
Carry-Save Montgomery Modular Exponentiation on Reconfigurable Hardware

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese
Universit̀a degli Studi di Napoli Federico II, Italy
{acilardo, mazzeo, lrom, saggese}@unina.it

Abstract

In this paper we present a hardware implementation
of the RSA algorithm for public-key cryptography. Basi-
cally, the RSA algorithm entails a modular exponentiation
operation on large integers, which is considerably time-
consuming to implement. To this end, we adopted a novel
algorithm combining the Montgomery’s technique and the
carry-save representation of numbers. A highly modular,
bit-slice based architecture has been designed for execut-
ing the algorithm in hardware. We also propose an FPGA-
based implementation of the architecture developed. The
characteristics of the algorithm, the regularity of the archi-
tecture, and the data-flow aware placement of the FPGA
resources resulted in a considerable performance improve-
ment, as compared to other implementations presented in
the literature.

1. Introduction

In the recent years, we have witnessed to an increas-
ing deployment of hardware devices for providing security
functions, such as confidentiality, authentication, integrity
and non-repudiation [1]. Among the existing techniques the
Rivest-Shamir-Adleman (RSA) algorithm [2] is by far the
most widely adopted public-key cryptography algorithm.
The RSA algorithm has a number of applications [1], such
as encryption and digital signature. The basic operation
of this algorithm is modular exponentiation on large inte-
gers, i.e. Y = XE mod N , which is used for both de-
cryption/signature and encryption/verification. The secu-
rity level of an RSA cryptosystem is tied to the length of
the modulusN . A modulus of at least 768 bits is recom-
mended, but one had best use 1024-bit moduli at least for
long-term security. All operands involved in the computa-
tion of modular exponentiation have normally the same size
as the modulus.

All existing techniques for computingXE mod N re-
duce modular exponentiation to a sequence of modular mul-
tiplications. Several sub-optimal algorithms have been pre-

sented in the literature to compute the sequence of multi-
plications leading to theEth power of X, such as binary
methods (RL-algorithm and LR-algorithm), M-ary meth-
ods, Power Tree, and more [3, 4]. We adopted the method
known as Binary Right-to-Left Algorithm [4] which con-
sists of repeated squaring and multiplication operations.
This choice was motivated by its simple and efficient hard-
ware implementation.

Since modular multiplication is the core computation of
all modular exponentiation algorithms, the efficiency of its
execution is crucial for any implementation of the RSA al-
gorithm. Unfortunately, modular multiplication is a com-
plex arithmetic operation because of the inherent cost of
multiplication and modulo operations. Several techniques
have been proposed in the last years for achieving efficient
implementations of modular multipilcation. In particular,
Blakley’s method [5] and Montgomery’s method [6] are the
most studied ones. Indeed, they are the only algorithms
suitable for practical hardware implementation [3]. Both
Blakley’s method and Montgomery’s method perform the
modular reduction during the multiplication process. No
division operation is needed at any point in the process.
However, Blakley’s method needs a comparison between
two large integers at each step of the modular multiplication
process, while the Montgomery’s method does not. This is
achieved by resorting to a representation of the operands as
a residue class moduloN . Furthermore, the Montgomery’s
technique requires some preprocessing and postprocessing
steps, which are needed to convert the numbers to and from
the residue based representation. However, the cost of these
steps is negligible when many consecutive modular multi-
plications are to be executed, as in the case of RSA. This
is the reason why the Montgomery’s method is considered
the most efficient algorithm for implementing RSA oper-
ations. There exist several versions of the Montgomery’s
algorithm, depending on the numberr used as the radix for
the representation of numbers. In hardware implementa-
tionsr is always a power of 2.

The Montgomery’s algorithm is in turn based on re-
peated additions on integer numbers. Since the size of
operands is as large as the modulus, the addition operation

1530-1591/04 $20.00 (c) 2004 IEEE

turns out to be the most critical step from the implementa-
tion viewpoint. In this paper, we present a novel algorithm
combining the Montgomery’s technique with the radix-2
carry-save representation of numbers so that the basic ad-
dition has a time complexity which does not scale with the
operand size.

A bit-slice based architecture has been developed which
exploits the properties of the carry-save based algorithm.
This architecture is highly modular, regular, and scalable
with respect to the length of the modulusN . It is also well-
suited for an efficient fully-parallel hardware implementa-
tion, which can be hosted in a medium size reconfigurable
device.

Another major contribution of this paper is the Field-
Programmable Gate Array (FPGA) implementation of the
proposed architecture. We resorted to a data-flow aware
placement technique to achieve an optimal result from the
synthesis process, with respect to the basic bit-slice and the
overall structure.

The characteristics of the algorithm, the regularity of the
architecture, and the data-flow aware placement resulted in
a 32% improvement in the total time for a modular expo-
nentiation process, compared to the best implementation in
the literature of the radix-2 Montgomery’s algorithm.

The rest of the paper is organized as follows. Section 2
presents the proposed algorithm for computing the RSA
modular exponentiation. Section 3 describes the architec-
ture implementing the modular exponentiation algorithm.
Section 4 provides details about physical implementation of
the proposed architecture and presents the results achieved.
Section 5 gives some comparisons with previously reported
implementations of modular exponentiation. Section 6 con-
cludes the paper with some final remarks.

2 Algorithms

For implementation of modular multiplication we ex-
ploited some optimizations of Montgomery’s product first
described by Walter [7]. Let modulusN be represented
with K bits, andR equal to2K+2. Please note thatN is
always odd in the RSA algorithm. TheN -residue ofA
with respect toR is defined as the positive integer̄A =
A·R mod N . Montgomery Product [6] of residues ofA and
B, MonProd(Ā, B̄), is defined as(Ā · B̄ · R−1) mod N ,
that is theN -residue of the desiredA · B mod N . If
A,B < 2N , combining [7] and [3], the following radix-
2 binary add-shift algorithm can be employed to calculate
MonProd:
Algorithm 1 - Montgomery Product MonProd(A,B) radix-2.
GivenN =

PK−1
i=0 Ni ·2i, A =

PK+2
i=0 Ai ·2i < 2N , B < 2N ,

whereN0 = 1, Ai, Ni ∈ {0, 1}, AK+1, AK+2 = 0, computes
a number falling in [0, 2N [which is moduloN congruent with
desired(A ·B · 2−(K+2)) mod N

1. U = 0

2. For j = 0 to K + 2 do

3. if (U0 = 1) then U = U + N

4. U = (U/2) + Aj ·B
5. end for

Algorithm 1 is the algorithm we used to implement the
digit-serial implementation we presented in [11]. Starting
from this algorithm, we rearranged it to accept a carry-
save representation of numbers. Basically our version of
the Montgomery’s algorithm computesMonProd(A,B)
based on a modified form of the previous radix-2 Mont-
gomery algorithm avoiding carry propagation in the loop
body.
Algorithm 2 - Carry-Save Montgomery Product MonProd(A,B)
radix-2.
GivenN =

PK−1
i=0 Ni ·2i, A =

PK+4
i=0 Ai ·2i < 2N , B < 2N ,

whereN0 = 1, Ai, Ni ∈ {0, 1}, AK+1 . . .AK+4 = 0, computes
a number falling in [0, 2N [which is moduloN congruent with
desired(A ·B · 2−(K+2)) mod N

1. S := 0, C := 0

2. V := 0

3. for h := 0 to K + 4 do

4. q := f(S2, S1, C1, C0, N1)

5. VNEXT := Ah · 4B + q ·N
6. S := S/2, (S, C) := S + C + V

7. V := VNEXT

8. end for

9. return S/2 + C

where(S, C) := S + C + V denotes a carry-save addition, i.e.
givenS =

PK+3
i=0 Si ·2i, C =

PK+3
i=0 Ci ·2i, V =

PK+3
i=0 Vi ·2i,

the updated values ofS andC are obtained asSi := Si⊕Ci⊕Vi

andCi := SiCi + SiVi + CiVi.
The value ofq is evaluated as follows:

q =





S2 ⊕ C1 when(S1 = 0) ∧ (C0 = 0),
S2 ⊕ C1 ⊕ N1 whenS1 ⊕ C0 = 1,

S2 ⊕ C1 when(S1 = 1) ∧ (C0 = 1).

During thehth iteration,q represents the least significant bit
of the partial productU (U = S/2 + C) computed during
the(h + 1)th iteration. The least significant bits of the cur-
rentU are needed to choose which value ofV to add during
the next operation in the loop of the Montgomery’s algo-
rithm. These bits can be easily derived even though num-
bers are in carry-save form. It is worth emphasizing that in
our MonProd algorithm step 6, which performs the cur-
rent operation, has no dependency upon steps 4-5, which
decide on the subsequent operation. Thus, control opera-
tions and data operations can be executed concurrently even
if the addition is implemented on a fully parallel structure.
The quantities4B and4B +N can be computed and stored
before executing theMonProd algorithm, and added dur-
ing theMonProd loop according to the values ofAh and
q (step 5).

In the following we report the exponentiation algorithm
for computingXE mod N known as Right-To-Left binary
method [4], modified in order to take advantage of Mont-
gomery’s product as defined in Algorithm 2.
Algorithm 3 - Right-To-Left Modular Exponentiation using Mont-
gomery Product.
GivenN =

PK−1
i=0 Ni · 2i, X < N , E =

PH−1
i=0 Ei · 2i < N ,

andW = (2K+2)2 mod N . computesP = XE mod N .
1. Z := MonProd(X, W)

2. P := MonProd(1, W)

3. for j := 0 to H − 1 do

4. Z := MonProd(Z, Z)

5. if (Ej = 1) then P := MonProd(P, Z)

6. end for

7. return MonProd(P, 1)

whereMonProd(A, B) is a number falling in [0, 2N [which is
moduloN congruent with(A ·B · 2−(K+2)) mod N .

The first phase (steps 1-2) calculates residues of ini-
tial valuesX and 1. For a given key value, the factor
W = (2K+2)2 mod N remains unchanged. It is thus possi-
ble to use a precomputed value for such a factor and reduce
residue calculation to aMonProd. The core of the com-
putation is a loop in which modular squares are performed,
and previous partial resultP is multiplied byZ, based on
a test performed on the value ofith bit of E. It is worth
noting that, due to the absence of dependencies between
instructions 4 and 5, these can be executed in parallel. In-
struction 7 allows to switch back from the residue domain to
the normal representation of numbers. Note thatMonProd
normally returns numbers in the range [0, 2N [. However,
as Walter proved in [8], the last Montgomery’s product of
Algorithm 3 (step 7) produces always a number less than
N . Thus, instruction 7 of Algorithm 3 does not need any
reduction step and the result of the exponentiation process
can be directly output.

3 Architecture

A fully parallel architecture has been developed to meet
the characteristics of theMonProd and modular exponen-
tiation algorithms.

In particular, the modular exponentiation Algorithm 3
consists of a sequence ofMonProd pairs included in steps
1-2 and 4-5. In each of these steps the firstMonProd op-
eration will be referred to asZ product, while the second
asP product. In eachMonProd occurring in the modu-
lar exponentiation algorithm,A andB will denote the left
operand and the right operand, respectively. TheZ product
and theP product can be performed concurrently, and can
share the same right operandB.

As far as the Algorithm 2 is concerned, provided that
the two quantities4B and4B + N are pre-computed and
stored before starting theMonProd, steps 4-5 can be ac-

complished just by selecting forVNEXT one of the quanti-
ties{0, N, 4B, 4B+N}, depending on the current values of
the least significant bits ofS, C, N . The carry-save addition
(step 6) does not depend on the selection done during the
same iteration. In fact, the selection for its operands is per-
formed during the previous iteration by means ofVNEXT

andV . This allows the circuit to perform concurrently the
selection and the addition operations, and thus to break the
critical path of the architecture. Note that the computation
of the selection bitq as reported in the previous section has
the same time complexity than a carry-save addition. The
MonProd algorithm also requires two carry-propagate ad-
ditions, i.e.4B+N in the pre-processing phase andS/2+C
in the post-processing phase.

The architecture implementing the modular exponenti-
ation andMonProd algorithms is shown in Figure 1. It
works on up toL-bit moduli and it is composed ofL + 4
bit-slices, whereL+4 is the maximum size of intermediate
results. The bit-slice structure is shown in Figure 2. It con-
sists of two distinct sections performing concurrently theZ
andP product.

Figure 1. The overall architecture for Mont-
gomery Modular Exponentiation.

The superscriptsZ andP in the figures indicate that the
corresponding signals and components are specifically in-
volved inZ andP product computation. The flip-flops for
the shared quantitiesN , 4B, and4B + N are accessed by
both theZ andP sections.

The two blocks labelledDual Mode(DM) adder in Fig-
ure 2 perform both carry-save and carry-propagate additions
using the same hardware resources.

Each of the two DM adder arrays in Figure 1 uses the
registerC (CZ or CP) to hold the carry part of the carry-
save pair during the loop of theMonProd algorithm, while
the flip-flops of registerC are individually used for carry
propagation during a(K + 4)-bit carry-propagate addition.

Figure 2. The structure of the ith bit-slice.

More precisely, within theith bit-slice, each of the two DM
adders can add theith bit of S/2 (i.e. Si+1), Ci, and one of
{0, Ni, (4B)i, (4B + N)i} in carry-save mode for execut-
ing S := S/2, (S, C) := S +C +V in theMonProd loop
body taking one clock cycle altogether. In carry-propagate
mode the DM adder can add the bitsSi+1, Ci together with
the carry coming from the(i − 1)th bit-slice for executing
the MonProd post-processing additionS/2 + C, taking
K + 4 clock cycles altogether. TheZ DM adder can also
add the bits(4B)i andNi in carry-propagate mode for exe-
cuting theMonProd pre-processing addition4B +N . It is
worth noting that the two carry-propagate additionsS/2+C
for theP and theZ MonProd (performed concurrently by
both theP section and theZ section after theMonProd
loop) and the carry-propagate addition4B +N (whereB is
the previousZ product and the addition is performed before
starting the followingMonProd loop) can overlap during
the modular exponentiation process, thus takingK+5 clock
cycles altogether. The shifts forS/2 and 4B are wired.
Shift-registers are used to handle the quantitiesE, AZ , and
AP .

Please note that each bit-slice communicates only with
the two preceding bit-slices, that is, all data signals are
strictly local. This is an advantageous condition for any
hardware implementation. Furthermore, control signals can
be easily broadcast since theMonProd algorithm allows
to pipeline controller and data path operations. In fact, the
selection (steps 4-5 of Algorithm 2) and the addition (step
6) are independent.

Altogether, a complete modular exponentiation process
takes(2K+14)(H+2)+K+7 clock cycles, whereK ≤ L
is the actual bit size of the modulus andH is the bit size of
the exponent. The dominant term2KH is due toK + 5
carry-save additions and the overlapped(K + 4)-bit carry-
propagate additions, to be iteratedH + 2 times within the
modular exponentiation algorithm.

It is worth noting that ourMonProd algorithm could be
modified to hold theMonProd result in carry-save form
throughout the modular exponentiation process. However,

we did not choose this option since the change would have
required more registers and given no time advantage since
the MonProd post-processing conversionS/2 + C over-
laps with the subsequent pre-processing addition4B + N
for the intermediate steps of the modular exponentiation
process.

4. Physical Implementation

The architecture presented in the previous section has
been implemented on a Field-Programmable Gate Array
(FPGA). The target device belongs to the Xilinx Virtex se-
ries of FPGAs. The Xilinx Virtex architecture consists of
a logic cell – or Configurable Logic Blocks (CLB) – and
interconnection circuitry, tiled to form a chip. Each CLB
consists of two slices, each slice containing two 4-inputs
Look-Up Tables (LUTs), 2 flip-flops (FFs), and associated
carry chain logic. The FPGA we used is a Virtex 2000E-8.
It has 9600 CLBs, 19520 tristate buffers, and incorporates
160 fully synchronous dual-ported 4096 bit block memo-
ries named Block SelectRAM (BRAM). As far as design
tools are concerned, we used Aldec Active VHDL 4.2 for
describing and simulating the system, and Synplicity Syn-
plify Pro 7.1 for synthesis, integrated in Xilinx ISE 4.1 de-
sign flow. The proposed architecture has been implemented
for L = 1024, which corresponds to 1027 bit-slices to be
physically placed on the chip. The system was simulated
and verified, at different stages of the implementation pro-
cess.

In order to exploit the regularity of the architecture and
to optimize time and area performance, we adopted the fol-
lowing design flow:

1) Design of the bit-slice– we focused on the basic build-
ing block of the design, i.e. the bit-slice of Figure 2. We
wrote the VHDL description of the single bit-slice and we
synthesized it with Synplify. The single bit-slice requires
24 LUTs and 12 flip-flops.

2) Placement of the bit-slice– we launched a place-and-
route process of the single bit-slice, with an area constraint
of 2× 3-CLB box (which is the smallest area containing 24
LUTs). We iterated this process until we found a minimum
clock period of 5.25 ns for the bit-slice as a single block.
Then we derived the placement constraints for each element
of a bit-slice (referring to the top-left corner of the bit-slice),
and embedded them in the VHDL gate-level description of
the bit-slice.

3) Placement of the data-path– constraints were also
used to place the data path structure and the controller. As
we already noted, since the data signals connecting the bit-
slices are local, the bit-slices should be placed according to
their indexes to minimize the wire delays. Obviously, with
L = 1024, 1027 bit-slices are needed and thus it is impossi-
ble to dispose them in a single row or column on a commer-

cially available FPGA. Thus, we resorted to a “serpentine”
scheme to make sure each bit-slice was close to the two
preceding bit-slices and to the next one. Figure 3 shows the
floor-plan of the data-path and the controller on top of the
target device. The bit-slices are represented by boxes which
contain their indexes within theL + 4 cells data-path. A
84 × 80-CLB area was used to accommodate the complete
architecture on the FPGA device. The data-path is enclosed
in four regions, each one is made up of20 × 13 bit-slices,
requiring a40× 39-CLB area.

0 1027

259 780

260 779

519 520

}

FPGA Floorplan

1

40 CLBs

19

20

Controller

18

21

258

2

} 4 CLBs 40 CLBs }

}

3
9

 C
L

B
s

}2
 C

L
B

s
3

9
 C

L
B

s

}

Figure 3. The data-path placement scheme.

We left a cross-shaped zone within the data-path area
(which is reported as a gray area in Figure 3) to allow the
synthesis tool to place the controller. This placement con-
straints facilitate the place-and-route step, and reduce the
net delay due to control signal broadcasting, since the con-
troller is embedded in the data-path.

Algorithm 2 has been designed to allow the controller
and the data-path operations to be pipelined. In this way
pipeline flip-flops can be used to break the critical path,
which would run trough the controller and the data-path.

As we already noted, all controller signals have to feed
the bit-slices of the data-path. This can frustrate the advan-
tage of the locality of communications in the data-path due
to remarkable net delays. To deal with the fan-out prob-
lem, flip-flops can be automatically replicated during the
synthesis phase. Unfortunately the synthesizer is not able
to properly “cluster” the bit-slices according to their po-
sition, so that each flip-flop would be connected with bit-
slices spanned over the device with unacceptable net delays.
Thus, we did not let the synthesis tool handle the replica-
tion, but we explicitly replicated the controller flip-flops in
the VHDL code, in order to have a tighter control on the
fan-out net, and make sure each replicated flip-flop is wired
to a set of bit-slices close to each other. Figure 4 shows
a detail of the floorplanner in which one of the replicated
flip-flops feeds a cluster of bit-slices.

Figure 5 shows the whole design implemented on the tar-
geted device after the place-and-route process. Altogether,

Figure 4. The wires of a replicated pipeline
flip-flop of the controller.

Figure 5. The implemented design.

the design takes 6,651 CLBs (24,837 LUTs and 13,500 flip-
flops), i.e. it requires 69% of the target device resources.
The minimum clock period is 12.88ns. From the formula of
section 3, a 1024-bit full length exponentiation, i.e. a mod-
ular multiplication with an exponentE and a modulusN
with a length of 1024 bits, is accomplished in 27.25 ms.

In order to prove the effectiveness of our design choices,
we show some results obtained by following different ap-
proaches. In particular, we implemented an architecture
based on a preliminary form of Algorithm 2, which did not
permit pipelining controller and data path operations. Each
case has been synthesized with and without imposing the
placement constraints above explained. In Figure 6 we re-
port the minimum clock period of the implementation for
each of the four cases.

Constraints Pipeline Clock Period [ns]
No No 43.23
No Yes 28.04
Yes No 27.75
Yes Yes 12.88

Figure 6. Clock periods for different design
choices

It is worth noting that exploiting both the design tech-
niques (namely pipelining the controller and the data-path,

and the placement constraints), a total speed-up of about
4 times, with respect to the design without pipelining ap-
proach and with no constraints, was achieved. Please also
note that each of the two design techniques roughly con-
tributes 50% of the overall speed-up.

5. Comparison to previously reported imple-
mentations

Many different architectures have been proposed in the
technical literature for modular exponentiation. However,
they often rely on specific technologies and thus a fair com-
parison is difficult.

In [11] we proposed a serial architecture for RSA oper-
ations, with emphasis on area-performance tradeoffs. Dif-
ferent results were achieved depending on the value of the
serialization factor, giving the designer the chance to adjust
the performance of the RSA block matching resource and
time constraints. The different versions of the architectures
proposed in [11] were implemented on the same reconfig-
urable device we used for this work, so a fair comparison is
possible. The fastest solution in [11] reaches an execution
time of 162 ms for a 1024 bit full-length modular exponen-
tiation, i.e. six times slower than the architecture presented
in this paper. The area consumption is 1330 CLBs, i.e. five
times less expensive.

To our best knowledge, the fastest FPGA-based imple-
mentation of the radix-2 Montgomery’s algorithm is re-
ported in [9, 10]. Fundamentally, [9] provides a one-row
implementation of the systolic array proposed by Walter [7],
in such a way that it overcomes the shortage of resources on
the target device.

The implementation of the radix-2 Montgomery’s algo-
rithm proposed in [9] takes 40 ms for a 1024-bit modular
exponentiation, while our implementation of the same al-
gorithm takes 27.88 ms, achieving a 32% reduction. The
physical device used in [9] is not the same as ours. This
makes an exact comparison difficult in terms of hardware
resource requirements and time performance. The archi-
tecture of [9] shows a critical path of a 4-bit adders. Our
architecture presents a critical path of a single full-adder.
Also, it should be noted that, unlike the architecture of [9],
our design does not make use of optimized blocks and has
considerable device-independent features.

6. Conclusions

We presented a hardware implementation of the RSA al-
gorithm for public-key cryptography. To implement modu-
lar exponentiation we adopted a novel algorithm combining
the Montgomery’s technique and the carry-save representa-
tion of numbers. A highly modular, bit-slice based architec-

ture was developed to implement the modular exponentia-
tion algorithm in hardware, taking advantage of the proper-
ties of the carry-save representation. For each bit-slice data
signals are strictly local while control signals can be de-
layed and easily broadcast by means of pipelined flip-flops.
This was possible due to the characteristics of the adopted
algorithm. We also implemented the proposed architecture
on a reconfigurable device (FPGA). The design flow we fol-
lowed allowed us to considerably exploit the modularity and
the regularity of the architecture, achieving a 32% reduction
in execution time compared to the fastest implementation of
the radix-2 Montgomery’s algorithm proposed in the litera-
ture on comparable hardware.

References

[1] A. Menezes, P. van Oorschot, and S. Vanstone,Handbook of
Applied Cryptography, CRC Press, 1996.

[2] R. L. Rivest et al., “A Method for Obtaining Digital Signa-
tures”, Commun. ACM, vol. 21, pp. 120-126, 1978.

[3] Ç. K. Koç, “High-speed RSA Implementation”, Technical
Report TR 201, RSA Laboratories, November 1994

[4] D.E. Knuth,The Art of Computer Programming: Seminu-
merical Algorithms, vol. 2, Addison-Wesley, 1981.

[5] G. R. Blakley, “A computer algorithm for the product AB
modulo M”, IEEE Trans. on Computers, Vol.32, No.5, pp.
497-500, May 1983.

[6] P. L. Montgomery, “Modular multiplication without trial
division”, Math. of Computation, 44(170):519-521, April
1985.

[7] C. D. Walter, “Systolic Modular Multiplication”, IEEE
Trans. on Computers, Vol.42, No.3, pp. 376-378, March
1993.

[8] Walter, C. D.: ‘Montgomery exponentiation needs no final
subtraction’, Electron. Lett., Oct. 1999, 35, (21), pp. 1831-
1832.

[9] T. Blum, and C. Paar, “Montgomery Modular Exponentia-
tion on Reconfigurable Hardware”, Proc. 14th Symp. Com-
puter Arithmetic, pp. 70-77, 1999.

[10] T. Blum, and C. Paar, “High-Radix Montgomery Modular
Exponentiation on Reconfigurable Hardware”, IEEE Trans.
on Computers, Vol.50, No.7, pp. 759-764, July 2001.

[11] A. Mazzeo, N. Mazzocca, L. Romano, and G.P. Saggese,
“FPGA-based Implementation of a Serial RSA Processor”,
Proceedings of the Design And Test Europe (DATE) Con-
ference 2003, pp. 582-587.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

