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ABSTRACT
The open-source On-Chip Communication Network
(OCCN) defines an efficient framework for network-on-
chip modeling and simulation based on an object-oriented
C++ library built on top of SystemC. OCCN increases the
productivity of developing communication driver models
through the definition of a universal communication API.
This API provides a new design pattern that enables
creation and reuse of executable transaction level models
(TLMs). OCCN also addresses protocol refinement, design
exploration, and high-level performance modeling.

1. Introduction
Multiprocessor System-on-Chip (MPSoC) integrates on a
single chip various components, such as processor cores,
storage elements, embedded hardware, analog peripheral
devices, MEFS [21], and MEMS [5]. The aim is to satisfy
tight time-to-market constraints and provide performance
and scalability for popular applications, such as network
communication and multimedia.  In the canonical MPSoC
view, On-Chip Communication Architecture (OCCA)
enables distributed computation, communication, and
synchronization among system components. For complex
MPSoC, OCCA design exploration must evaluate rapidly
cost-effective system configurations, by examining
realizability, packaging, serviceability, and
programmability constraints [12, 13, 15, 20]. Currently
there are two prominent types of OCCA.
•  Traditional on-chip buses, such as AMBA [1], STBus

[17, 18], and Core Connect [11]. Bus-based networks
are usually synchronous and offer many variants;
buses may be reconfigurable, partitionable into
smaller sub-systems, might allow for read/write
conflicts, e.g. CRCW PRAM models, and provide
multicast, broadcast or even combining facilities.

•  The next generation network on-chip (NoC) is able to
meet application-specific requirements through a
powerful communication fabric based on repeaters,

buffer pools, and a complex protocol stack [2, 10, 14].
Innovative network on-chip architectures include
MIT’s Raw network [16], and VTT’s Eclipse [8].

The proposed On-Chip Communication Network
methodology (OCCN) for modeling OCCA provides a
flexible, open-source, object-oriented C++-based library
built on top of SystemC, together with new design
methodology [8]. OCCN design methodology allows the
designer to rapidly assemble, synthesize, and verify a NoC
that uses pre-designed IP for each system bus. This
approach dramatically reduces time-to-market, since it
eliminates the need for long redesigns due to architecture
optimization after RTL simulation. This methodology has
enabled the design of complex on-chip networks, such as
the STM STBus, a product found today in almost any
digital satellite decoder [17, 18].

In Section 2, we focus on OCCN design methodology,
including abstraction levels, separation of communication
and computation, and inter-module communication
refinement through a communication layering approach
based on two SystemC-based modeling objects: the
Protocol Data Unit (Pdu), and the MasterPort/SlavePort
interface. We also describe the OCCN statistical library
used for system-level design exploration in SystemC
models. In Section 3, we illustrate OCCN modeling,
communication refinement, and design exploration
through a case-study. Finally, in Section 4, we provide
conclusions and extensions to OCCN. We conclude this
paper with a list of references.

2. OCCN Design Methodology and API
The generic features of NoC modeling involve
•  modeling at various abstraction levels, such as

functional, transactional behavioral, transactional
clock accurate, RTL, and gate-level [7],

•  orthogonalization of concerns, i.e. separation of
function from architecture and communication from
computation, and
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•  an OSI-like conceptual model for inter-module
communication layering [3, 6, 7], whereas each layer
translates transactions requests to a lower-level
protocol.

As shown in Figure 1, OCCN inter-module communication
layering is based on three distinct layers.
•  The NoC communication layer implements one or

more consecutive OSI layers, starting from the
physical layer, e.g. the STBus NoC communication
layer abstracts the physical and data link layers.

•  The adaptation layer maps to one or more middle
layers of the OSI protocol stack. It includes both
software, and hardware adaptation components. A
typical software adaptation layer consists of
� a low-level sub-layer implementing a board

support package (BSP) and built in test (BIT),
� the O.S. and driver sub-layer managing

communication with external devices, and
� the software architecture providing services to the

application, such as execution control, data and
message management, and exception handling.

•  The top-level user-defined application layer translates
inter-module transaction requests coming from the
application API to the communication API. Thus, it
maps directly to the application layer of the OSI stack.

•  The communication API is implemented as a
specialization of the sc_port SystemC object. This
API provides the required buffers for inter-module
communication and synchronization and supports an
extended message passing (or even shared memory)
paradigm for mapping to any NoC.

•  The adaptation layer is based on port specialization
built on top of the communication API. For example,
a communication driver for an application that uses
variable length messages may implement
segmentation, thus adapting the output of the
application to the input of the channel.

The fundamental OCCN API components consist of the
Protocol Data Unit (Pdu), the MasterPort and SlavePort
interface, and high-level system performance modeling.
These components are described next.

2.1 The Protocol Data Unit (Pdu)
A protocol data unit (or Pdu, according to OSI
terminology) is a fundamental ingredient for implementing
inter-module communication. It is essentially the
optimized, smallest part of a message that can be
independently routed through the network, i.e. a token,
cell, frame, or message in a computer network, signal in a
NoC, or job in a queuing network. Although basic Pdus
contain only data, complex Pdus include fields, such as
header, memory address, data, and CRC. OCCN groups
these entities into two fields within the public Pdu class.
•  The header field provides destination address(es), and

may include source address, checksum, routing path
selection (or priority), sequence number, trailer or
data length for variable size Pdus, and performance-
or processing-related flags. Moreover, header may
provide an operation code that distinguishes: (a)
request from reply Pdus, (b) read, write, or
synchronization instructions, (c) synchronous and
asynchronous blocking/nonblocking instructions, and
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Figure  1. OCCN layering model with APIs

OCCN communication layering is implemented using
generic SystemC methodology, e.g. a SystemC port is seen
as a service access point (SAP), with the OCCN API
defining its service. We provide the following mapping.
•  The NoC communication layer is implemented as a

set of C++ classes derived from the SystemC
sc_channel class. The layer establishes message
transfer among different ports, according to the
protocol stack supported by a specific NoC.

(d) normal execution from setup or system test.
•  The data field (called payload, or service data unit) is

a sequence of bits that are usually meaningless to the
channel. An exception is if data reduction is used, e.g.
in a combining, counting, or load balancing network.

Pdus may be created using four different methods. If
HeaderType is a user-defined C++ struct, BodyUnitType
is either a basic data type, e.g. char and int, or an
encapsulated Pdu, then, we can define a Pdu containing
•  a body of BodyUnitType, as Pdu<BodyUnitType> b
•  a body of length many elements of BodyUnitType, as

Pdu<BodyUnitType, length> a



•  header and body: Pdu<HeaderType,BodyUnitType> c
•  header and body of len elements, as
    Pdu<HeaderType, BodyUnitType, len> d

Processes may access Pdu data and control fields using the
following OCCN functions.
•  The occn_hdr(pk, field_name) function is used to

read or write the Pdu header.
•  The standard operator “=” is used to

� read or write the Pdu body,
� copy Pdus of the same type.

•  The operator s “>>”  and “<<”  are used to
� send/receive Pdus from input/output streams, and
� segmentation and re-assembly Pdus.

2.2 The MasterPort  & SlavePort  API
Since the same base functions are required for transmitting
a Pdu for almost any OCCA, we can achieve model reuse
and inter-module communication refinement through a
simple transmission/reception interface. This API is
implemented using specializations of sc_port<…> called
MasterPort<…> and SlavePort<…>, defined as templates
of the outgoing and incoming Pdu. In most cases, the
outgoing Pdu for the Master (Slave) port is the same as the
incoming Pdu for the Slave (Master) port.

The OCCN MasterPort/SlavePort API provides a
message-passing interface, with send/receive primitives for
point-to-point and multi-point inter-module
communication.  For efficiency reasons, OCCN currently
implements only synchronous blocking send/receive and
asynchronous blocking send, as described below.
•  void send(Pdu<…>* p, sc_time& time_out=-1,

bool& sent); This function implements synchronous
blocking send. Thus, the sender will deliver the Pdu p,
only if the channel is free, the destination process is
ready to receive, and the user-defined timeout value
has not expired. Otherwise, the sender is blocked and
the Pdu is dispatched. While the channel is busy (or
the destination process is not ready to receive) and the
timeout value has not expired, waiting sender tasks
compete to acquire the channel using a FIFO priority
scheme. Upon function exit, the boolean flag sent
returns false, if and only if the timeout has expired
before sending the Pdu

•  void asend(Pdu<…>* p, sc_time& timeout=-1,

bool& dispatched); This function implements
asynchronous blocking send. Thus, if the channel is
free and the user-defined timeout value has not
expired, then the sender will dispatch the Pdu p
whether or not the destination process is ready to

receive it. While the channel is busy, and the user-
defined timeout value has not expired, waiting sender
tasks compete to acquire the channel using a FIFO
priority scheme. In this case, the boolean flag
dispatched returns false, if and only if the timeout
value has expired before sending the Pdu.

•  The OCCN API implements a synchronous blocking
receive using a pair of functions.
� Pdu<…>* receive(sc_time& time_out=-1,

bool& received); The receiver is blocked until
it receives a Pdu, or until a user-defined timeout
has expired. In the latter case, received is false.

� void reply(uint delay=0) or void

reply(sc_time delay); This function causes a
fixed or dynamic delay to the receiver process,
expressed as a number of bus cycles or as
absolute time (sc_time). Return from reply

ensures that communication is completed and that
the receiver is synchronized with the sender. The
following code is used for receiving a Pdu.

sc_time timeout = ….; bool received;
// Suppose that in is an OCCN SlavePort
Pdu<…> *msg = in.receive(timeout, received);
if (!received)
 // timeout expired: received Pdu not valid
else
 // user may perform elaboration on Pdu
 reply(); // synchronizing after 0 bus cycles

OCCN supports protocol inlining, that is the low-level
protocol interfacing to a specific OCCA is automatically
generated using the standard C++ template feature enabled
by user-defined data structures. Thus, the user does not
have to write low-level protocols, making instantiation and
debugging easier. Savings are significant, since in today’s
MPSoC there are more than 20 ports, and 60 signals/port.

Using the above send/receive functions and appropriate
channel setup and control functions [8], e.g. to check,
enable/disable Pdu transmission or reception, or extract
the exact time(s) that a particular message arrived, any
kind of on-chip communication protocol can be modeled.

2.3 High-Level System Performance Modeling
High-level performance modeling is essential for MPSoC
design exploration and co-design. OCCN provides a
statistical package for collecting instant and duration
statistics from monitored NoC components.
•  In time-driven simulation, monitored objects usually

have instantaneous values. During simulation, these
values are recorded by calling a library-provided
public member function called stat_write.



•  In event-driven simulation, recorded event statistics
include arrival and departure time (or duration). The
interface is based on two functions.
� First, a stat_event_start function call records

the arrival time, and saves in a local variable the
unique location of the event within the internal
table of values.

� Then, when the event’s departure time is known,
this time is recorded within the internal table of
values at the correct location by calling the
stat_event_end function.

The stat_write and stat_event_start/end operations
may be performed by the user, or directly by the modeling
library using internal object pointers. OCCN also derives
specialized classes for obtaining throughput, latency,
average/instant size, packet loss, and average hit ratio. In
this case, an enable_stat()function specifies the object
name, the absolute start and end time for statistics
collection, the title and legends for the x and y axes, the
time window, i.e. the number of consecutive points
averaged in order to generate a single statistical point, and
a unique object name. The data obtained can be analyzed
online using visualization software, e.g. open-source
Grace, dumped to a file for off-line processing, or
combined together using joint statistical classes.

2.4 Design Exploration using OCCN
OCCN is based on experiences gained from developing OCCA
for different SoC. OCCN models have been used by Academia
and Industry. In order to evaluate the vast number of
complex architectural and technological alternatives the
architect is equipped with highly-parameterized, user-
friendly, and flexible OCCN methodology.

After constructing an initial architectural solution from
system requirements, this solution is refined through an
iterative improvement strategy based on domain- or
application-specific analytical performance models and
simulation. Then, ST Microelectronics exploits a reuse-
oriented design methodology. The proposed system-level
configuration parameters are loaded onto the Synopsys
tools coreBuilder and coreConsultant. These tools
integrate a preloaded library of configurable high-level
(soft) IPs, such as the STBus interconnect; IP integration is
performed only once using coreBuilder. CoreConsultant
uses a user-friendly graphical interface to parameterize
IPs, and automatically generate a gate-level netlist, or a
safely configured and connected RTL view together with
the most appropriate synthesis strategy. Overall SoC

design flow now proceeds normally with routing,
placement, and optimization by interacting with various
tools, such as Physical Compiler, Chip Architect, and
PrimeTime.

3. OCCN Case-Study: Ftp-like Data Transfer

Figure 2. Ftp-like model with generic OCCN bus

Using layered communication, we describe a simple ftp-
like inter-module transfer application. As shown in Figure
2, the application models point-to-point file transfer from a
process called Transmitter in a PE (PE1) to another
process called Receiver in another PE (PE2). Both PEs are
connected using an OCCN channel. Each PE is a SystemC
module containing passive C++ storage elements.
Communication among OCCN modules and the channel
uses a compatible MasterPort/SlavePort interface located
in the modules. The application API uses a single function:
•  void ftp(int addr, MyFile& file);

OCCN implementation uses two communication layers:
cell layer corresponding to the OCCN communication
API, and user-defined packet layer corresponding to the
OCCN adaptation layer. The packet layer provides support
services (ftp process) to the application through a
MasterPacket (and SlavePacket) interface in the
transmitter (resp. Receiver). The MasterPacket interface
is derived by inheritance from MasterPort<Pdu<...>,
Pdu<...> >. Due to space limitation only the code for
transmitter is provided below. The Pdu used for inter-
module communication is defined in the next code block.

The T
“trans
blocks 

PE 1

port a Transmit

process

port b Receiver

processChannelOCCN
Channel

PE 2

API

#incl
struc
    u
    u
struc
typed
typed
typed

h
inout_pdu.
ransmitter module in “transmitter.h” and
mitter.cc” defines a packet layer interface in
“MasterPacket.h” and “MasterPacket.cc”.

ude "occn.h"
t pci_out {
int sequence;
int address; };
t pci_in { uint ack; };
ef Pdu<pci_out, char, 32> Request;
ef Pdu<pci_in> Response;
ef Pdu<char, 1000> MyFile;



The main.cc file includes references to all modules.

#include "occn.h"
#include “systemc.h”
#include "inout_pdu.h"
#include "transmitter.h"
#include "receiver.h"
#include "MasterPacket.h"
#include "SlavePacket.h"
int main(void) {
  sc_clock clock1("clock1", 10, SC_NS);
  sc_time timeout_tx(40, SC_NS); // time out
  Transmitter my_master("Trans", time_out);
#include "occn.h" // OCCA description
#include "inout_pdu.h" // signal definitions
#include "MasterPacket.h"
// definitions for the Transmitter module
class Transmitter : public sc_module {
public:
  MasterPacket sap; // Packet layer
  SC_HAS_PROCESS(Transmitter);
  Transmitter(sc_module_name nm);// constructor
private:
  void action_tx(); // thread action
  // Internal objects and variables
  MyFile file; } // buffer for data file
transmitter.h
The code blocks STBus_Master.h and STBus_Master.cc
illustrates refinement for MasterPacket, (SlavePacket is
omitted), if the proprietary STBus Type 1 bus is used.
Observe that we do not modify Transmitter and Receiver
modules, or test benches. Similar refinement can be
applied to OCCN models for AMBA and VCI bus [1, 19];
for information regarding these models, refer to [4].

  Receiver my_slave("Recv");
  StdChannel<Pdu<pci_in>,
    Pdu<pc_out,char,32> > channel("StdCh");
  my_master.clk(clock1); // bind Clock
  my_slave.clk(clock1); // bind Clock
  my_master.out(channel); // bind channel
  my_slave.in (channel); // bind channel
  sc_start(5000,SC_NS); }

STBus_Master.cc
#include <stdlib.h>
#include "transmitter.h"
#define NB_SEQUENCES 10
// Transmitter constructor
Transmitter::Transmitter(sc_module_name nm,
                         sc_time time_out):
           sc_module(nm), file(), sap(time_out)
{SC_THREAD(action_tx);}
// thread declaration
void Transmitter::action_tx() {
 uint addr=0;
 do { // emulate the file open
  for (int i=0; i < file.size(); i++)
    file[i] = rnd(26)+65; // random in A-Z
    sap.ftp(addr*file.size(), file);// appl.API
     // condition for ending the simulation
     if (++addr == NB_SEQUENCES) sc_stop();
  } while(1); } }
transmitter.cc
//Transmitter thread
#include "STBus_Master.h"
MasterPacket::MasterPacket(sc_time t):timeout(t){}
void MasterPacket::ftp(uint addr,MyFile& buffer) {
  for (int i=0; i< buffer.size(); i++) {
    Request* msg=new Request;
    occn_hdr(msg,addr) = addr; // set header
    occn_hdr(msg,source_id) = 0;
    occn_hdr(msg,tid)=0;
    occn_hdr(msg,lock)=0;
    occn_hdr(msg,be)=0xF;
    occn_hdr(msg,sequence)=i;
    switch(buffer.size()) {
      case 1: occn_hdr(opcode)= STBUS::STORE1;
            break; } // omitted rest of switch
    msg << buffer; // set body using segmentation
    send(msg, sent); } } // StBus has no loss
#include "MasterPacket.h"

MasterPacket::MasterPacket(sc_time t):timeout(t){}
//Transmitting thread (TX_driver)
void MasterPacket::ftp(uint addr,Pdu<char>& buf){
  for (int i=0;i<1000;i++) {
    Request* msg = new Request; // create Pdu
    occn_hdr(msg, address) =addr; // set header
    occn_hdr(msg, sequence) = i; // set header
    msg = buf; // set data (body of Pdu)
    do { // retransmit if timeout expires
    send(msg, timeout, sent);
  } while(!sent); }
MasterPacket.cc
#include "occn.h"
#include "inout_pdu.h"
// communication driver of Transmitter
class MasterPacket: public
                 MasterPort<Request, Response>{
 public:  void ftp(uint addr, MyFile& buffer);
 private: sc time timeout; bool sent; }
MasterPacket.h
main.cc
#include "occn.h"
#include "STBus_ADTs.h"
class MasterPacket: public // Transmitter thread
      MasterPort<STBUS_Request, STBUS_Response> {
 public:  void ftp(uint addr, MyFile& buffer);
private: sc time timeout; bool sent; }
STBus_Master.h



For basic statistics, e.g. throughput or delay, appropriate
enable_stat_ calls are made from the constructor of the
modeling object, i.e. rgister, FIFO, memory, or cache.
 enable_stat_throughput(“object_name”, 0, 50, 1,
   "Simulation Time", "Avg Throughput for Read");
 enable_stat_delay(“object_name”, 0, 50,
               "Arrival Time", "Departure Time");

The simulation efficiency of our ftp-like protocol on a
Blade 1000 workstation is ~100K simulated cycles per
CPU sec. Furthermore, simulation speed on customary
buses, such as AMBA AHB or STBus Type 1 is almost
independent of the number of initiators (transmitters) and
targets (receivers), while for NoC, such as the STBus
NoC, it is increasingly sensitive to the number of initiators,
targets and computing nodes. This is due to the inherent
complexity of the NoC architecture.

4. Conclusion and Extensions
OCCN focuses on NoC modeling by providing a flexible,
state-of-the-art, C++-based framework consisting of an
open-source, GNU GPL library, built on top of SystemC.
OCCN design methodology offers unique features, such as
•  object-oriented design concepts,
•  rapid prototyping and efficient simulation through

powerful C++ classes and direct linking to SystemC,
•  optimized system-level modeling at various levels of

abstraction, orthogonalization of concerns, refinement
of communication protocols, and IP reuse principles,

•  plug-and-play model integration and exchange with
system-level tools supporting SystemC, and

•  early design exploration for OCCA, including system
performance modeling and system-level debugging
and verification.

Current OCCN extensions include
•  developing statistical (correlated) power estimation

macro-models for NoC models,
•  designing efficient algorithms for automatic design

exploration and optimization of NoC systems,
•  enhancing system performance modeling with

� advanced monitoring, including generation,
processing, dissemination and presentation,

� asynchronous statistical classes supporting waves,
concurrency maps, and system-level snapshots,

� platform performance indicators focusing on
monitoring system statistics, e.g. simulation speed
and computation/communication load, for
improving simulation performance, e.g. through
automatic data partitioning or dynamic load
balancing strategies.
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