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Abstract 

Smart cards are one of the smallest computing plat-
forms in use today. Due to their limited resources appli-
cations are often simple and less complex. High perform-
ance 32-bit smart cards, which were introduced by sev-
eral vendors in the last years, allow the implementation of 
complex applications on smart cards. Additional to the 
high performance processor cores these smart cards 
contain coprocessors to reach the performance and 
power consumption goals. The interface between the 
processor and the coprocessor influences the perform-
ance and power consumption and should be evaluated 
early in the design process. We propose a hierarchical 
bus model for system-level smart card design which sup-
ports accurate energy dissipation estimation. The bus 
models have been implemented in SystemC 2.0 at transac-
tion level layer one (cycle accurate) and layer two (timing 
estimation). We evaluate accuracy and simulation per-
formance of the models and show their usage as bus func-
tional models for a smart card application.  

1 Introduction 

As discussed in a lot of papers [1], [2], power con-
sumption is an important design constraint in System-On-
Chip design. Possible goals are maximizing battery life 
time by minimizing energy consumption or thermal con-
siderations, like minimizing power consumption to reduce 
the cooling effort. In smart card design there are two main 
reasons for power considerations. The first one is the 
limitation of power consumption by different standards, 
for instance the GSM 11.11 standard limits the current to 
10 mAmps at 5V supply. More critical is power consump-
tion for contact-less smart cards that are supplied by RF 
field. The second reason for power considerations in 
smart cards is power analysis like simple power analysis 
(SPA), or differential power analysis (DPA). If smart 

cards are not protected against these attacks, it is possible 
to find out crypto keys by using such methods. 

To reach performance goals while power consumption 
stays constant requires fast software code for execution at 
low clock frequencies. Therefore software is often im-
plemented at lower levels, like assembly language or C. 
Algorithms with high computational effort, like crypto-
graphic algorithms, are often supported by dedicated 
coprocessors. The chosen HW/SW interface to control 
these coprocessors influences both system performance 
and power consumption. HW/SW interface optimization 
can be done by design space exploration, but performing 
it with assembly language and at register-transfer-level 
(RTL) is a very time consuming process. 

Raising the level of abstraction enables fast evaluation 
of different HW/SW interface alternatives. Two important 
constraints should be considered for smart card design: 

• System design should guarantee a high accuracy 
for performance and power/energy estimation 

• Estimation of power consumption over time is im-
portant to reduce the probability of a successful 
power analysis attack  

The used smart card is based on a RISC core from 
MIPS Technologies, Inc. Figure 2 shows the smart card 
architecture with the processor core and all smart card 
specific peripherals. Due to our focus on the communica-
tion between the core and the peripherals, this section 
gives a short introduction to the specified core interface. 
The external interface is called EC™ interface [3], the 
core specific implementation is documented in [4]. The 
interface is used to attach memory controllers and mem-
ory-mapped I/Os to the core. 

The interface supports 36-bit address and 32-bit data 
buses. All signals are unidirectional and therefore sepa-
rated read and write buses are used, both with their own 
bus error indication. Separated address and data phases 
allow pipelining on the interface. The used core limits the 
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number of possible outstanding transactions to four burst 
instruction reads, four burst data reads, and four burst 
writes. Address and data phases can complete in the same 
cycle they are initiated, possible required wait states for 
address and data phases are inserted by the slave. The 
interface supports only one master and one slave. A bus 
controller has to be implemented to support more than 
one slave. 
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Figure 1: Target architecture based on the 
MIPS™ 4Ksc smart card core. 

In this paper, we describe two different models imple-
mented at two different layers of transaction level for this 
bus interface. We compare the simulation performance, 
timing and power estimation accuracy and demonstrate 
our models for HW/SW interface exploration. 

The remainder of this paper is organized as follows. 
Chapter 2 surveys related work. Chapter 3 describes the 
features of the EC™ interface. The bus models at differ-
ent levels of abstraction are presented in Chapter 4. Chap-
ter 5 discusses the test environment and results. We con-
clude in chapter 6. 

2 Related Work 

A lot of research has been done in power modeling and 
estimation of bus systems. Most of the proposed bus op-
timization techniques are based on varying the bus width 
and bus coding scheme [5]. Also a lot of work has been 
done in exploration and optimization of the bus system in 
combination with caches [1]. 

Caldari et al. presented in [6] a methodology for sys-
tem-level power analysis applied to the AMBA AHB bus. 
They see a core as a functional unit, which is executing a 
sequence of instructions or processes without any infor-
mation of their real implementation. An “instruction” is 
defined as an action that, together with others, covers the 
entire set of core behaviors. Each instruction is character-
ized in terms of dissipated power. They propose different 
models for system-level power analysis: a model using a 
private power model, one using a local power model, and 
a third using a global power model.  

In [7], Caldari et al. discuss a transaction level model 
for AMBA bus architecture using SystemC 2.0. They 
demonstrate how the communication classes available in 

SystemC 2.0 can be used to produce very fast transaction 
level bus models. They implemented a bus cycle accurate 
(BCA) model using a state oriented model based on a 
program state machine. A program state machine is a 
heterogeneous model that integrates a hierarchical con-
current finite state machine with a programming language 
paradigm. Dynamic sensitivity is used to avoid calls to 
processes when they are not necessary. This model re-
sulted in a BCA AMBA bus model that simulates hun-
dreds times faster than an RTL bus model. 

Haverinen et al. divide the transaction level into differ-
ent layers, as proposed in [8]. The highest layer is layer 
three, called message layer. Systems at this level are un-
timed and execute event-driven. Data representation may 
be of a very abstract data type and several data items can 
be transferred by a single transaction between initiator 
and target. This layer can be used for functional partition-
ing, communication definition, or algorithm performance 
and behavior control. The next lower level is layer two, 
called transaction layer. Systems at this level are timed, 
but not cycle accurate and they also execute event driven. 
The transfer of several data items during a single transac-
tion can be performed by a burst or a partial burst of data. 
Layer two systems should be independent of communica-
tion protocols, but pipelined access and split transactions 
can be modeled. This level can be used for hardware 
architectural performance and behavior analysis, HW/SW 
partitioning, or cycle performance estimation. The lowest 
level is layer one and called transfer layer. These systems 
have cycle-true behavior and therefore the same behavior 
as RTL models and implementation specific communica-
tion protocols. A transaction between an initiator and a 
target involves the transport of one data item. This layer 
can be used for cycle-accurate performance simulation, 
cycle-accurate test-bench modeling, or bridging layer 
three or layer two components to cycle accurate systems. 
At last, RTL is called layer zero. 

In [7], simulation performance of a BCA model, which 
corresponds to a layer one model, is compared to a RTL 
implementation. The power estimation in [6] is only 
based on macro models based on a tool for synthesis of 
sequential circuits. Our model is implemented at transac-
tion-level layer one and layer two. We compare the simu-
lation performance and the accuracy of the power estima-
tion to results of a gate-level power estimation tool. We 
also present the loss of accuracy between the layer one 
and layer two models. 

3 Energy Estimation with Hierarchical Bus 
Models 

After the short presentation of the target architecture in 
Chapter 1 we present the two bus models and discuss the 
differences between them. The models implement parts of 



the bus interface unit, shown in Figure 1, and the bus 
controller containing the address decoder and bus control 
logic.  

3.1 EC Bus at Transaction Level Layer 1 
Figure 2 presents the general architecture of our model. 

The model is communicating with the master and the 
slaves by abstract interfaces. The bus interface to the 
master comprises one dedicated interface for instruction 
read (fetch) and a second one for read/write. All interface 
functions are implemented non-blocking. The interface 
returns a bus request state, which can have the states 
request, wait, ok, or error. Request means the bus request 
has been accepted, wait means the request is in progress, 
error indicates a bus error, ok indicates a finished bus 
request. By using these states it is possible to start several 
bus requests during one cycle. Data read and write inter-
faces support 8-bit, 16-bit, and 32-bit data widths corre-
sponding to the merge patterns defined in the EC™ inter-
face specification.  

A slave has some additional properties, which are ac-
cessible by the slave control interface. These are the ad-
dress range of the slave, wait states for address, read, and 
write phases, and bits to indicate the access rights like 
read, write, and execute. The read/write interfaces are like 
the interfaces of the master. All interface methods are 
implemented non-blocking.  
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Figure 2: Bus model supporting EC™ interface on 
transaction level layer 1. 

The communication protocol is executed by the bus 
process. The process is sensitive to the falling edge of the 
system clock while masters and slaves are triggered at 
rising edge.  

Internal Structure 
The model implements the defined interfaces and one 

bus process, which is triggered at each rising edge of the 
system clock and is defined as SC_METHOD [9]. It also 
contains four different queues for communication be-
tween the interfaces and the bus, and between the differ-
ent bus phases. The internal structure of the bus module is 
shown in Figure 3, which contains the structural view, 
Figure 3(a), and data flow view, Figure 3(b). 
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Figure 3: Internal structure of transaction level layer 1 
model: (a) structural model; (b) dataflow model. 

The bus process is composed of four phases. In the 
first phase the bus reads state information of the slaves by 
invoking their control interface, indicated in Figure 3(a) 
as getSlaveState().The address phase calculates the actual 
address state and is implemented as finite state machine 
(FSM). During the read and write phases the actual read 
and write states are calculated and the read and write 
slave interfaces are invoked. 

The data flow through the bus is as follows. The bus 
master invokes the bus interface every clock cycle until 
the bus returns error or ok. During the first invokation the 
request is stored in the request queue. The first request of 
this queue is fetched during the address phase and proc-
essed. When the address phase is finished, the request is 
passed to the read or write queue dependent on the re-
quest direction. The first available read request is fetched 
by the read phase and processed. The slave interface is 
called until it responses error or ok, afterwards the request 
is pushed into the finish queue. The request is picked up 
by the next interface call addressing this request. The 
write phase is equivalent to the read phase and can be 
processed in parallel. In our model the two phases are 
processed sequentially. Due to the sequential execution of 
the address and read/write phase the request can be passed 
from the request queue to the finish queue in one cycle.  

3.2 EC Bus at Transaction Level Layer 2  
The bus model at transaction level layer two abstracts 

the model at layer one, as discussed above. The model is 
not cycle accurate and data representation is more abstract 
than in layer one. In this model timing is computed and 
data are transferred by pointer passing. Also a burst trans-
fer is performed as a single transaction.  

The general structure is equal to the model in Figure 2, 
but the interfaces are more abstracted. There are only two 
data interface functions as master interface, one for read 
access and one for write access. Parameters are the data 



pointer, the number of bytes transferred, the address, and 
an instruction bit, which indicates an instruction fetch. 
The slave interface defines a read and a write function 
with a data pointer and byte length as parameter. It also 
contains a method to read the control functions as defined 
in the layer one model above. 

Internal Structure 
The bus model contains a bus process which is sensi-

tive to the falling edge of the system clock and only one 
shared data structure for communication between the 
interface functions and the bus process. The detailed 
timing behavior of the layer one model is determined by 
the slave state. This model reads the actual wait states of 
the slave when the request is created during the first inter-
face call. Based on these values address and data wait 
states are determined.  

The bus process is also organized in three phases. Dur-
ing the address phase the address wait state counter is 
decremented each cycle until the phase can be finished. 
After the address phase is finished the data wait state 
counter is decremented until the data phase can be fin-
ished. In the end of the data phase the slave’s data inter-
face is invoked. This behavior is the same for the read and 
write phase. Figure 4 presents the layer two model. 
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Figure 4: Transaction level model at layer 2. The 
bus contains one process and the data structure. 

3.3 Hierarchical Energy Model 
The motivation for this work was a hierarchical bus 

model supporting power estimation for HW/SW interface 
evaluation. This subsection contains the description of the 
implemented power models. But before we describe the 
models in detail we give an overview of the power esti-
mation framework used for power characterization. 

Power Characterization 
Power characterization of System-On-Chip designs is a 

big challenge. Two different use-cases are possible for 
power characterization/estimation: (i) system designers 
optimize the communication system during top-down 
hardware design, (ii) an existing platform is used for 
embedded system design and adapted or extended. In (i) 
no information is available about implementation details, 
for instance dedicated parasitic capacities and therefore 
power estimation is inaccurate. We do characterization 
for embedded system design based on this smart card 

architecture. A first prototype and the entire database 
were available for our work. Therefore it was possible to 
evaluate the estimated power consumption by the used 
tool with the prototype.  

A tool called “Diesel” was used for power estimation 
[10]. It is a gate-level power estimator connected to the 
gate-level simulator. Additional to detailed timing 
information the tool uses information from the layout 
about parasitic capacitances and resistances. It estimates 
the dissipated energy for each wire and module on the 
chip. Estimation is based on macro-cell power 
characterization, signal slopes and parasitic elements of 
all wires. The output shows the number of transitions 
between false, true and high-impedance. We abstracted all 
different transitions and use the average energy per 
transition for each signal considered for our power esti-
mation. 
Layer 1 Energy Model 

The bus model contains a power interface, which de-
fines a method returning the energy dissipated during the 
last clock cycle and a second method which returns the 
dissipated energy since the last method call. These meth-
ods allow a cycle accurate energy profiling and energy 
estimation for a longer time interval. 

The power estimation unit is implemented as a dedi-
cated module. It defines for each bus interface signal a 
member variable for the new and old value. The new 
values for all signals are set by the different bus phases. 
The bus process calls the energy calculation method after 
the write phase. At this time, all new signal values have 
been updated. Based on this new values and the old signal 
values bit transitions can be recognized and energy con-
sumption estimated.  

This methodology is like a transaction level to RTL 
adapter. Due to the availability of all signals, standard 
RTL power estimation techniques can be used to calculate 
energy consumption of all subsequent hardware blocks 
like address decoder or bus arbitration logic. In this first 
model we compute the energy consumption of the bus 
interface signals. 
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Figure 5: Interaction between the TL layer 1 bus 
model and the corresponding power model.  



There are some sources of inaccuracy compared to the 
gate-level power estimator. Due to the cycle accurate 
model, we get information about all signal transitions. 
The power estimator distinguishes between all combina-
tions of signal transitions with regard to their signal 
slopes. It also considers capacitance and resistance of 
every wire and between every wire and ground.  

Layer 2 Energy Model 
Due to the missing detailed timing information another 

approach is necessary. As discussed above, estimated 
delay times for address phase and data phase are available 
for each request. Energy estimation is also divided into 
two phases – address phase energy estimation and data 
phase energy estimation. 

The bus process passes the request to the correspond-
ing energy estimation method after the address phase is 
finished. The request data structure contains all necessary 
data and delays to calculate all signal transitions defined 
in the interface specification. The entire address phase for 
a burst read or write is calculated at once. The same 
mechanism is used for read and write phase. There are 
some more sources of inaccuracy additional to the layer 1 
model. This model does not allow an accurate count of 
transitions for control signals. One reason is the missing 
interaction with the slave, a second reason is the power 
model. It considers each transaction phase on its own but 
does not consider interactions between following transac-
tions.  

The power interface comprises only one method to get 
the energy consumed since the last method call. Due to 
the energy estimation after a finished phase, the power 
profile looks like in Figure 5. The energy consumption is 
sampled at time 1 (t1) and time 2 (t2). Energy at t1 con-
tains the address phases of request one and two. The en-
ergy sampled at t2 contains the address phase of request 
three and the data phases of the first two requests. Energy 
dissipated by the data phase of request three is not in-
cluded. As shown, this model does not support cycle-
accurate energy estimation. 
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R-Phase 1
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Time
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Figure 6: Energy sampling using the implemented in-
terface methods. 

After this short description of the implemented power 
and bus models, we would like to describe verification 

examples and the use of the models in HW/SW interface 
evaluation. 

4 Experimental Results 

This section is organized as follows. The first subsec-
tion compares timing and power accuracy between the 
different levels of abstraction. The second compares 
simulation performance and the third subsection presents 
the use of the models for embedded system design. 

4.1 Verification and Evaluation 
Verification was performed in two steps. The first step 

comprised verification with transaction examples defined 
in the EC™ interface specification. The examples are 
single read and write with and without wait states, back-
to-back reads, back-to-back writes, read followed by write 
and write followed by read with reordering, and at least 
burst read and writes.  

The second step comprised verification with the regis-
ter transfer model. The EC™ interface is controlled by 
the bus interface unit, which is part of the controller’s 
core. Therefore an assembly language test program was 
necessary to initiate the required bus transactions. We 
traced the bus transactions and used them as input test 
sequences for the transaction level models. Table 1 shows 
the timing error of the layer two model due to the used 
timing estimation.  

Table 1: Timing error between the gate-level simulation, 
transaction level layer one bus model and the transaction 

level layer two model. 

Abstraction Level Cycles Error 
Gate-level model 100% - 
Layer one model 100% 0% 
Layer two model 100,5% 0,5% 

These test vectors were also used for hierarchical en-
ergy estimation. The energy dissipated by this test se-
quence was estimated using the gate-level power estima-
tion tool “Diesel” [8]. Table 2 compares the power esti-
mation results of the gate-level and the transaction level 
estimations. 

Table 2: Energy estimation error of the transaction 
level models compared to the gate-level energy estima-
tion. All values are related to the gate-level estimation. 

Abstraction Level Energy Error 
Gate-level estimation 100 - 
TL layer 1 estimation 92,1 -7,8% 
TL layer 2 estimation 114,7 +14,7% 

4.2 Simulation Performance 
Simulation performance evaluation was performed for 

the bus models on transaction level layer one and two. In 



[1] a simulation performance acceleration factor of 100 
was published. We got an additional simulation accelera-
tion factor of five between the layer one and layer two bus 
without energy estimation. The test sequences contained 
all combinations between of single read, single write, 
burst read, and burst write transactions.  

Table 3: Simulation performance in executed bus 
transactions per second (T/s) for the transaction level 

models with and without energy estimation. 
 with estimation without estimation 
 kT/s Factor kT/s Factor 
TL Layer 1 85,3 1 94,6 1,1 
TL Layer 2 129,6 1,52 145,8 1,7 

Table 3 presents the simulation performance results for 
both bus models with and without energy estimation. 

4.3 Energy Optimization using Transaction 
Level Bus Models 

In this subsection we discuss the usefulness of abstract 
communication channels on transaction level for HW/SW 
interface evaluation. The used application is a java card 
virtual machine implemented as functional, un-timed 
SystemC model. This evaluation aims to support finding 
the best HW/SW interface between the java card inter-
preter and the hardware stack. The simplified structure of 
the un-timed java card model is shown in Figure 6 (a), the 
refined model is shown in Figure 6 (b). 
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Figure 7: SystemC functional model of java card 
virtual machine. (a) shows the functional model; 
(b) shows communication refinement using the 

energy-aware transaction level model. 

The bytecode interpreter invokes the same interface 
functions as in the pure functional model. The master 
adapter translates them into bus transactions. The slave 
adapter restores the original stack interface calls and in-
vokes the interface method of the functional stack model. 
Communication is performed by using special function 
register. During HW/SW interface evaluation we change 
the address map, organization of these registers and used 
bus transactions to access them.  

5 Conclusions 

In this paper we have presented a hierarchical bus 
model which supports energy estimation. After a short 
discussion about power-awareness in smart card system 
design, we presented models at transaction level one and 
two in detail. The results comprised the simulation per-
formance and energy estimation accuracy comparison 
between the different models. We demonstrated the use of 
this model for HW/SW interface evaluation for a java 
card virtual machine. 

We will extend this first model to allow an early en-
ergy estimation for several different typical smart card 
components, like random number generators, UARTs or 
timers. 
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