Channel Decoder Architecture for
3G MobhileWireless Terminals

Friedbert Berens
STMicroelectronics N.V.

39, Chemin du Champ-des-Filles
CH-1228 Plan-les-Quates/Geneva
Switzerland
friedbert.berens@st.com

Abstract

Channel coding is a key element of any digital wire-
less communication system since it minimizes the effects of
noise and interference on the transmitted signal. In third-
generation (3G) wireless systems channel coding tech-
niques must serve both voice and data users whose require-
ments considerably vary. Thus the Third Generation Part-
nership Project (3GPP) standard offers two coding tech-
niques, convolutional-coding for voice and Turbo-coding
for data services. In this paper we present a combined chan-
nel decoding architecture for 3G terminal applications. It
outperforms a solution based on two separate decoders due
to an efficient reuse of computational hardware and mem-
ory resources for both decoders. Moreover it supports blind
transport format detection. Special emphasis is put on low
energy consumption.

1 Introduction

Today’s information society demands access to huge
amounts of data anywhere and at any time. In digital com-
munication systems bandwidth and transmission power are
critical resources. Thus advanced communications sys-
tems have to rely on sophisticated channel coding schemes.
Channel coding allows to reduce the transmission power by
maintaining the Quality of Service (QoS) or vice versa to
improve the QoS for given transmission power. 3G based
systems [14] have to carry both voice and data traffic. Thus
the standards offers different data rates and coding tech-
niques to satisfy the varying latency, throughput and error
performance requirements. E.g. voice traffic requires low
latency and can tolerate higher error rates than data ser-
vices which require lower error rates and higher through-
put, but can tolerate a larger latency. Thus the 3GPP stan-

1530-1591/04 $20.00 (c) 2004 IEEE

Gerd Kreiselmaier, Norbert Wehn

Microelectronic System Design Research Group

University of Kaiserslautern
Erwin-Schroedinger-Stralie
67663 Kaiserslautern, Germany
{kreiselmaier, wehn} @eit.uni-kl.de

dard for UMTS specifies two coding techniques which dif-
fer in their complexity and characteristics: convolutional-
codes for voice and control, and Turbo-codes for data traffic
[15].

The implementation complexity of the encoders is negli-
gible. Both encoders are trellis encoders which map a long
input sequence to a coded data stream. They comprise only
some shift registers and in the case of Turbo-codes an inter-
leaved address generator. The decoders are based on trellis
propagation of the received input sample sequence to calcu-
late a maximum likelihood sequence/bit detection. In con-
trast to the encoders efficient decoder implementation is a
challenging design task. Especially Turbo-decoding is very
complex and belongs to the most computationally intensive
baseband tasks performed by the receiver. Decoding in-
volves information exchange between two soft-in/soft-out
(SISO) component decoders in an iterative loop. The maxi-
mum a posteriori (MAP) and the soft-out Viterbi algorithm
(SOVA) are candidates for these component decoders. In
[18, 10] it was shown that the MAP algorithm outperforms
the SOVA algorithm from an communications and imple-
mentation point of view. Convolutional-decoding can be
done by the well known Viterbi algorithm which makes
only a single decoding pass over the received samples or
by the already mentioned more complex MAP algorithm
which makes multiple passes.

Decoder implementations for terminal applications are
driven by low cost (small silicon area) and low power con-
sumption. Thus the design of an efficient decoder architec-
ture has to be driven by these two cost criteria. In this paper
we present a combined channel decoding architecture for
3G terminal applications. It outperforms a solution based
on two separate decoders due to an efficient reuse of compu-
tational hardware and memory resources for both decoders.
Moreover it supports blind transport format detection for
transport channels (BTFD)[15].

2 Turbo-Decoder

Forward error correction is enabled by introducing par-
ity bits. For Turbo-codes, the original information, denoted
as systematic information (x%), is transmitted together with
the parity information (le,ilznrf) The encoder for 3GPP
consists of two recursive systematic convolutional (RSC)
encoders with constraint length K = 4. One RSC encoder
works on the block of information in its original, the other
one in an interleaved sequence to break open correlations
and yield timing diversity, see Figure 1 a). On the receiver
side, a component decoder is provided for each RSC en-
coder.

Each transmitted data block is iteratively decoded, see
Figure 1 b). The systematic information AS and the parity
information AP serve as inputs of the first component de-
coder (MAP1). The soft-output of MAP1 (7\1) reflects its
confidence on the received bits of being sent either as “0”
or “1”. These soft-outputs are modified (A€) and then in-
terleaved in the same manner as in the encoder and passed
to the second component decoder (MAP2) as a-priori in-
formation (A%2). The second component decoder uses this
extrinsic information to bias its estimation comprising the
interleaved systematic information A$, and the parity in-

formation /\Izn’: of the second encoder. The soft-outputs are
again passed to MAPL, and so on. This process runs be-
tween 5 to 10 iterations.

Given the received samples of systematic and parity bits
(channel values) for the whole block (yN, where N is the
block length), the MAP algorithm computes the probability
for each bit to have been sent as dy = 0 or dxy = 1. The
logarithmic likelihood ratio (LLR) of these probabilities is

the soft-output, denoted as:

Pr{d = 1|yN}

Ne=1 .
<= br{d = o)y}

o))

Equation 1 can be expressed using three probabilities,
which refer to the encoder states S, where k € {0...N}
andm,m’ € {1...8}:

The branch metrics \/kﬂ(dk) is the probability that a

transition between Sy and Sk+1 has taken place. Itis derived
from the received S|gnals the a-priori information given by
the previous decoder, the code structure and the assumption
of dx = 0 or dx = 1, for details see [10].

From these branch metrics the probability ok, that the
encoder reached state SK, given the initial state and the re-
ceived sequence yX, is computed through a forward recur-

sion:
aky =S ak by
m

Performing a backward recursion yields the probability
Bk” that the encoder has reached the (known) final state

given the state Sfﬁ“ and the remainder of the received se-
quence Yy, ;:

kl k+1

as and s are both called state metrics. Equation 1 can be
rewritten as:

SmI o BV de=1)
SmImak BV (e =0)

The original probability based formulation implies many
multiplications and has thus been ported to the logarithmic
domain resulting in the Log-MAP algorithm [10]. Multi-
plications turn into additions and additions into maximum
selections with additional correction terms. The resulting
max* operation is defined as:

Nk = log 2

max* (81,82) = max(31,82) + In(14+e~1%27%1) (3)
This transformation does not decrease the communications
performance. Arithmetic complexity can further be re-
duced by omitting the correction term (Max-Log-MAP al-
gorithm) which leads to a slight loss in communications
performance (about 0.1-0.2dB). Log-MAP and Max-Log-
MAP algorithm are common practice in decoder implemen-
tations.

State-of-the-art implementations of the MAP algorithm
for 3G based 8-state Turbo-codes usually calculate all 8
state metrics of a time step in parallel, thus needing 8 so
called ACS* units which evaluate the max* operation. o
state metrics are first computed, afterwards the (3 state met-
rics. The soft-output calculation is done in parallel to the
B calculation. Thus the a values have to be stored since
they are required for the soft-output calculation. The size
of this memory corresponds to a complete block. Window-
ing [4, 5] allows to break open the data dependencies in
the state metrics. This allows to subdivide the data block
into sub-blocks - called windows - which can be processed
indenpendently. If the different windows are processed se-
guentially on the same MAP unit the memory for the a val-
ues can be reduced from a full block to a window size. The
size of a window is significantly smaller than the block size,
it ranges typically between 32 and 128. Windowing impli-
cates additional computations during the so called acquisi-
tion, however the reduction in the a-memory prevails these
extra computations.

The size of the input RAMs for the systematic and par-
ity information and the output RAM is determined by the
block sizes which are defined in the 3GPP standard. The
output RAM serves also as storage for the a-priori values.
One soft-output memory is sufficient because the calculated
soft-outputs are always written to the previous read position
of the a-priori information. Thus no RAM is needed for the

Puncturer

o™

Figure 1. Turbo-Encoder and Turbo-Decoder

a)

interleaved soft-outputs. Moreover, only an interleaver ta-
ble is needed but no deinterleaver. It becomes obvious, that
for large block sizes memory dominates a Turbo-decoder
architecture. Thus memory size and access have to be min-
imized to improve implementation efficiency.

3 Convolutional-Decoder

In 3GPP two different non-systematic convolutional
(NSC) encoders with a constraint length K = 9 are speci-
fied. Thus the number of states (2K~ = 256) is significantly
larger than the number of states in the Turbo-encoder (= 8).

Convolutional-decoding, in contrast to Turbo-decoding,
is non-iterative. It can be done by the well known Viterbi
algorithm (VA) which detects the maximum likelihood se-
guence or the MAP algorithm which detects the maximum
likelihood bit. Thus the MAP is more accurate. Moreover it
provides soft information and thus confidence values in the
decoding decisions. Although there is no interleaver and the
block size is much smaller than for Turbo-codes, the archi-
tecture of a 3GPP convolutional-decoder is also dominated
by memory. The I/O memories are, compared to the Turbo-
decoder, rather small. The a-memory, however, exceeds
that of the Turbo-decoder by a factor of 32 assuming the
same window size. This is constituted in the large number
of states of the convolutional-decoder.

Publications on implementation issues of convolutional-
codes incorporate, to the best of our knowledge, only the
classical Viterbi algorithm. They either address implemen-
tations with hard-decision-output [3], or with soft-output
(SOVA) but only a small number of states [8].

4 Blind Transport Format Detection

In 3GPP data transport services on the physical layer are
realized through the usage of Transport Channels. Each
Transport Channel can have several different Transport
Formats, each Transport Format specifying the respective
Transport Block Size, see [15]. At the receiver, the Trans-
port Format of each Transport channel has to be detected.
This can be done by using a dedicated Transport Format
Combination Indicator (TFCI) field. As soon as the TFCI is
detected, the Transport Format combination, and hence the
Transport Formats of the individual Transport Channels are
known. Beside the TFCI based Transport Format detection

the 3GPP standard defines the requirement to blindly de-
tect the Transport Format in use. That is, using only the re-
ceived block of data which is convolutional-encoded to es-
timate the correct size of that Transport Block. This option
is used in order to reduce the TFCI symbol overhead in the
transmission frame and thus to increase the effective pay-
load. Furthermore one explicitly blindly detected Transport
Channel can be used as a guiding Transport Channel. The
detection of a specific Transport Format used by this chan-
nel defines the Transport Formats used by all other guided
channels. Thus an effcient Blind Transport Format Detec-
tion (BTFD) is crucial. BTFD is performed by decoding of
convolutional-encoded blocks. Different coded block sizes
(up to 16) are possible and the correct one has to be detected
by using the CRC of these blocks.

Only few publications on BTFD implementation exist
[1]. Proposals for BTFD processing can be found in the
annex of the 3GPP standard [15]. State-of-the-art tech-
niques are based on a Viterbi decoding of this block. All
16 possible block sizes are elaborated and the correspond-
ing CRCs checked. However, especially for small CRC
length, this detection process typically yields ambiguity for
the block length. Thus an additional evaluation metric be-
comes necessary. In [9] we presented for the first time a
BTFD method using LLRs to overcome the mentioned am-
biguity and to improve the detection performance. We use
the MAP algorithm and exploit the reliability information.
An optimized windowing scheme ensures BTFD decoding
of several block sizes in parallel, thus significantly reducing
computation time. Simulations showed the superior perfor-
mance of LLR-assisted BTFD, outperforming BTFD meth-
ods based on Viterbi decoding.

5 3GPP Parameters

The 3GPP standard specifies the encoder structure and
parameters like block size and throughput requirements
[14]. The maximum block size of the Turbo-codes includ-
ing the data, frame quality indicator (CRC) and two re-
served bits is set to 5114. During encoding, an encoder out-
put tail sequence is added which appends another 3 bits, the
tail bits, for both systematic and parity information of each
encoder. The systematic information of the second encoder,
working on the interleaved data set, is not transmitted. This
results in a coding rate of 1/3. The transfer function of one
RSC encoder is:

1, 91(D)
G(D) =11, go(D)]

The generator function go equals 13g, and g; equals
15g in octal representation. The throughput requirements
needed for terminal applications are 384kbps for the Turbo-
decoder.

The convolutional-encoders are non-systematic convolu-
tional (NSC) encoders. Two encoders are specified in the
standard: one generates two parity informations, the other
three. This results in coding rates of 1/2 and 1/3. The gen-
erator functions for the rate 1/2 code are Go equals 753g
and G, equals 561g, and for the rate 1/3 code they are Go
equals 557g, G1 equals 663g, and G, equals 711g. The max-
imum block length is 504, the tail sequence, which forces
the encoder back into the all-zero state after all data bits
are encoded, adds another 8 bits to the block. The maxi-
mum throughput of the convolutional-decoder is specified
to 12.2kbps.

BTFD is performed on a set of up to 16 different coded
block sizes. The data block is convolutional-encoded, pos-
sible CRC sizes are 24, 16, 12 or 8 bits.

6 Architecture

As mentioned in the previous sections the terminal archi-
tecture has to support the two channel coding schemes and
BTFD. To the best of our knowledge only Bickerstaff et al.
presented in [2] a unified Turbo/Viterbi channel decoder ar-
chitecture, reusing the state metric unit and LLR-RAM for
both codes. However, this decoder targets base station ap-
plications and does not support BTFD. We have shown that
the MAP algorithm is an excellent building block to carry
out terminal functionalities and can be efficiently reused.
Although a Viterbi decoding unit is smaller than a MAP de-
coder unit, the reuse of the MAP for both decoding schemes
results in a more efficient architecture. Thus the decoder ar-
chitecture is based on a combined Turbo and Convolutional
decoder architecture, utilizing a MAP component decoder.
Both Log-MAP and Max-Log-MAP are implemented and
can be selected via software. Since the Log-MAP algo-
rithm is very senstitive to SNR mismatch, the decoder can
be switched between the optimal Log-MAP and suboptimal
but SNR-insensitive Max-Log-MAP algorithm.

An efficient merge of both decoders requires a maximum
reuse of computational hardware and memory is an attrac-
tive alternative which yields much less area than two sep-
arate hardware units. Important to note is that the whole
architecture is dominated by memory. Therefore an effi-
cient memory partitioning is crucial for the architectural ef-
ficiency. Both decoders differ substantially in the memory
requirements. The Turbo-decoder (TC) is dominated by the
1/0 memories due to the large block sizes. The a-RAM
is negligible small. In case of the convolutional-decoder
(CC) itisvice versa: the a-RAM is significantly larger than
the 1/0 memories (see Table 1). Therefore it is not pos-
sible to use the same 1/0 RAMs of both TC and CC. The
same counts for the a-RAMs. As the TC I/0-RAMs and the
CC a-RAM store about the same amount of data, these two
memories should apparently be merged instead. The TC I/O

| | VO-RAMs | a-RAM | Others || Total |

Turbo Dec. 122.880 5.632 384 128.896
Convol. Dec. 12.288 152.064 | 5.632 || 169.984
Comb. Arch. 169.984 6.016 || 176.000

Table 1. Memory Utilization of Decoders

memories can be partitioned in such a way that it is possible
to use them as CC a-RAM. To built this memory, each of
the TC I/0 RAMs is split into three separate RAMS result-
ing in total 12 RAMs each of size 1728x6. These RAMSs
are then concatenated together with an additional 1728x16
RAM, forming the required bit-width for the storage of 8
state metrics in parallel. This memory sharing enables a
window size of 54 for CC decoding.

Table 1 lists the necessary memory (in bits) for a single
Turbo-decoder (window size = 64), a single convolutional-
decoder (window size = 54), and for the combined decoder.
1/0 data for both decoder are quantized to 6 bit. The table
shows that the overhead of the memory for the combined
architecture is about 4% compared to the convolutional de-
coder and saves about 60% compared to two separate de-
coders.

In addition many of the computational units can be
shared. Forward and backward recursions for Turbo-
decoding can be calculated serially on the same hardware
unit (SMU) due to the moderate throughput requirements
(384kbps). All 8 states are processed in parallel within an
SMU. The intermediate metric values are stored in regis-
ters when moving from the actual trellis step to the next
one (SMU update). A branch metric unit (BMU) calculates
the necessary branch metrics. The LLR values are calcu-
lated in a dedicated unit (LLRU) which is composed of two
pipelined trees which perform additions, comparisons and
subtractions. As already mentioned the LLR calculation is
done in parallel to the backward recursion. Thus only the o
values have to be stored in a memory (TC-alpha RAM), the
B-values are directly consumed after calculation. A win-
dow size of 64 is a good trade-off between computational
overhead and memory size.

The convolutional-decoder is based on a single MAP
with a structure which is similar to that of the Turbo-
decoder. This decoder requires three input memories due
to the code rate 1/3. In contrast to the Turbo-codes, the
block-size of the convolutional-codes is only 512, thus the
corresponding input RAM sizes are much smaller. Since the
constraint length of the convolutional-code is 9, 256 states
have to be decoded in each trellis step which is 32 times
more than in the Turbo-decoder. But due to the moderate
throughput requirements (12.2kbps) a partially sequential
processing is possible, only 8 states have to be processed
in parallel in the SMU unit. Two sets of state metrics have
to be stored because the state metrics are calculated recur-

sively. The code structure demands that the previous met-
rics have to be available until all the actual ones are com-
puted. Thus two times 256 state metrics have to be stored
temporarily within the SMU. This leads to four temporary
RAMs for the state metrics within the SMU update in addi-
tion to the a-RAM.

The SMU of the TC can be reused for both decoders with
only small modifications. Due to an efficient data order-
ing and optimized memory organization only a set of 2:1
multiplexers has to be added to the SMU which slightly in-
creases the critical path. Eight state metrics are produced in
each cycle. Subcomponents of the pipeline tree of the TC
LLRU can be reused for the CC as well, only small modifi-
cations are necessary. During convolutional-decoding back-
ward recursion and LLR calculation are computed simul-
taneously. Due to the non-recursive code structure of the
convolutional-code, no branch metrics are necessary to cal-
culate an LLR which is different to the Turbo-decoder. The
LLR unit calculates the minimum of the sums of four even
and four odd states (representing the last bit being trans-
mitted as “0” or “1”, respectively) in a pipeline similar to
the Turbo-decoder LLRU. The soft-output is the difference
of all even and all odd state metric sums of one time step.
Thus two additional feedback loops are inserted. Figure 2
shows the architecture of the combined architecture.

Low power is extremely important in terminal applica-
tions. Thus low power techniques have to be applied on all
abstraction levels in the design phase. Obviously the largest
reduction can be achieved on system level. We apply iter-
ation control, optimized quantization/ renormalization and
interleaver table management on system level to minimize
power. On RT- and gate level we extensively exploit the
well known techniques like power-down mode, clock gat-
ing and low frequency. We focus in the following on the
system level.

The number of necessary iterations for Turbo-decoding
can differ from block to block e.g. due to a fading chan-
nel. Sometimes more iterations are necessary, sometimes
less iterations. Occasionally decoding is not possible at all,
even with an infinite number of iterations. Thus the itera-
tion process can be stopped immediately. Unnecessary iter-
ations waste energy. An efficient iteration control helps to
reduce energy. In [17] we have shown that iteration control
is the most efficient technique to reduce energy in Turbo-
decoding. Many papers are published on iteration control
e.g. [12, 11] which mainly focus on efficient stop criteria
for decodable blocks. In [7, 6] we have presented a new
stop criterion which is based on the monitoring of the soft-
output values of the two MAP-Decoders combined with
CRC checks. This criterion has a very low implementa-
tion complexity and allows to stop iterations for decodable
and undecodable blocks. It saves up to 70% energy com-
pared to a solution which is based on a fixed number of iter-

CC /0 '
MAP RAM block |
GO || G1 G2 || LLR
TC 10 CC-alpha
' data Interface ex/
' [A [AP [AZP LLR add.
: config l :
e BMU]
. status .
e Control l :D—’ '
] LLRU |
. ++ SMU '
' | | SMuU J
' IL-data update CRC |,
BTFD |.
+ IL-addr Iter-ctrl |'
> TC-alpha | |

Figure 2. Combined 3GPP Terminal Decoder
Architecture

ations. This sophisticated iteration control is implemented
in our architecture. The iteration control unit is also reused
for BTFD (see Figure 2). Interleaving can be done by us-
age of a dedicated hardware interleaver address generator
(1AG) or by usage of interleaver tables stored in RAM. The
tables are programmed by an external IAG. For terminal ap-
plications the block size and thus the interleaver sequence
can change, but is constant within one time transmission in-
terval. Therefore, from an energy efficiency point of view,
a table based interleaver is more efficient, because the ad-
dress sequences have to be computed only once for a ded-
icated block size, instead of recomputed for every block.
The interleaver RAM is an external unit, which is updated
on demand. Appropriate table buffering ensures seamless
decoding of varying block sizes. Quantization and an ef-
ficient renormalization helps to reduce the area and energy.
In [19] we presented an efficient quantization and renormal-
ization scheme for Turbo-decoders which saves up to 22%
energy compared to state-of-the-art quantization and renor-
malization.

7 Synthesis Results

On system level the decoder was developed and vali-
dated with CoCentric System Studio (CCSS) [13] in a com-
plete UMTS-downlink chain according to 3GPP reference
channels (static, multi-path fading, etc.) [16]. On RT-level
the architecture was implemented as a fully synthesizable
VHDL model. Synthesis was carried out with the Synopsys

Area Logic 655.088 um?
Area RAMs || 2.370.592 pm?
Total Area || 3.025.680 pm?

Table 2. Area of Combined 3GPP Channel De-
coder

Design Compiler for a state-of-the-art 0.18um technology
under worst case conditions (1.2V, 125C). To reduce en-
ergy the frequency (70MHz) is moderate and was not set
to the technology limit. The final area is listed in Table 2.
The throughput fulfills the 3GPP terminal requirements up
to 2Mbit/s. The netlist was validated on a ST emulation
platform. Chip prototyping is in progress.

8 Conclusions

In this paper we presented a fully 3GPP compliant chan-
nel decoder for mobile terminals which is based on the
MAP algorithm. The decoder uses a combined architecture
to decode convolutional- and Turbo-codes, furthermore a
sophisticated blind transport format detection is supported.
Due to efficient memory partitioning and hardware reuse
this architecture outperforms a solution based on two sepa-
rate decoders.

References

[1] W. K. M. Ahmed. Block-Size Estimation and Application
to BTFD for 3GPP UMTS. In Proc. 2001 Global Telecom-
munications Conference (Globecom *01), pages 3045-3049,
2001.

[2] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas,
B. Widdup, G. Zhou, L. M. Davis, G. Woodward, C. Nicol,
and R. Yan. A Unified Turbo/Viterbi Channel Decoder for
3GPP Mobile Wireless in 0.18-um CMOS. IEEE Journal of
Solid-State Circuits, 37(11):1555-1564, Nov. 2002.

[3] Y. Chang, H. Suzuki, and K. K. Parhi. A 2-Mb/s 256-State
10-mW Rate-1/3 Viterbi Decoder. IEEE Journal of Solid-
State Circuits, 35(6):826-834, June 2000.

[4] H. Dawid. Algorithmen und Schaltungsarchitekturen zur
Maximum a Posteriori Faltungsdecodierung. PhD thesis,
RWTH Aachen, Shaker Verlag, Aachen, Germany, 1996. In
German.

[5] H. Dawid and H. Meyr. Real-Time Algorithms and VLSI
Acrchitectures for Soft Output MAP Convolutional Decod-
ing. In Proc. 1995 International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC ’95),
pages 193-197, Toronto, Canada, Sept. 1995.

[6] F. Gilbert, F. Kienle, and N. Wehn. Low Complexity Stop-
ping Criteria for UMTS Turbo-Decoders. In Proc. 2003-
Spring Vehicular Technology Confernce (VTC Spring ’03),
Jeju, Korea, Apr. 2003.

[7] F. Gilbert, A. Worm, and N. Wehn. Low Power Implemen-
tation of a Turbo-Decoder on Programmable Architectures.
In Proc. 2001 Asia South Pacific Design Automation Con-
ference (ASP-DAC ’01), pages 400-403, Yokohama, Japan,
Jan. 2001.

[8] O.J. Joeressen, M. Vaupel, and H. Meyr. High-Speed VLSI
Acrchitectures for Soft-Output Viterbi Decoding. Journal of
VLSI Signal Processing Systems, 8:169-181, 1994. Kluwer
Academic Publishers, Boston.

[9] G. Kreiselmaier and F. Berens. Method of blindly detecting
a transport format of an incident convolutional encoded sig-
nal, and corresponding convolutional code decoder. Patent
Application, Apr. 2003.

[10] P. Robertson, P. Hoeher, and E. Villebrun. Optimal and
Sub-Optimal Maximum a Posteriori Algorithms Suitable for
Turbo Decoding. European Transactions on Telecommuni-
cations (ETT), 8(2):119-125, March-April 1997.

[11] R. Y. Shao, S. Lin, and M. C. P. Fossorier. Two Simple
Stopping Criteria for Turbo Decoding. IEEE Transactions
on Communications, 47(8):1117-1120, Aug. 1999.

[12] A. Shibutani, H. Suda, and F. Adachi. Reducing Average
Number of Turbo Decoding Iterations. Electronic Letters,
35(9):701-702, Apr. 1999.

[13] Synopsys Inc. htt p: // wwwv. synopsys. com

[14] Third Generation Partnership Project. 3GPP home page.
www., 3gpp. org.

[15] Third Generation Partnership Project. 3rd Generation
Partnership Project; Technical Specification Group Radio
Access Network; Multiplexing and channel coding(FDD)
3GPP TS 25.212 VV5.3.0. www. 3gpp. or g, Dec. 2002.

[16] Third Generation Partnership Project. 3rd Generation
Partnership Project; Technical Specification Group Radio
Access Network; UE Radio Transmission and Reception
(FDD) 3GPP TS 25.101 V5.3.0. www. 3gpp. or g, June
2002.

[17] M. J. Thul, T. Vogt, F. Gilbert, and N. Wehn. Evaluation
of Algorithm Optimizations for Low-Power Turbo-Decoder
Implementations. In Proc. 2002 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP
’02), pages 3101-3104, Orlando, Florida, USA, May 2002.

[18] J. Vogt, K. Koora, A. Finger, and G. Fettweis. Comparison
of Different Turbo Decoder Realizations for IMT-2000. In
Proc. 1999 Global Telecommunications Conference (Globe-
com ’99), volume 5, pages 2704-2708, Rio de Janeiro,
Brazil, Dec. 1999.

[19] A. Worm, H. Michel, F. Gilbert, G. Kreiselmaier, M. J. Thul,
and N. Wehn. Advanced Implementation Issues of Turbo-
Decoders. In Proc. 2nd International Symposium on Turbo
Codes & Related Topics, pages 351-354, Brest, France,
Sept. 2000.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

