A Scalable Implementation of a Reconfigurable WCDMA Rake Receiver

Marc Quax, Jos Huisken & Jef van Meerbergen

Abstract

The demands in terms of processing performance,
communication bandwidth and real-time throughput of
new generation mobile communication applications
(mobile and base-stations) are much higher than today’s
programmable processing architectures can deliver. On
the other hand standards and market uncertainties, non-
recurring engineering costs, and lack of access to (or
knowledge of) application IP will require the next
generation of embedded computing platforms to be fully
programmable. In terms of silicon cost and power,
practical yet fully programmable embedded computing
platforms are enabled by reconfigurable processors that
replace fixed ASICs in current standard platforms [§].
This paper explains the concepts behind a novel
reconfigurable WCDMA Rake receiver and gives
benchmark results. The proposed Rake receiver enables a
high performance, yet flexible computing platform for
WCDMA.

1 Itroduction

Code division multiple access (CDMA) is used in
spread spectrum systems to enable multiple access. It is a
transmission technique in which the frequency spectrum of
a data signal is spread using a code uncorrelated with that
of the user data signal. Different spread spectrum
techniques exists: Direct Sequence (DS), Frequency
Hopping (FH), Time Hopping (TH) and multi carrier
CDMA (MC-CDMA). In this paper the direct sequence
(DS) frequency-division duplex (FDD) mode of the
wideband code-division multiple access (WCDMA)
standard [1, 2] is considered. In the transmitter the user
information bits (symbols) are spread over a wide
frequency bandwidth by directly multiplying the user data
bits with a spreading code sequence at high rate (see
Figure 1). The Rake receivers are used for increasing
multipath diversity which is important to increase the
capacity of a CDMA system. Traditionally a Rake receiver
consists of a number of Rake fingers (see Figure 2), each
assigned to a different multipath signal, and a maximum
ratio combiner for coherently combining the outputs of
each finger. Each multipath component is despread by
correlating the received signal with the spreading code
over a period corresponding to the spreading factor (SF).

1530-1591/04 $20.00 () 2004 | EEE

spreading despreading

Input d. <> X,
data >

rx, <> D, output

<> data
pn, channel pn.
NV%TNVw f

TS
(symbo1)
1 <«—

do 1 .
-1 L] -R. -R, R, R_
SF
;] e
pn, _[1[[0 w//ﬁ\\\/
K] oot -R. -R, R, R_ f
(ch%cp)
ex O 0 /’fw
>t f
bl ULy -R-R, R, R_
time frequency

Figure 1 Spreading and despreading

After the despreading, maximum ratio combining
(MRC) is applied to the symbols from the fingers. The
phases of the symbols are aligned, and amplitudes are
weighted according to a channel estimate from the channel
estimator. From the implementation point of view many
challenges have to be faced to ensure overall receiver
flexibility. Wideband CDMA applications require the
execution of a large number of tasks at high data rate. The
amount of processing power demanded by such
applications is so large that executing multiple Rake
receivers on a traditional DSP is not feasible. The reason
for this is mainly the sequential behaviour of the
application, due to the conditional operations, and not
having domain specific operations. Much higher
performance is obtained by executing multiple tasks in
parallel. This can be exploited in a multiprocessor
approach. However, this approach increases internal
communication, often leading to performance and
scalability bottlenecks. This paper presents a novel VLIW
DSP core that can exploit the data parallelism by placing
the conditional operations not in the control path of the
processor but in the data-path. The processor and its
associated programming tools were created using a
proprietary automatic processor and tool generation flow.
An innovative C-compiler, generated from the same
methodology, aggressively exploits massive instruction
parallelism in the Rake application kernel mapped onto the

core. The architecture is scalable and flexible enough to
target different standards.

2 Related work

2.1 Conventional Rake receiver

A conventional Rake receiver is depicted in Figure 2.
The input to the Rake receiver is a baseband sample
stream of oversampled chips (see Figure 1).

» Maxi
Ratio >
Combiner

Buffer

f
finger T T T
Aﬂ Searcher & Tracker ‘

Figure 2 Block diagram of a conventional Rake
receiver based on multiple parallel Rake fingers

In order to receive several multipath components of the
transmitted signal, a dedicated Rake finger is allocated to
each of the tracked multipath components. Thus the Rake
finger count corresponds to the maximum number of
multipaths which is typically between two and six [3, 4].
In a Rake finger, the received samples are correlated with
a time aligned wideband spreading code and integrated
over a period corresponding to the spreading factor.
Because the delay spread can be several times longer than
the symbol integration period, the symbol dumps for a
specific data symbol are completed at different times.

Therefore, each finger stores symbol dumps in a
deskew buffer (random access FIFO buffer) from which
they can be accessed for channel correction and maximum
ratio combining after all multipath symbol dumps are
available [3, 4]. The maximum delay spread and the
lowest spreading factor supported by a Rake finger
specifies the size of the deskew buffer.

2.2 FlexRake receiver

Instead of using a number of dedicated fingers,
FlexRake receiver performs correlation operations
sequentially by accessing a buffer that serves as a time-
sliding window to the received I/Q samples [5]. This
makes the FlexRake more efficient than the standard
conventional Rake receiver approach. The FlexRake
consists of a sample buffer and a correlator engine. The
main optimisation is that it uses one correlator engine that
works time multiplexed between the Rake fingers that are
active.

1/Q samples

Circular
Address
Generator

v

Offset
Address
Registers

¥

Circular Buffer ‘

[
Code
Generator

59
D

Symbol dumps
Integration Integration
Registers Registers —>

Figure 3 FlexRake architecture

This means that, to be able to process up to eight active
fingers, the correlator engine needs to be eight times faster
than the conventional Rake receiver. The correlator engine
consists of code generators (for both scrambling and
channelization code), a complex multiplier, a number of
integration registers (one for each finger) and a deskew
buffer for the correlated symbol dumps.

The correlator performs a complex multiplication of the
chips with the combined scrambling and channelization
code. The result is accumulated with the previous
correlated sample and stored in the integration registers for
that particular finger. Then the next finger is processed.
When one finger has integrated over the spreading factor,
the resulting symbol is stored in the deskew buffer for
later combining.

2.3 Post-buffer Rake receiver, ASIC
implementation

The Post-buffer Rake receiver takes a different
approach to the buffering problem [6]. If the oversampling
factor (Oy) is eight and the maximum delay (Delayspread,
D.) between two fingers is 296 T, then the sample buffer
used in the FlexRake receiver needs to be:

O, -D, =2368 samples

With a sample width of 2*6 bits, the total memory size
is 28416 bits. The memory access rate is:

(Os + Nﬁngers)

C
where Nineers is the number of active fingers.

By processing each finger individually (like a
conventional Rake receiver), and keeping track of their
respective delays, it is possible to do the time alignment at
symbol dump resolution. Since the time alignment is done
at symbol rate, instead of sample rate, the memory access
is much lower. The memory size used by the Post buffer
Rake receiver is [6]:

=61.44MHz

S;ﬂ -2 symbol,y,, =4736 [bits]

min

1/Q samples

Code '
Generator

b

Circular Offset
Address Address
Generator Registers

A,
Integration

Symbol dumps
Registers [[| Circular Buffer —»

Figure 4 Post buffer Rake receiver

ﬁJ‘ NIPARYS

3 Reconfigurable WCDMA Rake receiver

The demands in terms of processing performance,
communication bandwidth and real-time throughput of the
WCDMA Rake receiver is much higher than today’s
programmable processing architectures can deliver. The
architectures presented in the previous chapter are all
optimised RAKE solutions with little or no flexibility to
map other applications.

At the same time standards and market uncertainties,
non-recurring engineering costs, and lack of access to (or
knowledge of) application IP will require the next
generation of embedded computing platforms to be fully
programmable.

The presented reconfigurable WCDMA Rake processor
architecture is different to all previous WCDMA Rake
receiver designs because it is a programmable VLIW
digital signal processor (DSP) optimised for WCDMA
applications. The processor performance is increased by
executing multiple operations in parallel.

3.1 Scalability of design

3.1.1 Problem

The limitations on scalability of a design depend in
general on the existence of resource dependencies. Shared
resources in a processor create resource dependencies, e.g.
when multiple functional units try to access a shared
resource. These operations have to be scheduled
sequentially. These shared resources form a bottleneck in
the scalability of a design. In the FlexRake architecture the
shared memory forms the bottleneck in scalability.

3.1.2 Solution

In the case of mapping a Rake application to a scalable
processor template, locality of reference is important.
Otherwise internal communication forms the bottleneck in
scalability. There are multiple solutions to map Rake
algorithms. The solutions can be divided into different
groups, each with its own pros and cons:
o Alignment at chip level.

o One memory before correlation.
o Alignment at symbol level.

o Distributed memory after correlation.

o Distributed memory in MRC.

Alignment at chip level is a solution with one shared
memory, like the FlexRake solution. The memory stores
the incoming over-sampled chips. The samples from
memory are delivered to each Rake finger.

This implementation does not scale with the number of
fingers mapped because of the presence of one shared
memory and its limitations on memory access bandwidth.

Implementation of the alignment at symbol level can be
done in two ways.

The first solution is placing the alignment memory in
the finger after the despreading operation but before the
maximum ratio combination. Basically a deskew buffer for
each finger as in a conventional Rake receiver.

The second solution is placing the memory in the
maximum ratio combining. The despreading operations
belonging to one Rake receiver are executed sequentially.
The symbol dumps are, after accumulation with partially
combined symbols from memory, stored in the same
memory location. In this way the memory is more
effectively used. The maximum ratio combiner stores the
partial accumulated symbols in a circular buffer, which is
implemented in a similar way to the circular buffer in the
Post buffer solution. Each Rake receiver has a dedicated
memory range (see Figure 5), i.e. each Rake finger has a
base address pointing to the allocated Rake receiver. Each
Rake finger has a second modulo offset pointer which is
used to address the delayspread memory range allocated
for one Rake receiver. The allocated memory size for one
Rake receiver has the same length as the delay spread in
symbols. This second solution is implemented in the
reconfigurable WCDMA Rake receiver.

Base Offset
Address Address

Rake
receiver
y 1

Delay spread
in symbols

A
N

Rake
receiver
2

RAM
Figure 5 Memory map

The fingers can be relocated dynamically to different
Rake receivers by changing the base offset address
pointer.

3.2 Exploiting parallelism

3.2.1 Problem

The limitation on exploiting the parallelism on a VLIW
machine is given by dependencies. A dependency between
two operations is a conflict that prevents the operations
from executing concurrently. In the Rake application the
dependency that dominates is the control dependency (see
Figure 6). A control dependency occurs when an operation
is guarded by the output of another operation. In the Rake
application these conditional operations are frequently
used. The problem of the conditional statements is the
need to interact with the branch controller. Since in a
single-threaded machine there is only one branch
controller this causes a bottleneck.

Local_acc_fingerl += despread_chip;

if (local SF fingerl == 0)

{ ‘ , Finger
symbol fingerl = Local_acc_fingerl;
local_acc_fingerl = 0;
local_sf_fingerl = SF;
address = delay_fingerl + counter; MRC
mrc_symbol fingerl = MRC[address];

MRC[address] = mrc_symbol fingerl +

symbol fingerl;
}
local_sf_ fingerl -= 1;

Figure 6 Example of conditional operation

Because of this dominant control dependencies, the
conditional statements are executed in a sequential
manner. This sequential behaviour forms the bottleneck in
exploiting the parallelism in single-threaded DSPs. Figure
7 shows the Rake algorithm mapped on a single-threaded

processor without exploiting the parallelism.

Conditional Loop body

operations

t t
(

++;++; ++

I
»

N SRR N — —— cycles

FINGER 1 FINGER 2

functions

FINGER 2

Figure 7 Schedule Rake receiver on single-threaded
DSP processor

In a multi processor implementation of the Rake
algorithm, all Rake fingers and maximum ratio combiners
can be modelled as independent processes. Each process
has its own (branch) controller. The processors are
mutually connected via a common interconnect. The
limitation of this approach is the scalability of the design,
since there is a resource common for all processors (the
common interconnect). This resource dependency exists

between two operations when they both need to use the
same physical resource at the same time.

3.2.2 Solution

From previous chapters it can be concluded that:
e Parallelism exists in the baseband Rake processing
algorithm
o Shared resources form a limitation on scalability
e Control dependency is highly dominant in the Rake
application, causing the algorithm to be executed in a
sequential manner on a single-threaded DSP.

if (fingerl.loopcount == 0)
{
fingerl.local_acc = 0;
fingerl.loopcount = SF;
}
if (finger2.loopcount == 0)
{
finger2.local acc = 0;
finger2.loopcount = SF;
}
fingerl.local += input;
finger2.local += input;
--fingerl.loopcount;
--finger2.loopcount;

Figure 8 Multiple conditional operations

At the end of the correlation period, a jump operation
takes place and a number of counters have to be reset, to
their initial values (see Figure 8).This moment is not
synchronized (when aligning at symbol level) for all
correlation operations. The key idea is to place the
condition in the data-path as a selection input to a
multiplexer. These conditional operations can be mapped

on a multiplexer functional unit (see Figure 9).
‘ co “ Do “ D1 ‘ ‘ ci “ D2 “ D3

A . A . A

g\ =0 #0
l PSUO l PSU1

Figure 9 Conditional operation in datapath

The variable fingerl.loopcount is the selection input of
the pass wunit 0, placed in register CO. The
fingerl.local acc value is placed in register D1 and the
initiation value (0) is placed in register DO. The
multiplexer selects register DO when the condition is zero,
i.e. at the end of the correlation interval (loopcount==0).
When the loopcount is non zero, the value in register D1 is
passed. The output of the pass unit is transferred to the
ALU where the next operation is executed.

It is now possible to perform multiple conditional
operations in parallel, because there is no interaction with
a branch controller. In the architecture of the processor

there are multiple conditional pass units to support
conditional statements in the data-path.

3.3 Programming

Making use of the massively parallel resources of the
novel WCDMA Rake receiver processor requires powerful
programming tools. The core is supported by
programming tools that abstract the complex details of the
architecture away from the programmer. Instead of having
to perform low-level scheduling and resource allocation
manually, programmers can therefore focus on optimising
applications in C.

Novel scheduling techniques are able to analyse the
constraints of the architecture (partial interconnect,
extremely partitioned register files, multi input/output
functional units) and the application (severe timing
constraints) and use them to their advantage rather than be
hampered by them [9, 10].

3.3.1 Schedule

The WCDMA Rake algorithm mapped on the core
executes one WCDMA finger and maximum ratio
combining in two cycles, making use of software
pipelining. This implies that 3 fingers, allocated to one
Rake receiver, use 6 cycles (see Figure 10) as body of the
loop.

body & Loop of Rake

receiver

Processor
issue slot

Issue slot usage
per cycle

i i
IUsage (%) 33 293341337338 3346 425433 5438 542542 12258 120 | -l
a [[Esbmes

Schedule cycle

Figure 10 Schedule of Rake receiver

The architecture can be conceptually extended to
support multiple instances of the Rake receiver. Multiple
Rake receivers can be scheduled in parallel and/or
sequential (see Figure 11). The number of fingers per Rake
receiver can be allocated dynamically.

Rake Rake
Resources receiver 1 receiver 2

core 4
core 3
core 2
core 1

Cycles

Figure 11 Schedule of multiple Rake receivers
sequentially and parallel

These parallel cores can all be placed under the control
of one controller (see Figure 12). In this way multiple
Rake receivers can be scheduled in parallel.

Figure 12 Multiple parallel Rake receivers

3.4 Reconfigurable accelerator architecture
template

The reconfigurable WCDMA Rake accelerator (see
Figure 13) is a specific instantiation from a general
architecture template underlying our processor generation
methodology. The core contains 16bit ALUs, 16x16bit
MAC, four send/receive units connected to system I/O,
four 16 bit load/store units connected to local data
memories, and a programmable code generation unit
(CGU).

Our proprietary internal design methodology and tools
enable automatic instantiation of the architecture template.
Our highly abstract specification language TIM allows for
the very quick design of different architectures. A typical
TIM description describing a complete processor is only a
few hundred lines long. Both the processor hardware and
the associated programming tools are automatically
generated from this same TIM description, enabling a
huge productivity increase. In this way, a virtually
unlimited variety of application-domain-specific cores can
be created very fast, as dictated by market evolution. A big
benefit of this approach is that instead of going for a catch-
all solution that may be over-dimensioned and therefore
too costly for the application at hand, one only pays for the
flexibility required when powerful application domain
tailoring is available. In a nutshell, our architecture

template is configurable at design time, i.e. before
fabrication, whereas each generated core is reconfigurable
after fabrication, and flexible enough to tackle all

‘ Partial interconnect

Partial interconnect

Gavee e

(S|
i i T
I MAU I
system 1/0 Local data
memo

application needs within its target domain.

Figure 13 WCDMA Rake processor

4 Results

Synthesizable VHDL was generated for one
reconfigurable Rake receiver. The core was synthesized
using standard cells in 0.12 pm technology resulting in 0.2
mm? area and 6.64 mW power consumption @ 100 MHz
using a wire load model.

5 Conclusions

A key enabler to truly programmable SoCs are
reconfigurable accelerators that can replace currently-used
ASIC designs with a comparable computational efficiency
(MOPS/W) and low silicon overhead. We have presented
a reconfigurable WCDMA RAKE processor that addresses
these market needs. The presented reconfigurable
WCDMA Rake accelerator is a massively parallel
reconfigurable core supported by an innovative compiler.
It is tailored to perform inner receiver WCDMA Rake
kernels. We have presented results on the reconfigurable
WCDMA Rake core and its supporting compiler that
prove that C-programmable coarse-grained reconfigurable
processors with a computational efficiency approaching
that of ASICs at a modest area cost have finally become
reality.

References

[1] H. Holma and A. Toskala, WCDMA for UMTS, John
Wiley & Sons, Ltd., New York, U.S.A., 2000.

[2] T. Ojanperi and R. Prasad, Wideband CDMA for third
Generation Mobile Communications, Artech House,
Boston, MA, U.S.A., 1998.

[3] M. Kuulusa and J. Nurmi, “Baseband implementation
aspects for W-CDMA mobile terminals”, in Proc.Baiona
Workshop on Emerging Technologies in
Telecommunications, Baiona, Spain, Sep. 1999, pp. 292-
296.

[4] S.D. Lingwood, H. Kaufmann, and B. Haller, “ASIC
implementation of direct-sequence spread spectrum
RAKE-receiver”, in Proc. IEEE Vehicular Technology
Conference, Stockholm, Sweden, Jun. 1994, pp. 1326-
1330.

[5] L. Harju, M. Kuulusa, and J. Nurmi, “A flexible Rake
receiver architecture for WCDMA mobile terminals”, in

Proc. IEEE Workshop on Signal Processing Adavances in
Wireless Communications, Taoyuan, Taiwan, Mar. 2001.

[6] M. Nilsson, “Efficient ASIC implementation of a
WCDMA Rake receiver”, Master thesis Luled University
of technology, Stockholm, Sweden, Apr. 2002.

[8] Silicon Hive, “Technology Primer”,
http://www.siliconhive.com

[9] A.H. Timmer, M.T.J. Strik, J.L. van Meerbergen and
J.A.G. Jess, “Conflict modelling and instruction
scheduling in code generation for in-house DSP cores”,
Proc. ACM/IEEE Design Automation Conference, pp.
593-598, 1995

[10] B. Mesman, “Constraint analysis for DSP code
generation”, Ph.D.thesis, Eindhoven University of
Technology, The Netherlands, 2001

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

