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Abstract

The CHAIN self-timed Network-on-Chip (NoC) archi-
tecture provides a flexible, clock-independent solution to
the problems of system-on-chip (SoC) interconnect. In this
paper we look at the use of CHAIN in a low-performance,
smartcard chip to connect two self-timed processors and a
range of memories and peripherals. Key design-time
advantages provided by the use of CHAIN in this design
included the ability to operate a very-narrow, high-fre-
quency network fabric using serial communication with-
out the need for high frequency clocking, rapid assembly
in the final stages of the design and the avoidance of the
need to perform timing analysis or validation on the SoC
interconnect. Additionally we describe a bare port that
provided direct access to the CHAIN fabric which was
instrumental in testing and debugging the smartcard chip.

1. Introduction

The question of how to connect the many components of
a system-on-chip (SoC) is becoming increasingly difficult
to answer as systems become more complex and as the rel-
ative delay costs of wires become more significant with
every CMOS feature size shrink.

One answer to this question is to use a self-timed inter-
connect mechanism to connect a mixture of IP blocks
which may themselves be constructed using either self-
timed or synchronous design styles. In fact, the ITRS road-
map recognizes that such Globally Asynchronous, Locally
synchronous (GALS) systems may be inevitable in the not
too distant future. This approach is a far cry from today’s
approach of using legacy buses, such as AMBA [1] and
CoreConnect [2], designed around a processor interface.

This paper describes the use of a self-timed network-on-
chip to meet the interconnect needs of a secure smartcard
chip. It also describes several test components that were
incorporated into the chip and that allowed successful test-
ing and debugging of the fabricated chip.
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2. The G3card smartcard chip

Figure 1 shows a block diagram of the major compo-
nents of an entirely self-timed system-on-chip including
two variants of the SPA processor [3], a complete imple-
mentation of the ARMvVS5T ISA [4], three on-chip memory
blocks (for program and/or data), a Memory Protection
Unit (MPU), timers, a random number generator (RNG), a
smartcard UART [5] for communication with a card-reader
and a small CHAIN network-on-chip connecting these
together. The chip was designed and fabricated to evaluate
the circuit-level effects of self-timed design on the security
of the system, but in doing so provided a vehicle to:

* demonstrate the syntax directed translation method of
the Balsa synthesis tool [6] on an entire processor core;

* prove the capabilities of the CHAIN self-timed Net-
work-on-Chip in a low-performance system.

This paper presents measurements and an analysis of the
CHAIN network implementation used on the chip and a
description of the support it provided for debugging imple-
mentation errors in the final silicon.
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Figure 1: Smartcard system architecture



3. The CHAIN architecture

CHAIN [7] is an approach to SoC interconnect using a
network of low-cost switches and narrow links all operating
using self-timed protocols. The links and switches, which
can be ganged together for increased throughput, are then
used in conjunction with well-defined packet formats to
provide virtual connections between client devices.

3.1. Self-timed link protocol

The individual CHAINlinks, illustrated in figure 2, com-
prise five forward-going signals and an explicit acknowl-
edge signal to allow self-timed flow control. The data-
encoding used on these links is a 1-hot code allowing either
2-bits of data or a control marker, end-of-packet (eop), to
be sent on each communication. A return-to-zero protocol
is used so that after each communication, the link returns to
the idle state. There are thus four signal transitions (two
data, two acknowledge) for every two-bit communication.
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Figure 2: CHAINIink
3.2. Scalable performance

The significant delays incurred due to long wires on
small feature-size CMOS processes mean that repeater
stages are often required to repower the signal, resulting in
propagation delays proportional to the connection length.

These repeaters can easily be modified so that they
behave as pipeline latches, allowing the cycle-rate of the
links to be increased. This type of change can be easily
accommodated since there is no (slow) global clock limit-
ing the fabric’s performance. A suitable circuit of a CHAIN
pipeline latch is shown in figure 3. The key features in the
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Figure 3: CHAIN pipeline latch

circuit are the datapath latches (actually Muller C-elements
[8], similar to transparent latches) the OR-gate detecting
the presence of a valid, latched output and generating an
input-acknowledge.

The variation in the cycle-rate of a CHAINlink stage for
different link lengths, based on SPICE RC-network simu-
lations for a TSMC 0.18um CMOS process with alumin-
ium wires, is shown in figure 4. For a 2mm link, it can be
seen that the cycle-rate is about 380MHz, giving a through-
put of about 0.75Gb/s/link. For higher throughputs, links
can be ganged together to form a wider datapath. It should
be noted that the repeaters used were only 2x standard drive
cells. The 2mm link cycle-rate can be improved to about
500MHz using cells with stronger outputs.
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3.3. Packet switching

The pipeline latch/repeater shown in figure 3 can be
extended [7], through the addition of extra logic, to support
steerable forks and joins between links. To control the
steering of data by these units, which form a distributed net-
work, the data is formatted into packets, as shown in
figure 5. Each packet contains a route, one or more mes-
sages and an end-of-packet marker.

HEADER PAYLOAD
~ —~ G
lelSlzlzl| & &
=y o || & & I\
83 lslzl| 588

2] W —

ROUTE | [ 8|5 |4 |2 |% 23> EOP
:Hg‘gow - = =
S|2|ElE|2|| 87 ¢
R—1 ~N | @ <
TIEIEIRIE|| < 2
%) = =

Figure 5: Packet format

Where a connection in a network uses a gang of links as
described above, the route and end-of-packet symbols are
replicated on all of the links in the gang, and the packet
body (the messages) is spread across the links in the gang.



4. Smartcard chip integration using CHAIN

Integration of the components described in section 2 and
the additional test/debug support described later in
section 5 required a CHAIN network supporting a total of
3 initiators, 6 targets and the bare port. The construction of
the fabric is described below.

4.1. The network fabric

Since the required performance of the smartcard system
was only 10 MIPS, there was no need for a complex, high-
performance network in this system. This allowed exploi-
tation of the low-end of CHAIN’s scalability in three areas:

* Link-length - low performance requirements allowed
links of around 2mm to be used giving around 0.75Gb/s
throughput per link.

* Gang width - a gang of two links gives an aggregate
throughput of 1.5Gb/s, which gives an upper bound on
message throughput of about 31 million messages/sec-
ond (for a 48-bit read-command/read response message)
and a fabric-imposed latency of 32ns over-and-above
the route-setup time.

* Topology - minimal concurrency was required since the
two processors would not (in normal circumstances) be
simultaneously enabled, and did not support memory-
system pipelining. A simple concentrate/expand topolo-
gy, analogous to a shared bus, was adequate.

This meant that the fabric was composed of connections
formed from two outgoing links to carry the commands,
and two returning links to carry the responses with the
switching components connected as shown in figure 6.
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Figure 6: Network fabric composition
4.2. Network interface adapters

All connections between client devices and the CHAIN
fabric are made by either an initiator or a target network
interface. These are responsible for a number of tasks
including:

» performing the serial<->parallel conversion necessary
to transmit the 16-bit message headers, and 32-bit ad-
dresses, read-data and write-data payloads across the
narrow connections provided by the gangs of two
CHAINIinks.

determining the routing setup symbols required to steer
a packet from the sender to the receiver and transmitting
these at the start of the packet.

* constructing and processing the 16-bit message header

* transmitting the end-of-packet symbol after the last
message to clear-down the connection.

The internal structure of an initiator network interface
adapter is shown in figure 7.
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Figure 7: Initiator Network Interface Adapter

In a more demanding application, the network interface
adapters would also manage the end-to-end flow control to
restrict the number of outstanding transactions permissible
by an initiator and would provide any packet reordering
required to ensure the correct operation of the system.

The interfaces provided by the network interface adapt-
ers in this system all used the dual-rail data design style.
The secure SPA processor, peripherals and test interface
could use this interface directly, but small hand-designed
protocol adapter wrappers were required for devices such
as the single-rail SPA and the ROM and RAM memories.

4.3. Component placement

The final layout of the chip is shown in figure 8 with the
CHAINIinks and the fabric switches highlighted. The only
constraint on the floorplanning stage was to roughly bal-
ance the lengths of the CHAINIinks, keeping the long links
below the 2mm length, which was easy to achieve.

4.4. Design validation and timing closure

The system was extensively simulated using extracted
transistor/capacitance netlists of the two processors with
functional models for the memories and basic, non-
extracted transistor netlists (no R/C values) for the CHAIN
network in order to validate the functionality and correct
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Figure 8: The SPA smartcard chip

timing behaviour of the computational blocks.

The CHAIN network fabric was never extracted prior to
device fabrication, since with the self-timed design guaran-
tees correct-by-construction timing behaviour and the net-
work offered a significant margin over the required system
performance level.

With the fine-grained control over the network perform-
ance provided by the ability to choose abitrary link-lengths
and gang-widths as described earlier, it is expected that sys-
tem-level interconnect timing validation should be unnec-
essary in the majority of systems built around CHAIN
where sufficient margins can be designed in, although in
extremely high performance systems, some simulation
might still be desirable to validate the network perform-
ance.

4.5. Tool flow

Most of the components of the smartcard, including the
two processors, the memory protection unit and the periph-
erals, were synthesised using the Balsa asynchronous syn-
thesis system. Commodity memories were used and a few
very small interfaces and the on-chip interconnect were
hand-designed.

Balsa compiles the circuit description and produces a
Verilog standard-cell netlist. The hand-designed parts were
then incorporated into the same structural netlist which was
then fed through standard commercial tools (Cadence, Sil-
iconEnsemble, Arcadia, Nanosim, etc.) for gate-level sim-
ulation, static timing analysis, layout and routing,
extraction and transistor-level simulation.

A conventional standard cell library was used for this
work, but it was augmented with a few special self-timed
cells (a Mutex [9] and Muller C-elements). Whilst such
cells can be constructed using conventional synchronous
cells, they were added as custom primitives to improve per-
formance and reduce area costs.

5. Test components in the smartcard chip

Since the smartcard system does not need an external
memory interface, its only general-purpose communication
route with the outside is through the dedicated UART. This
severely limits the controllability and observability of the
system. Although this is desirable in a production smart-
card for security reasons, it is not convenient in an experi-
mental chip. To aid the testing and debugging of the system
and the CHAIN network, the following interfaces were
included in the design.

5.1. External Test Interface

A synchronous test interface was included on the chip to
provide external access for applying test patterns and ini-
tialising the contents of the on-chip memories. The external
interface is similar to the one which was successfully
employed on Amulet3i [10] and operates fully synchro-
nously as this style is best suited to current automated chip
test machinery.

The test interface consists of a 32-bit bidirectional bus,
a 3-bit control-bus and a clock input and supports reading
and writing at arbitrary addresses in the on-chip address



space through its own dedicated initiator interface to the
CHAIN fabric. This allows the memories and peripherals to
be tested directly, and the processors to be tested indirectly
by loading code into the memory, running the code and then
reading back a checksum from the memory.

5.2. Bare fabric port

To allow further debugging support and memory expan-
sion, a bare port was added to the network fabric. This bare
port brings the underlying fabric to external pins, without
an initiator or target interface. As the fabric uses 2 ganged
CHAINIinks and we wanted the bare port to bring single
CHAINIinks off chip, a small controller was implemented
using a multiplexer/demultiplexer with some buffering.
The initiator interfaces route-mapping tables (which gener-
ate the route-symbols at the head of a packet) were modi-
fied so that all addresses not corresponding to a memory-
mapped peripheral would be directed to the bare port.

The symmetry between a read-command and a read-
response (route, 16 bit header, 32 bit address or data, eop)
allows the bare port to be used in a loop-back configuration.
The self-timed nature of the command and response links
and their identical structure (5 forward and 1 acknowledge
signals) allows the loop-back to consist of simply wiring
the pins together.

5.3. Other test features

Two external pins set the bootstrap configuration of the
chip. The levels on these pins control which of the four on-
chip memories is used for the first instruction fetch after a
reset. This allows us to boot the processor from ROM dur-
ing testing and from non-volatile memory when in service.

Support was also added to the initiator interfaces to
allow an external pin to override the route-mapping tables
so that ALL network traffic is routed to the bare port, thus
effectively giving a direct connection from the processor to
the outside world. The override can be removed part way
through a transaction causing the route-mapping tables to
revert to their normal operation for subsequent transactions.

6. Debugging the silicon using CHAIN

The chips were fabricated through MOSIS on a TSMC
0.18um 6 layer metal CMOS process which runs the core
cells at 1.8V and the pad ring at 3.3V. No production testing
was performed on the chips.

As expected, all the major self-timed components on the
chip operated correctly. Unfortunately, the received parts
had a small number of faults in the hand-designed inter-
faces to the synchronous components which were later
mostly identified as design errors as described in the fol-
lowing subsections.

6.1. Test interface

The test interface was supposed to allow reading to and
writing from arbitrary locations in the memory address
space using a simple synchronous interface. In reality, it
was impossible to use for any practical purpose since on
read operations it always returned the all-ones pattern. This
was a serious problem since its main purpose was to allow
testing and initialisation of the on-chip memories.

Further testing of this interface, by writing-to and read-
ing-from the CHAIN bare port showed that in fact write and
read operations were being performed correctly, but there
was an error in the logic controlling the timing of the tristate
drivers on the bidirectional off-chip pins meaning that they
were enabled during the wrong phase of the interface’s
clock cycle.

6.2. RAM self-timed wrapper

The test interface should have been the simplest method
for initialising the memories in order to bootstrap the proc-
essor, but it was not the only avenue available.

As described in section 5.3, the memory map also
allowed the first instruction to be fetched from the ROM,
which contained code to bootstrap the system using the
UART to load code into the memory from off-chip. How-
ever, this did not work either, because (as was later identi-
fied) the memory self-timed wrapper had a delay-fault
which had not been apparent in simulation.

The final, but least attractive option available was to use
the CHAIN bare port with the route-mapping table override
active so that the processor would ignore its on-chip mem-
ory system and run all code from off-chip. This of course
has performance implications.

Using this approach, the basic functionality of the proc-
essor was proven. Using the route-mapping table override
allowed the processor to be bootstrapped into running code
from the unmapped region of the address space (which of
course is always directed to the bare port as described in
section 5.2) and then the removal of the override allowed
the on-chip memory subsystem to be probed by the proces-
sor. The failure of the RAM self-timed wrapper then
became apparent.

6.3. External timing reference signal

An internal signal was brought off-chip to act as a timing
reference to aid the security analysis. This signal was gen-
erated internally by a coprocessor (sync copro in figure 1)
connected to one of the SPA processor cores but, unfortu-
nately, the pulse width was too narrow and the pulse
degraded in passing through the pad buffer and was not vis-
ible to the outside world. This posed the problem of how to



provide a suitable timing reference to aid the security anal-
ysis.

The solution adopted was to use the bare port loop-back
feature, described in section 5.2, without any additional
hardware. This results in a single pulse on one of the inter-
face signals which is an acceptable alternative to the
coprocessor pulse.

6.4. Measurements and results

Some of the above problems were worked-around,
whilst others had to be fixed using a focused ion beam, but
eventually a fully functioning chip was obtained which was
used to perform the security analysis reported elsewhere
[11] and to examine the on-chip CHAIN networks behav-
iour.

Initial performance measurements place the secure SPA
at 6 MIPS and the single-rail SPA at 11 MIPS. The perform-
ance of the secure version is not as high as had been
expected. Several sources of inefficiency have already been
identified in the SPA architecture, the Balsa code and the
implementation of the secure back-end but it is too early to
predict what performance improvement may be achieved
by correcting these problems.

Measuring the performance of the high-speed network
fabric embedded in the low performance smartcard chip has
proven more difficult than first anticipated.

To aid debugging of the network fabric and interface
adapters, a small experimental target was included in the
design which could introduce sequences of transaction
deferrals and transaction abortions.

By using the solution described in section 6.3 to measure
the time difference between a set of CHAIN transactions
that were deferred compared to the same set of transactions
without any deferral, it was found that the fabric did in fact
operate at just over the nominal 500MHz cycle-rate pre-
dicted by simulations, illustrated in figure 4, for the longest
link on the chip which is about 1.5mm in length.

7. Conclusions

This paper has shown how a self-timed network-on-chip
has been successfully deployed in a simple system-on-chip
design. The self-timed nature of the interconnect meant that
there was no need to perform post-layout timing validation
of the network after the final stages of system integration.

A further advantage from the self-timed operation was
the ability to use only a very thin network fabric operating
at a much higher cycle rate than the processing and memory
subsystems that were to be connected, without having to
provide (and timing validate) a high-speed clock. The fab-
ric’s bare port proved so useful in debugging the chip that
we are currently enhancing its capabilities and performance

for use in future designs.

The fabricated chip has demonstrated how a self-timed
network-on-chip can perform all of the functions offered by
a more conventional system bus such as allowing test
access and debugging of the IP blocks within the system,
whilst giving the significant advantages of self-timed oper-
ation, rapid timing closure and greater design flexibility/
scalable performance.
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