
Energy Estimation Based on Hierarchical Bus Models
for Power-Aware Smart Cards

U. Neffe, K. Rothbart, Ch. Steger, R. Weiss
Graz University of Technology

Inffeldgasse 16/1 8010 Graz, AUSTRIA
{neffe, rothbart, steger, weiss}@iti.tugraz.at

E. Rieger, A. Mühlberger
Philips Semiconductors, BL Identification
Mikronweg 1, 8101 Gratkorn, AUSTRIA

edgar.rieger@philips.com

Abstract

Smart cards are one of the smallest computing plat-
forms in use today. Due to their limited resources appli-
cations are often simple and less complex. High perform-
ance 32-bit smart cards, which were introduced by sev-
eral vendors in the last years, allow the implementation of
complex applications on smart cards. Additional to the
high performance processor cores these smart cards
contain coprocessors to reach the performance and
power consumption goals. The interface between the
processor and the coprocessor influences the perform-
ance and power consumption and should be evaluated
early in the design process. We propose a hierarchical
bus model for system-level smart card design which sup-
ports accurate energy dissipation estimation. The bus
models have been implemented in SystemC 2.0 at transac-
tion level layer one (cycle accurate) and layer two (timing
estimation). We evaluate accuracy and simulation per-
formance of the models and show their usage as bus func-
tional models for a smart card application.

1 Introduction

As discussed in a lot of papers [1], [2], power con-
sumption is an important design constraint in System-On-
Chip design. Possible goals are maximizing battery life
time by minimizing energy consumption or thermal con-
siderations, like minimizing power consumption to reduce
the cooling effort. In smart card design there are two main
reasons for power considerations. The first one is the
limitation of power consumption by different standards,
for instance the GSM 11.11 standard limits the current to
10 mAmps at 5V supply. More critical is power consump-
tion for contact-less smart cards that are supplied by RF
field. The second reason for power considerations in
smart cards is power analysis like simple power analysis
(SPA), or differential power analysis (DPA). If smart

cards are not protected against these attacks, it is possible
to find out crypto keys by using such methods.

To reach performance goals while power consumption
stays constant requires fast software code for execution at
low clock frequencies. Therefore software is often im-
plemented at lower levels, like assembly language or C.
Algorithms with high computational effort, like crypto-
graphic algorithms, are often supported by dedicated
coprocessors. The chosen HW/SW interface to control
these coprocessors influences both system performance
and power consumption. HW/SW interface optimization
can be done by design space exploration, but performing
it with assembly language and at register-transfer-level
(RTL) is a very time consuming process.

Raising the level of abstraction enables fast evaluation
of different HW/SW interface alternatives. Two important
constraints should be considered for smart card design:

• System design should guarantee a high accuracy
for performance and power/energy estimation

• Estimation of power consumption over time is im-
portant to reduce the probability of a successful
power analysis attack

The used smart card is based on a RISC core from
MIPS Technologies, Inc. Figure 2 shows the smart card
architecture with the processor core and all smart card
specific peripherals. Due to our focus on the communica-
tion between the core and the peripherals, this section
gives a short introduction to the specified core interface.
The external interface is called EC™ interface [3], the
core specific implementation is documented in [4]. The
interface is used to attach memory controllers and mem-
ory-mapped I/Os to the core.

The interface supports 36-bit address and 32-bit data
buses. All signals are unidirectional and therefore sepa-
rated read and write buses are used, both with their own
bus error indication. Separated address and data phases
allow pipelining on the interface. The used core limits the

1530-1591/04 $20.00 (c) 2004 IEEE

number of possible outstanding transactions to four burst
instruction reads, four burst data reads, and four burst
writes. Address and data phases can complete in the same
cycle they are initiated, possible required wait states for
address and data phases are inserted by the slave. The
interface supports only one master and one slave. A bus
controller has to be implemented to support more than
one slave.

32-Bit
RISC
CPU

MMU

TLB
Array

Cache
Controller

Instruction
Cache

Data
Cache

Scratchpad
RAM

Bu
s

In
te

rfa
ce

 U
ni

t
ROM FLASHEEPROM

256 kB
program
memory

32 kB data &
program
memory

64 kB
program
memory

Interrupt
system UART

True
random
number

generator

TIMER

32
Bit
TO

32
Bit
T1

Processor core

System
Coprozessor

Power
Mgmt

EJTAG

Figure 1: Target architecture based on the
MIPS™ 4Ksc smart card core.

In this paper, we describe two different models imple-
mented at two different layers of transaction level for this
bus interface. We compare the simulation performance,
timing and power estimation accuracy and demonstrate
our models for HW/SW interface exploration.

The remainder of this paper is organized as follows.
Chapter 2 surveys related work. Chapter 3 describes the
features of the EC™ interface. The bus models at differ-
ent levels of abstraction are presented in Chapter 4. Chap-
ter 5 discusses the test environment and results. We con-
clude in chapter 6.

2 Related Work

A lot of research has been done in power modeling and
estimation of bus systems. Most of the proposed bus op-
timization techniques are based on varying the bus width
and bus coding scheme [5]. Also a lot of work has been
done in exploration and optimization of the bus system in
combination with caches [1].

Caldari et al. presented in [6] a methodology for sys-
tem-level power analysis applied to the AMBA AHB bus.
They see a core as a functional unit, which is executing a
sequence of instructions or processes without any infor-
mation of their real implementation. An “instruction” is
defined as an action that, together with others, covers the
entire set of core behaviors. Each instruction is character-
ized in terms of dissipated power. They propose different
models for system-level power analysis: a model using a
private power model, one using a local power model, and
a third using a global power model.

In [7], Caldari et al. discuss a transaction level model
for AMBA bus architecture using SystemC 2.0. They
demonstrate how the communication classes available in

SystemC 2.0 can be used to produce very fast transaction
level bus models. They implemented a bus cycle accurate
(BCA) model using a state oriented model based on a
program state machine. A program state machine is a
heterogeneous model that integrates a hierarchical con-
current finite state machine with a programming language
paradigm. Dynamic sensitivity is used to avoid calls to
processes when they are not necessary. This model re-
sulted in a BCA AMBA bus model that simulates hun-
dreds times faster than an RTL bus model.

Haverinen et al. divide the transaction level into differ-
ent layers, as proposed in [8]. The highest layer is layer
three, called message layer. Systems at this level are un-
timed and execute event-driven. Data representation may
be of a very abstract data type and several data items can
be transferred by a single transaction between initiator
and target. This layer can be used for functional partition-
ing, communication definition, or algorithm performance
and behavior control. The next lower level is layer two,
called transaction layer. Systems at this level are timed,
but not cycle accurate and they also execute event driven.
The transfer of several data items during a single transac-
tion can be performed by a burst or a partial burst of data.
Layer two systems should be independent of communica-
tion protocols, but pipelined access and split transactions
can be modeled. This level can be used for hardware
architectural performance and behavior analysis, HW/SW
partitioning, or cycle performance estimation. The lowest
level is layer one and called transfer layer. These systems
have cycle-true behavior and therefore the same behavior
as RTL models and implementation specific communica-
tion protocols. A transaction between an initiator and a
target involves the transport of one data item. This layer
can be used for cycle-accurate performance simulation,
cycle-accurate test-bench modeling, or bridging layer
three or layer two components to cycle accurate systems.
At last, RTL is called layer zero.

In [7], simulation performance of a BCA model, which
corresponds to a layer one model, is compared to a RTL
implementation. The power estimation in [6] is only
based on macro models based on a tool for synthesis of
sequential circuits. Our model is implemented at transac-
tion-level layer one and layer two. We compare the simu-
lation performance and the accuracy of the power estima-
tion to results of a gate-level power estimation tool. We
also present the loss of accuracy between the layer one
and layer two models.

3 Energy Estimation with Hierarchical Bus
Models

After the short presentation of the target architecture in
Chapter 1 we present the two bus models and discuss the
differences between them. The models implement parts of

the bus interface unit, shown in Figure 1, and the bus
controller containing the address decoder and bus control
logic.

3.1 EC Bus at Transaction Level Layer 1
Figure 2 presents the general architecture of our model.

The model is communicating with the master and the
slaves by abstract interfaces. The bus interface to the
master comprises one dedicated interface for instruction
read (fetch) and a second one for read/write. All interface
functions are implemented non-blocking. The interface
returns a bus request state, which can have the states
request, wait, ok, or error. Request means the bus request
has been accepted, wait means the request is in progress,
error indicates a bus error, ok indicates a finished bus
request. By using these states it is possible to start several
bus requests during one cycle. Data read and write inter-
faces support 8-bit, 16-bit, and 32-bit data widths corre-
sponding to the merge patterns defined in the EC™ inter-
face specification.

A slave has some additional properties, which are ac-
cessible by the slave control interface. These are the ad-
dress range of the slave, wait states for address, read, and
write phases, and bits to indicate the access rights like
read, write, and execute. The read/write interfaces are like
the interfaces of the master. All interface methods are
implemented non-blocking.

SL nSL 3

SL 2SL 1

Processor
core

Bus
process

System clock

SL: Slave
I-IF: Instruction Interface
D-IF: Data Interface

I-IF

D-IF

Figure 2: Bus model supporting EC™ interface on
transaction level layer 1.

The communication protocol is executed by the bus
process. The process is sensitive to the falling edge of the
system clock while masters and slaves are triggered at
rising edge.

Internal Structure
The model implements the defined interfaces and one

bus process, which is triggered at each rising edge of the
system clock and is defined as SC_METHOD [9]. It also
contains four different queues for communication be-
tween the interfaces and the bus, and between the differ-
ent bus phases. The internal structure of the bus module is
shown in Figure 3, which contains the structural view,
Figure 3(a), and data flow view, Figure 3(b).

data &
instruction

interface

request
queue

finish
queue

Bus Process
{
 getSlaveState();
 addressPhase();
 readPhase();
 writePhase();
}

read
queue

write
queue

slave
port

request
queueIF call

current
address
request

read
queue

write
queue

current
read

request

current
write

request

finish
queue IF

(a)

(b)

address phase read phase
write phase

Figure 3: Internal structure of transaction level layer 1
model: (a) structural model; (b) dataflow model.

The bus process is composed of four phases. In the
first phase the bus reads state information of the slaves by
invoking their control interface, indicated in Figure 3(a)
as getSlaveState().The address phase calculates the actual
address state and is implemented as finite state machine
(FSM). During the read and write phases the actual read
and write states are calculated and the read and write
slave interfaces are invoked.

The data flow through the bus is as follows. The bus
master invokes the bus interface every clock cycle until
the bus returns error or ok. During the first invokation the
request is stored in the request queue. The first request of
this queue is fetched during the address phase and proc-
essed. When the address phase is finished, the request is
passed to the read or write queue dependent on the re-
quest direction. The first available read request is fetched
by the read phase and processed. The slave interface is
called until it responses error or ok, afterwards the request
is pushed into the finish queue. The request is picked up
by the next interface call addressing this request. The
write phase is equivalent to the read phase and can be
processed in parallel. In our model the two phases are
processed sequentially. Due to the sequential execution of
the address and read/write phase the request can be passed
from the request queue to the finish queue in one cycle.

3.2 EC Bus at Transaction Level Layer 2
The bus model at transaction level layer two abstracts

the model at layer one, as discussed above. The model is
not cycle accurate and data representation is more abstract
than in layer one. In this model timing is computed and
data are transferred by pointer passing. Also a burst trans-
fer is performed as a single transaction.

The general structure is equal to the model in Figure 2,
but the interfaces are more abstracted. There are only two
data interface functions as master interface, one for read
access and one for write access. Parameters are the data

pointer, the number of bytes transferred, the address, and
an instruction bit, which indicates an instruction fetch.
The slave interface defines a read and a write function
with a data pointer and byte length as parameter. It also
contains a method to read the control functions as defined
in the layer one model above.

Internal Structure
The bus model contains a bus process which is sensi-

tive to the falling edge of the system clock and only one
shared data structure for communication between the
interface functions and the bus process. The detailed
timing behavior of the layer one model is determined by
the slave state. This model reads the actual wait states of
the slave when the request is created during the first inter-
face call. Based on these values address and data wait
states are determined.

The bus process is also organized in three phases. Dur-
ing the address phase the address wait state counter is
decremented each cycle until the phase can be finished.
After the address phase is finished the data wait state
counter is decremented until the data phase can be fin-
ished. In the end of the data phase the slave’s data inter-
face is invoked. This behavior is the same for the read and
write phase. Figure 4 presents the layer two model.

Bus Process
{
 addressPhase();
 readPhase();
 writePhase();
}

request
list

Slave
PortData IF

Figure 4: Transaction level model at layer 2. The
bus contains one process and the data structure.

3.3 Hierarchical Energy Model
The motivation for this work was a hierarchical bus

model supporting power estimation for HW/SW interface
evaluation. This subsection contains the description of the
implemented power models. But before we describe the
models in detail we give an overview of the power esti-
mation framework used for power characterization.

Power Characterization
Power characterization of System-On-Chip designs is a

big challenge. Two different use-cases are possible for
power characterization/estimation: (i) system designers
optimize the communication system during top-down
hardware design, (ii) an existing platform is used for
embedded system design and adapted or extended. In (i)
no information is available about implementation details,
for instance dedicated parasitic capacities and therefore
power estimation is inaccurate. We do characterization
for embedded system design based on this smart card

architecture. A first prototype and the entire database
were available for our work. Therefore it was possible to
evaluate the estimated power consumption by the used
tool with the prototype.

A tool called “Diesel” was used for power estimation
[10]. It is a gate-level power estimator connected to the
gate-level simulator. Additional to detailed timing
information the tool uses information from the layout
about parasitic capacitances and resistances. It estimates
the dissipated energy for each wire and module on the
chip. Estimation is based on macro-cell power
characterization, signal slopes and parasitic elements of
all wires. The output shows the number of transitions
between false, true and high-impedance. We abstracted all
different transitions and use the average energy per
transition for each signal considered for our power esti-
mation.
Layer 1 Energy Model

The bus model contains a power interface, which de-
fines a method returning the energy dissipated during the
last clock cycle and a second method which returns the
dissipated energy since the last method call. These meth-
ods allow a cycle accurate energy profiling and energy
estimation for a longer time interval.

The power estimation unit is implemented as a dedi-
cated module. It defines for each bus interface signal a
member variable for the new and old value. The new
values for all signals are set by the different bus phases.
The bus process calls the energy calculation method after
the write phase. At this time, all new signal values have
been updated. Based on this new values and the old signal
values bit transitions can be recognized and energy con-
sumption estimated.

This methodology is like a transaction level to RTL
adapter. Due to the availability of all signals, standard
RTL power estimation techniques can be used to calculate
energy consumption of all subsequent hardware blocks
like address decoder or bus arbitration logic. In this first
model we compute the energy consumption of the bus
interface signals.

current
address
request

current
read

request

current
write

request

address phase read phase
write phase

Signal
generator

Signal
generator

Signal
generator

request request request

Power Model

Address & control
signals

read signals write signals

Figure 5: Interaction between the TL layer 1 bus
model and the corresponding power model.

There are some sources of inaccuracy compared to the
gate-level power estimator. Due to the cycle accurate
model, we get information about all signal transitions.
The power estimator distinguishes between all combina-
tions of signal transitions with regard to their signal
slopes. It also considers capacitance and resistance of
every wire and between every wire and ground.

Layer 2 Energy Model
Due to the missing detailed timing information another

approach is necessary. As discussed above, estimated
delay times for address phase and data phase are available
for each request. Energy estimation is also divided into
two phases – address phase energy estimation and data
phase energy estimation.

The bus process passes the request to the correspond-
ing energy estimation method after the address phase is
finished. The request data structure contains all necessary
data and delays to calculate all signal transitions defined
in the interface specification. The entire address phase for
a burst read or write is calculated at once. The same
mechanism is used for read and write phase. There are
some more sources of inaccuracy additional to the layer 1
model. This model does not allow an accurate count of
transitions for control signals. One reason is the missing
interaction with the slave, a second reason is the power
model. It considers each transaction phase on its own but
does not consider interactions between following transac-
tions.

The power interface comprises only one method to get
the energy consumed since the last method call. Due to
the energy estimation after a finished phase, the power
profile looks like in Figure 5. The energy consumption is
sampled at time 1 (t1) and time 2 (t2). Energy at t1 con-
tains the address phases of request one and two. The en-
ergy sampled at t2 contains the address phase of request
three and the data phases of the first two requests. Energy
dissipated by the data phase of request three is not in-
cluded. As shown, this model does not support cycle-
accurate energy estimation.

A-Phase 1 A-Phase 2 A-Phase 3

R-Phase 1

W-Phase 2

Time

t2t1

R-Phase 3

Figure 6: Energy sampling using the implemented in-
terface methods.

After this short description of the implemented power
and bus models, we would like to describe verification

examples and the use of the models in HW/SW interface
evaluation.

4 Experimental Results

This section is organized as follows. The first subsec-
tion compares timing and power accuracy between the
different levels of abstraction. The second compares
simulation performance and the third subsection presents
the use of the models for embedded system design.

4.1 Verification and Evaluation
Verification was performed in two steps. The first step

comprised verification with transaction examples defined
in the EC™ interface specification. The examples are
single read and write with and without wait states, back-
to-back reads, back-to-back writes, read followed by write
and write followed by read with reordering, and at least
burst read and writes.

The second step comprised verification with the regis-
ter transfer model. The EC™ interface is controlled by
the bus interface unit, which is part of the controller’s
core. Therefore an assembly language test program was
necessary to initiate the required bus transactions. We
traced the bus transactions and used them as input test
sequences for the transaction level models. Table 1 shows
the timing error of the layer two model due to the used
timing estimation.

Table 1: Timing error between the gate-level simulation,
transaction level layer one bus model and the transaction

level layer two model.

Abstraction Level Cycles Error
Gate-level model 100% -
Layer one model 100% 0%
Layer two model 100,5% 0,5%

These test vectors were also used for hierarchical en-
ergy estimation. The energy dissipated by this test se-
quence was estimated using the gate-level power estima-
tion tool “Diesel” [8]. Table 2 compares the power esti-
mation results of the gate-level and the transaction level
estimations.

Table 2: Energy estimation error of the transaction
level models compared to the gate-level energy estima-
tion. All values are related to the gate-level estimation.

Abstraction Level Energy Error
Gate-level estimation 100 -
TL layer 1 estimation 92,1 -7,8%
TL layer 2 estimation 114,7 +14,7%

4.2 Simulation Performance
Simulation performance evaluation was performed for

the bus models on transaction level layer one and two. In

[1] a simulation performance acceleration factor of 100
was published. We got an additional simulation accelera-
tion factor of five between the layer one and layer two bus
without energy estimation. The test sequences contained
all combinations between of single read, single write,
burst read, and burst write transactions.

Table 3: Simulation performance in executed bus
transactions per second (T/s) for the transaction level

models with and without energy estimation.
 with estimation without estimation
 kT/s Factor kT/s Factor
TL Layer 1 85,3 1 94,6 1,1
TL Layer 2 129,6 1,52 145,8 1,7

Table 3 presents the simulation performance results for
both bus models with and without energy estimation.

4.3 Energy Optimization using Transaction
Level Bus Models

In this subsection we discuss the usefulness of abstract
communication channels on transaction level for HW/SW
interface evaluation. The used application is a java card
virtual machine implemented as functional, un-timed
SystemC model. This evaluation aims to support finding
the best HW/SW interface between the java card inter-
preter and the hardware stack. The simplified structure of
the un-timed java card model is shown in Figure 6 (a), the
refined model is shown in Figure 6 (b).

Bytecode interpreter

Memory
Manager

Firewall

StackControl

(a)

Bytecode interpreter Stack

(b)

TLM
BusMA SA

MA: Master Adapter
SA: Slave Adapter

Figure 7: SystemC functional model of java card
virtual machine. (a) shows the functional model;
(b) shows communication refinement using the

energy-aware transaction level model.

The bytecode interpreter invokes the same interface
functions as in the pure functional model. The master
adapter translates them into bus transactions. The slave
adapter restores the original stack interface calls and in-
vokes the interface method of the functional stack model.
Communication is performed by using special function
register. During HW/SW interface evaluation we change
the address map, organization of these registers and used
bus transactions to access them.

5 Conclusions

In this paper we have presented a hierarchical bus
model which supports energy estimation. After a short
discussion about power-awareness in smart card system
design, we presented models at transaction level one and
two in detail. The results comprised the simulation per-
formance and energy estimation accuracy comparison
between the different models. We demonstrated the use of
this model for HW/SW interface evaluation for a java
card virtual machine.

We will extend this first model to allow an early en-
ergy estimation for several different typical smart card
components, like random number generators, UARTs or
timers.

Bibliography

[1] T.D. Givargis, F. Vahid, J. Henkel, “Evaluating Power
Consumption of Parametrized Cache and Bus Architec-
tures in System-on-a-Chip Designs”, Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on, 2001.

[2] W. Fornaciari, D. Sciuto, C. Silvano, “Power Estimation
for Architecture Exploration of HW/SW Communication
on System-Level Buses”, Hardware/Software Codesign,
Proceedings of the 7th International Workshop, 1999.

[3] MIPS Technologies, Inc., “EC™ Interface Specification”,
Revision 1.05, www.mips.com, 2003.

[4] MIPS Technologies, Inc., “MIPS32 4K™ Processor Core
Family Integrator’s Guide”, Revision 1.07, 2000.

[5] L. Benini, A. Macii, E. Macii, M. Poncino, R. Scarsi,
“Architectures and Synthesis Algorithms for Power-
Efficient Bus Interfaces”, Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on,
2000.

[6] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni,
L. Pieralisi, C. Turchetti, “System-Level Power Analysis
Methodology Applied to the AMBA AHB Bus”, Design
Automation and Test in Europe Conference and Exhibi-
tion, 2003.

[7] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi,
C. Turchetti, “Transaction-Level Models for AMBA Bus
Architecture Using SystemC 2.0”, Design Automation and
Test in Europe Conference and Exhibition, 2003.

[8] A. Haverinen, M. Leclercq, N. Weyrich, D. Wingard,
“White paper for SystemC™ based SoC Communication
Modeling for the OCP™ Protocol”, www.ocp-ip.com,
2002.

[9] Open SystemC Initiative (OSCI), “SystemC 2.0 Language
Reference Manual”, Revision 1.0, www.systemc.org,
2003.

[10] Philips Electronic Design & Tools, “Diesel 2.6 User Man-
ual”, Eindhoven, The Netherlands, 2001.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

