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Abstract

This paper presents a methodology and a set of mod-
els supporting energy-driven source-to-source transfor-
mations. The most promising code transformation tech-
niques have been isolated and studied leading to accu-
rate analytical and/or statistical models. Experimental
results, obtained for somecommonembedded-systempro-
cessors over a set of typical benchmarks, are presented,
showing the viability of the proposed approach as a sup-
port tool for embedded software design.

1. Introduction

In a growing number of complex heterogeneous em-
bedded systems the relevance of the software compo-
nent is rapidly increasing. Issues such as development
time, flexibility and reusability are, in fact, better ad-
dressed by software based solutions. Another trend that
is significantly pushing designers to move as much func-
tionality as possible toward software is the increased in-
terest in platform-based designs. In such systems much
of the architecture is fixed and can only be configured
to match the design constraints. The greatest part of
the application-specific functionality is thus naturally
shifted from hardware dedicated components to soft-
ware programs. In such a scenario it is clear that the
importance of software is steadily increasing and poses
new problems to designers. Though performance, in the
sense of computational efficiency, is still the foremost
requirement for most embedded systems, power con-
sumption is gaining more and more attention. Opti-
mization of the code is thus one of the key points and
is currently addressed almost only by means of compi-
lation techniques. It is still not uncommon for designers
to manually code critical sections of the application di-
rectly in assembly. The recent technical literature pro-
poses a different approach, based on source-to-source
transformations aimed at improving code quality ei-
ther directly or by enabling better compiler optimiza-

tions. Source code transformations are extremely com-
plex to automate since they require a thorough seman-
tic analysis of the code fragments to be optimized. This
paper proposes a consistent and flexible methodology
for the analysis of the effect of source-to-source trans-
formations mostly aimed at allowing rapid and accu-
rate design space exploration. The proposed approach
is based on a wide set of models studied to decouple
the processor-independent analysis from all technology
specific aspects. Section 2 presents a brief overview
of the most promising transformations and Section 3
outlines the conceptual design flow and describes the
technology-related models adopted for energy gain es-
timation. Section 4 presents two case studies to bet-
ter clarify the approach whose results are summarized
in Section 5. Finally, Section 6 draws some conclusions
and outlines possible extensions and improvements.

2. Transformations Overview

Source-to-source transformation presented in litera-
ture, can be grouped in to four main areas according to
the code structures they operate on: loops, data struc-
tures, procedures and control structures and operators.
It is worth noting that not all the transformations are
interesting when operating at source-level since some
of them can as well be performed at RT or assembly-
level and are thus performed by modern compilers. The
most promising transformations, either found in liter-
ature [2, 5] or studied in the present work, are summa-
rized in the following. Particular attention must be de-
voted to loop transformations [1, 6, 7, 8] since most of
the execution time of aprogram is spent in loops.

Loop unrolling replicates the body of a loop a given
number of times U (the unrolling factor), and
modifies the iteration step from 1 to U . This trans-
formation impacts on energy in two ways. First,
it reduces loop overhead by performing less com-
pare and branch instructions. Second, it allows the
compiler for a better optimization and register us-
age of the larger loop body.
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Loop distribution breaks a single loop into multi-
ple loops with the same iteration range but each
enclosing only a subset of the statements in the
original loop. Distribution is used to create sub-
loops with fewer dependencies, improve instruc-
tion cache and instruction TLB locality due to
shorter loop bodies, reduce memory requirements
by iterating over fewer arrays and improve regis-
ter usage by decreasing register pressure.

Loop fusion performs the opposite operation of dis-
tribution by reduceing loop overhead, increasing
instruction parallelism, improving register, data
cache, TLB or page locality. It also improves the
load balance of parallel loops.

Loop tiling improves memory locality, primarily the
at cache level, by accessing matrices in N×M sized
tiles rather than completely. It also improves pro-
cessor, register, TLB, and page locality.

Software pipelining breaks the operations of a sin-
gle loop iteration into S stages, and arranges the
code in such a way that stage 1 is executed on
the instructions originally belonging to iteration
i, stage 2 on those of iteration i − 1, etc. Startup
code must be generated before the loop to initial-
ize the pipeline for the first S − 1 iterations and
cleanup code must be generated after the loop to
drain the pipeline for the last S − 1 iterations.

The second class collects a number of data-structure
and memory access transformations [3, 8].

Scratch-pad array introduction has the pur-
pose of storing the most frequently accessed ar-
ray elements in a smaller array (the scratch-pad)
to improve spatial locality.

Multiple indirection elimination identifies com-
mon chains of indirections and stores the address
into a temporary variable.

The third group gathers those transformations [3] im-
pacting on procedures and functions.

Function inlining replaces the most frequently in-
voked function with the function body. Inline ex-
pansion increases the spatial locality and decreases
the number of function calls. This transformation
increases the number of unique references, which
may result in more misses. However, a decrease in
the miss rate may also occur, since, without inlin-
ing, the callee code might replace the caller code
in the instruction cache.

Soft inlining is an intermediate solution between
function calling and inlining. The transforma-
tion replaces calls and returns with jumps. This

reduces the code size w.r.t. inlining and elimi-
nates context switching overheads.

Code linking directives can be used to suitably re-
order the objects of different functions to match as
more as possible the dynamic call graph. This po-
tentially leads to a reduction in instruction misses.

Most of the transformation in the last group are usually
performed by compilers. Nevertheless, some of them
can still be conveniently considered when operating at
source-level [3, 4].

Conditional sub-expression reordering exploits
shortcut evaluation of conditions usually per-
formed by compilers. The transformation oper-
ates by reordering the sub-expressions according
to their probability of being true (for OR condi-
tions) or false (for AND conditions). This reduces
the number of instructions executed.

Special cases pre-evaluation allows avoiding a
function call (usually a mathematic library func-
tion) when the argument has a special value for
which the result is known. This is done by defin-
ing suitable macros testing for the special cases
and leads to a reduction of actual calls.

Special cases optimization replaces calls to generic
library or user-defined functions with optimized
versions, suitable for common special cases. As an
example, power raising on integers can be coded
more efficiently than it can be for real numbers.

3. Methodology

Transformations applied to source code might lead
to very different results depending on a number of fac-
tors: the specific structure of the code, the target ar-
chitecture, the parameters of the transformations etc.
Furthermore, it is not unusual that a transformation
applied on the source code as it is lead to poor or
no energy reduction, while, when applied to a pre-
transformed code its usefulness is greatly increased.
Thus sequences of transformations should be consid-
ered, rather than single transformations. For this rea-
son it is essential to explore different transformations
and sequences of transformations in terms of their
energy reduction efficiency. The exploration strategy
should allow to easily modify the parameters of the
transformation and of the target technology and to
have a quick estimate of the expected benefits.

3.1. Conceptual Flow

Figure 3.1 shows the conceptual scheme of the esti-
mation flow. The source code is processed and its rele-
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Figure 1: Methodology flow

vant characteristics are extracted by means of a lexical
and syntactical analysis leading to the set of code pa-
rameters. Typical parameters are code size, loop body
size, number of paths, number of loop iterations, etc.
The designer then chooses the transformations param-
eters such as unroll factor, tiling size etc. and, finally,
selects the target technology from a set of libraries.
Such libraries are collections of technology parameters
specifying architectural figures such as cache sizes, bus
width etc. and electrical figures such as power supply
voltages, average core currents, bus and memory ca-
pacitances etc. Based on all this data, the estimation
models first provide the three dimensionless figures ∆I,
∆IM and ∆DM expressing the variations of number of
instructions executed, of number of instruction misses
and of number of data misses, respectively. These fig-
ures, though still rather abstract, already provide the
designer with an indication of the potential benefits of
a given transformation. To account for the target tech-
nology as well, the variations are fed to a set of mod-
els, depending on the technology parameters, leading to
an estimate of the energy reduction ∆E deriving from
the application of the considered transformation.

3.2. Technology Models

Experimental results have shown that the energy
consumption of an embedded system based on a pro-
cessor executing some programs can be approximated
by considering three major contributions: the proces-
sor core and its on-chip caches, the system bus and
the main memory. All these components can be mod-
eled at different levels of accuracy by means of equa-
tions that involve two sets of parameters: those strictly
related to the specific technology and those summa-
rizing the properties and the behavior of the code be-
ing executed. In particular, as outlined in the descrip-
tion of the conceptual flow, the energy estimates can
be based on three execution parameters only: the num-
ber of assembly instructions executed and the number

of instruction and data cache misses. Though simple,
the adopted models provide satisfactory results, espe-
cially when considering energy variations rather than
absolute values. The technology parameters considered
and used in the models are summarized in table 1. The

Symbol Meaning
Tck CPU clock period
CPI Average CPI
P cpu Average CPU power absorption
Ctot Total capacitance on the bus
Vsw Bus switching voltage
Asw Average bus switching activity
W Data bus width
B Cache block size
S Cache size

Edec Memory decode energy
Erw Memory read/write energy
Eref Memory refresh energy
Vm Memory supply voltage
Iref Memory refresh current

Table 1: Technology parameters

form of the these equations, referred to relative energy
variations, are described in the following using the sym-
bols introduced. The processor energy is modeled as:

∆Ecpu = Tck · CPI · P cpu · ∆I (1)

The contribution of system bus to energy variation is:

∆Ebus = 1
2 · Ctot · V 2

sw · W · (Ndata + Ninst) (2)
Ndata = Asw,data · Bdata · ∆DM (3)
Ninst = Asw,inst · Binst · ∆IM (4)

Finally, the energy memory model adopted is:

∆Em = ∆Em,data + ∆Em,inst + ∆Em,ref (5)
∆Em,data = (Edec + Erw · Bdata) · ∆DM (6)
∆Em,inst = (Edec + Erw · Binst) · ∆IM (7)
∆Em,ref = Tck · Vm · Iref · CPI · ∆I (8)

4. Case Studies

In this section, two case studies are reported: Loop
unrolling and Loop fusion. For each transformation, the
source code parameters and the model equations are re-
ported and discussed.

4.1. Loop Unrolling

Loop unrolling is a parametric transformation whose
results in terms of energy reduction are influenced by
the unrolling factor U , i.e. the number of times the



loop body is replicated to build the modified loop. The
parameter U , thus, completely defines the transforma-
tion. The effects of loop unrolling clearly depend also
on the characteristics of the source code being trans-
formed. Such properties are captured by the set of
source code parameters reported in Table 2.

Symbol Meaning
LI, LS Loop instructions, size (bytes)

LBI, LBS Loop body instructions, size (bytes)
N Loop iterations

Table 2: Source code parameters for loop unrolling

The number of instructions of the original loop is:

Io = N · LI (9)

The transformed loop executes Nt = �N/U� iterations
and LIt = LI + (U − 1) · LBI instructions per itera-
tion. Therefore, the total number of instructions exe-
cuted by the transformed loop is:

It = Nt · LIt = �N/U� · [LI + (U − 1) · LBI] (10)

The instructions gain obtained with unrolling is thus:

∆I =
�N/U� · [LI + (U − 1) · LBI] − Io

Io
(11)

The transformation has also effects on the number of
instruction cache misses due to the increased dimen-
sion of the loop body. A more accurate analysis leads
to the results—summarized below—that show a non-
linear dependence of the number of misses on the rela-
tive values of the loop size LS and the instruction cache
size Sinst

1. Three significant cases have been identified:

• LS ≤ Sinst — In this case there are no capac-
ity misses since the entire loop code can be loaded
into the cache. Hence, there are only cold misses,
during the first iteration. The number of instruc-
tion cache misses is thus:

IM = �LS/Binst� (12)

• Sinst < LS < 2 · Sinst — In this case capacity
misses also take place. The number of cold misses
is the same as in the previous case, but, in ad-
dition, for every successive iterations, there are
2·�(LS %Sinst)/Binst� capacity misses. Therefore,
the total number of misses is:

IM = �LS/Binst�+2·(N−1)·
⌈

LS %Sinst

Binst

⌉
(13)

1 The loop size and number of instructions are linearly related
assuming a fixed instruction size.

• LS ≥ 2 · Sinst — The number of misses in every
iteration equals the number of cold misses, i.e.:

IM = N · �LS/Binst� (14)

For all these cases, the relevant figure is the varia-
tion of the number of instruction cache misses ∆IM =
IMt − IMo. Such difference depends on the variation
of number of instructions due to the transformation:

∆LS = LSt − LSo = (U − 1) · LBS (15)

and must be calculated for all the 32 = 9 cases. It is
worth noting that since the transformed code will al-
ways be larger than the original one, only 6 out of the
9 cases are significant. For the sake of conciseness, only
the two limiting cases are described in the following.

• (LSo ≤ ICS) ∧ (LSt ≤ ICS) — In this case both
the original and the transformed code completely
fit into the cache and thus only cold misses take
place. The variation, recalling Equation (12) is:

∆IM = � LSo

Binst
� − � LSt

Binst
� ≈

⌈
(U − 1) · LBS

Binst

⌉

• (LSo ≥ 2 · ICS) ∧ (LSt ≥ 2 · ICS) — In this
other limiting case, both codes are larger than the
double of the cache size and thus each instruction
fetch causes a miss. Recalling Equation (14), the
instruction miss variation is:

∆IM = Nt ·
⌈

LS + (U − 1) · LBS

IBS

⌉
−No ·

⌈
LS

IBS

⌉

In a similar manner and referring to Equations (12)–
(14), the variations for the other four cases can be cal-
culated. The last effect to be considered is the variation
of data cache misses. Since the transformation does not
modify the data access pattern of the code, the term
∆DM can be assumed to be 0, at least at a first ap-
proximation. The three contributions ∆I, ∆IM and
∆DM can now be fed to the technology models to de-
rive the overall energy saving.

4.2. Loop Fusion

This transformation has the purpose of combining
into a new single loop the bodies of different subsequent
loops. Some constraint must be satisfied, in particular
the loops to be fused need to have the same iteration
range and the statements in their bodies must be in-
dependent. The only transformation parameter charac-
terizing loop fusion is the number of loop to be merged
FN . The source code parameters that influence the ef-
fect of this transformation are all those considered for



loop unrolling (Table 2) plus the number and size of
control instructions, defined as:

LCI = LI − LBI (16)
LCS = LS − LBS (17)

In the following the subscript k ∈ [1, NF ] is used to
indicate a specific loop among those to be fused. An
additional useful parameter is the average number of
control instructions over all the considered loops:

LCI = 1/NF · ∑NF
k=1 LCIk (18)

Using the symbols just introduced, the number of in-
structions in the original and transformed codes are:

Io = N · ∑NF
k=1(LBIk + LCIk) (19)

It = LCI + N · ∑NF
k=1 LBIk (20)

The variation ∆I is thus given by:

∆I = (NF − 1) · LCI/
∑NF

k=1 LIk (21)

assuming that LCI = LCIk ∀k. To study the effect
of loop fusion with respect to instruction misses, the
same cases considered for loop unrolling and expressed
by Equations (12)–(14) turn out to be applicable. Nev-
ertheless, when considering the original code composed
of NF loops, the number of instruction misses must be
estimated for each single loop according to the three
mentioned equations and then summed over all loops.
On the other hand, the estimates for the transformed
code can be obtained by simply substituting LS with
the overall transformed code size LSt, defined as:

LSt = LCS +
∑NF

k=1 LBSk (22)

According to equations 12)–(14) and referring to the
original code sizes LSo,k and the transformed code size
LSt, the number of instruction misses of the original
loops IMo,k and the transformed one IMt can be de-
rived. The resulting overall variation is thus:

∆IM = IMt −
∑NF

k=1 IMo,k (23)

It is worth noting that the number of possible cases de-
rived from the limiting conditions on the cache size is,
in general, 3 ·3NF . Similar considerations, not reported
here for the sake of conciseness, apply to the estima-
tion of data cache misses. Since in most cases the differ-
ent loops operate on different arrays, data misses tend
to be increased, the best-case condition being that all
data fit into the cache in which case the number of
misses will approximately be invariant.

5. Experimental results

This section reports the results obtained with the
proposed models in the estimation of ∆I and ∆IM
for two transformations. Similar results have been ob-
tained for other transformations listed in Section 2.

5.1. Loop Unrolling Results

The transformation has been applied on a test code
and the number of instruction and instruction misses
have been measured both on the original and trans-
formed code and compared with the corresponding es-
timated figures. Figure 2 shows the predictions of ∆I
and of ∆IM for different instruction cache sizes. The
proposed models show a very good accuracy and are
thus suited for energy gain estimation.
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Figure 2: Loop unrolling: ∆I, ∆IM

5.2. Loop Fusion Results

A similar procedure has been applied for loop fusion
with NF = 2 and the results for instruction misses are
shown in Figure 3, where the x axis is an index related
to the loop body size ratio. Again the accuracy ob-
tained is more than satisfactory. It is worth noting that
similar results have been obtained for other transfor-
mations as well. The results presented here have been
selected since they refer to the most critical cases, i.e.
the class of loop transformations.
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Figure 3: Loop fusion: ∆IM

5.3. Energy Estimation Results

The estimates of ∆I, ∆IM and ∆DM , combined
with the energy models (see Section 3.2) adopted to ac-
count for the technology-dependent parameters, lead
to a new set of results showing the accuracy of the
complete methodology in terms of energy reduction es-
timation. The complete models for different transfor-
mations have been tested on a set of SPEC95 bench-
marks in order to quantify the energy improvement es-
timation error. The actual energy gain has been ob-
tained by simulating both the original and the trans-
formed code and then compared with the estimated
gain derived from the models presented in this pa-
per. Experiments have been performed for four ar-
chitectures based on different processors(strongARM,
PowerPC, microSPARC and MIPS) using third-party
power profiling tools(SimplePower, sim-outorder, Spix-
Tools). Each benchmark has been analyzed varying
both the instruction cache size (Sinst) and the input
data and all compatible transformations have been ap-
plied in a proper sequence using the predicted opti-
mal values for their parameters (unroll factor, tile size,
etc.). Table 3 collects the relative eeror between the es-
timated gain ∆Eest and the actual value ∆Eact derived
from simulation. The results confirm that the models
are reliable since they can correctly predict both en-
ergy reductions and undesirable energy increases. In
conclusion, the average estimation error has shown to
be around than 3%.

6. Conclusions

This paper presented a methodology and a set of re-
lated models for the estimation of the energy consump-
tion variation deriving from the application of source-

FIB FIR WAVE

Sinst ε% σ2
% ε% σ2

% ε% σ2
%

256 +4.16 3.96 n/a n/a -1.63 1.20
512 +7.18 4.02 -3.67 4.48 -1.82 1.15
1K +3.31 1.49 -2.11 4.95 -3.93 1.51
2K -1.42 2.15 +1.03 7.68 -0.53 1.59
4K -2.08 1.91 -11.24 7.57 +0.03 1.60

Average 3.63 2.71 4.51 6.17 1.59 1.41

Table 3: Gain estimation relative errors

to-source code transformations. The main motivation
of such a work is that source code transformations are
very difficult to automate and a tedious work to be
performed by hand. This enforces the need for an es-
timation methodology that allows evaluating the po-
tential benefits of a code transformation without ac-
tually modifying the code. The proposed methodology
is based in a first, technology independent phase and
a second technology dependent step. The results re-
ported show the accuracy of the models and the via-
bility of the approach.
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