMBA On-Chip Bus Solution”,

www.convergencepromotions.com/ARM/catalog/156.html.

[2] IBM CoreConnect Bus Architecture White Paper,
//http:www-3.ibm.com/chips/products/coreconnect/index.html.

[3] J. Darringer, R. Bergamaschi, S. Battacharyya, D. Brand, A.
Herkersdorf, J. Morell, I. Nair, P. Sagmeister, Y. Shin, “Early
Analysis Tools for System-on-a-Chip Design”, IBM J. of
Research & Development, Vol. 46, No. 6, 2002, pp. 691-707.

[4] J. M. Daveau, G. F. Marchioro, T. Ben Ismail, A. A. Jerraya,
“Protocol Selection and Interface Generation for HW-SW
Codesign”, IEEE Trans. on VLSI Systems, Vol. 5, No. 1, pp.
136-144, March 1997.

[5] R. P. Dick, N. K. Jha, “MOCSYN: Multiobjective core-based
single-chip system synthesis,” Design Automation and Test in
Europe Conf., pp.263-270, 1999.

[6] M. Drinic, D. Kirovski, S. Meguerdichian, M. Potkonjak,
“Latency-Guided On-Chip Bus Network Design”, Proc. of the
ICCAD, 2000, pp. 420-423.

[7] M. Gasteier, M. Glesner, “Bus-Based Communication Synthesis
on System Level”, ACM Transactions on DAES, Vol. 4, No. 1,
January 1999, pp. 1-11.

[8] K. Lahiri, A. Raghunathan, S. Dey, “Efficient Exploration of the
SoC Communication Architecture Design Space”, Proc. of the
ICCAD, 2000, pp. 424-430.

[9] S. Meguerdician, M. Drinic, D. Kirovski, “Latency-Driven Design
of Multi-Purpose Systems-on-Chip”, Proc. of the DAC, 2001.

[10] R. Ortega, G. Boriello, “Communication Synthesis for
Distributed Embedded Systems”, Proc. of the ICCAD, 1998, pp.
437-444.

[11] N. Sherwani, “Algorithms for VLSI Physical Design
Automation”, Kluwer, 1999.

[12] D. Sylvester, K. Keutzer, “A Global Wiring Paradigm for Deep
Submicron Design”, IEEE Trans. on CADICS, Vol. 19, No. 2,
pp. 242-252, February 2000.

[13] T. Y. Yen, W. Wolf, “Communication Synthesis for Distributed
Systems”, Proc. of the ICCAD, 1995.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

