
Abstract

At sign-off everybody is wondering about how good the
accuracy of the static timing analysis timing reports
generated with PrimeTime really is. Errors can be
introduced by STA setup, interconnect modeling, library
characterization etc. The claims that path timing
calculated by PrimeTime usually is within a few percent
of Spice don’t help to ease your uncertainty.
When the Signal Integrity features were introduced to

PrimeTime there was also a feature added that was
hardly announced: PrimeTime can write out timing paths
for simulation with Spice that can be used to validate the
timing numbers calculated by PrimeTime. By comparing
the numbers calculated by PrimeTime to a simulation
with Spice for selected paths the designers can verify the
timing and build up confidence or identify errors.
This paper will describe a validation flow for PrimeTime

timing reports that is based on extraction of the Spice
paths, starting the Spice simulation, parsing the
simulation results, and creating a report comparing
PrimeTime and Spice timing. All these steps are done
inside the TCL environment of PrimeTime. It will describe
this flow, what is needed for the Spice simulation, how it
can be set up, what can go wrong, and what kind of
problems in the STA can be identified.

1. The Golden Reference for timing

Static Timing Analysis has become the method of choice
for timing sign off before tape out. Because of its
superior analysis speed especially on chip-level and the
completeness that no pattern set can provide it has pushed
back simulation with timing to a state where it is only
little more than an option on the flow chart in a modern
design flow. Only very few customers for ASIC chips
today require a chip level simulation with timing for
acceptance of the silicon.
As for timing simulation the basis for Static Timing

Analysis is delay calculation. The goal of delay
calculation is to predict the timing that the silicon reality

of all devices on the chip will show. But there is a pitfall:
Due to process variations, temperature dependencies and
the influence of voltage variations there is not one single
silicon that can serve as a reference. When developing a
new silicon technology a lot of time, money, and effort is
spent on collecting statistical information on the variation
of timing and other characteristics like power and
reliability with process parameters, voltage, and
temperature (PVT). From these statistical models the so-
called transistor models in Spice format are generated.
These are one of the fundamental bricks a silicon library
is built of. They describe the characteristics of a transistor
based on parameters like its length, width, and many
more.
It is because of these variations with PVT that the only

predictable reference for the timing of a chip are the Spice
models. It may sound bizarre, but it is the Spice models
and not the finished silicon that is the golden reference for
the design of an ASIC. Once a technology has been
defined and validated it is the job of the fab or foundry to
produce silicon that matches this reference and guarantee
that the finished product will meet the specification.
In a standard cell library a timing model for each cell is

generated. To generate these timing models all active and
passive components like transistors, capacitances and
resistances are extracted from the cell’s geometry data.
These extracted netlists are usually different from the
ideal netists that were used to design the standard cells. In
addition to the active elements that provide the
functionality they contain all the parasitic elements
resulting for example from the cell’s internal wiring that
have a strong influence on the performance and drive
characteristic of the cell. In a step called the timing
characterization the extracted netlist is simulated in a
number of environments like different input slopes and
output loads for combinational gates. The timing numbers
and drive characteristics gathered in these simulation runs
is stored in tables or in polynomial models that form the
timing library.
When doing delay calculation for each cell the delay and

transition time at the output is taken from the timing
library. For all interconnects between the cells the delay

Have I Really Met Timing? - Validating PrimeTime Timing Reports with Spice

Tobias Thiel
Motorola GmbH, Semiconductor Products Sector, Munich, Germany,

tobias.thiel@motorola.com

1530-1591/04 $20.00 (c) 2004 IEEE

and edge degradation is calculated from the parasitic
capacitances and resistances of the wires.
It is quite obvious that on the way from the golden

reference, the extracted Spice netlist, to the calculated
delays used for STA a number of approximations are
taken that result in inaccurate results. During timing
characterization only a limited number of reference
simulations can be done to acquire the delay model in the
timing library. For all operation conditions of the cells
that don’t exactly match the conditions of the reference
simulation the table entries of the library need to be
interpolated. Also, the algorithms for calculating the
interconnect delay, the signal edge degradation, and the
effective load on a driver do approximations and are
proprietary to the tool vendor. Therefore, the actual
accuracy of the calculated delays is difficult to estimate.
With the introduction of PrimeTime SI not only features

for the analysis of crosstalk effects were added to the
PrimeTime tool. Also the command write_spice_deck
was added that allows you to write out a netlist for a
Spice simulation of selected timing paths. The Spice
netlist that is written out by this command is composed of
the capacitances and resistances of interconnect wires and
the spice netlists of all gates connected to this timing path.
While of course a Spice simulation of a complete chip is
in most cases not feasible, simulating just a fragment of
the whole design takes only a few seconds or minutes.
And since the netlist simulated here is the extracted netlist
with all parasitic elements in the cell and the interconnect,
such a Spice simulation can be used as the golden
reference to measure your STA results against.
The goal of such a Spice simulation can of course never

be to fully verify a chip’s timing. But it can be a useful
tool to validate that the timing library, the calculated
delays, and the STA setup result in correct timing
numbers and it can give the designer a feeling how
accurate these results are compared to the golden
reference.

2. What do I need for timing validation?

The command in PrimeTime that is used to generate a
netlist from a timing path for Spice simulation is
write_spice_deck. This command was added in the
2001.08 release of PrimeTime and is part of the Signal
Integrity extension of the tool. Therefore this feature
requires a PrimeTime SI license and can not be used with
the standard tool license. Table 1 shows the most
important arguments of the write_spice_deck command.
Probably the most important input for the Spice deck

generation is a Timing Path object. This object contains
all the information on the path through the circuit for
which the Spice deck shall be written out. This Timing
Path object can be generated using the PrimeTime
command get_timing_paths that is very similar to the
report_timing command.

The basic components for any Spice simulation are the
Spice models. These Spice models are stored in one or
more Spice library files and contain the information on
the basic components of your technology, like CMOS
transistors, diodes, resistors, etc. These Spice models are
only needed for the Spice simulation, not for the
generation of the Spice deck in PrimeTime. However,
The write_spice_deck command generates a complete
deck for the Spice simulator that contains everything to
start simulating, not only the netlist. Therefore, it is
possible to specify a Spice header file when generating
the deck. This header file contains a list of model libraries
that need to be read in by the simulator. An example for
such a header file is shown in Table 2.

The .lib statement instructs the Spice simulator to read
from a technology file the named library. As you can see
there are not only libraries for elements like transistors
and diodes but also libraries that define parameters for the
process. What libraries are actually available and needed
is specific to each technology. Often header files for the
different process conditions are delivered with the library.
If this should not be the case, once you have located the
Spice library file you can search for the “.lib” statements
inside this file and find out which libraries are available.
Based on this it is easy to set up the header file.
The final ingredient for the Spice deck extraction and the

simulation are the extracted netlists for the standard cells.
These netlists are the links between the standard cell
based netlist that is used by PrimeTime and the basic
elements that are used in Spice. Table 3 shows an
example for such a netlist.
The netlists for all standard cells need to be concatenated

into a single file. Alternatively it is possible to generate a
file referencing separate netlist files with the “.include”

write_spice_deck \
-output <spice_file> \
-header <header_file> \
-sub_circuit_file <netlist_file> \
$timing_path

Table 1: The most important arguments of the
write_spice_deck command

.lib /tsmc18/spice/mapped.rev2c BASE

.lib /tsmc18/spice/mapped.rev2c BSIM

.lib /tsmc18/spice/mapped.rev2c WCS_PARA

.lib /tsmc18/spice/mapped.rev2c WCS_FET

.lib /tsmc18/spice/mapped.rev2c WCS_IO

.lib /tsmc18/spice/mapped.rev2c DIODE

.lib /tsmc18/spice/mapped.rev2c RESISTOR

.lib /tsmc18/spice/mapped.rev2c DEFINES

.lib /tsmc18/spice/mapped.rev2c MOSFET

.lib /tsmc18/spice/mapped.rev2c WCS_NAIO

.lib /tsmc18/spice/mapped.rev2c WCS_NA

Table 2: An Example for a Spice header file

Spice statement. This global netlist file is passed to the
write_spice_deck command with the -sub_circuit_file
switch. PrimeTime will parse this file when generating
the Spice deck to determine the pin order on the sub
circuits that form the standard cells. If a cell is missing in
the netlist file the PrimeTime tool will generate a warning
message.
Obtaining the complete and correct set of extracted

netlists is sometimes the most challenging work when
setting up the Spice simulation. In many library
distributions only Spice netlists targeted for LVS analysis
are available. These netlists usually don’t contain the
parasitic elements and therefore result in inaccurate
timing. You should always check that the netlists contain
extracted parasitic elements like the three capacitors in
the netlist in Table 3. If your design contains non-
standard cells like memories, obtaining the netlist for
these blocks is usually even more challenging. Of course
it is possible to extract a Spice netlist of a memory block
from the layout, but the large number of elements
probably will significantly impair your simulation time.
In such a case you should consider to extract only a part
of the memory like the access logic or maybe you can live
with a dummy model.

3. The Spice deck generated by PrimeTime

Although the write_spice_deck command of PrimeTime
usually generates a complete Spice file that can be

directly simulated, there are some basic points you should
know about the Spice deck to be able to debug or enhance
the results. In the appendix you can find an example for a
Spice deck generated by PrimeTime.
At the beginning of the spice deck you will find the

header that reads the model libraries, a definition of the
supply voltages and the operating temperature, and an
include statement to read the Spice netlist containing the
standard cells.
After that header section follows the timing path section.

This part of the Spice deck contains the instantiations of
the standard cells and the models for the wires between
the cells. Of course the verification of the timing paths is
most useful on a layouted design with an extracted netlist
where detailed information on the interconnect is
available. However, it is also possible to do a Spice
simulation when PrimeTime works on Wire Load
Models. In this case PrimeTime will place a capacitance
with the value from the statistical Wire Load Model at the
driver pin and connect the driver to the receiver using two
voltage sources as shown in Picture 1. With this approach
all timing points of the path, the driver pin, the net, and
the receiver pin, are available in the Spice simulation.
If your timing path contains nets with more than one

receiver you will find that the generated spice deck not
only instanciates the cells that are part of the timing path
but all cells that are connected to the drivers of the path.
This is important to know, because although these cells
are only used to accurately model the load on the nets,
also their elements are simulated. So if you want to do a
Spice simulation on a netlist before clock tree insertion
you might end up simulating hundreds or even thousands
of flipflops all connected to the same clock signal.
After the netlist of the timing path follows the dynamic

voltage sources for the inputs that trigger the transition on
the path. If the path doesn’t contain any sequential
elements only the start point is driven by a dynamic
source. In the example in the appendix you can see that
there are two dynamic voltage sources. One source is for
the clock signal that is the starting point of the timing
path. The second dynamic source stimulates the data input
of the flipflop in the path so that it is first initialized to

Table 3: An example for the extracted netlist of
a standard cell

.subckt BUF Y A
m_p1 vdd net1 Y vdd pch l=0.18 w=1.80
m_n1 Y net1 vss vss nch l=0.18 w=1.20
m_p0 vdd A net1 vdd pch l=0.18 w=0.75
m_n0 net1 A vss vss nch l=0.18 w=0.50
c1 net1 vss 6.52119E-16
c2 Y vss 2.48623E-16
c3 A vss 4.12536E-16
.ends

Driver V=0

CWLM

ReceiverV=0
driver pin receiver pinnet

Picture 1: Interconnect modeling with Wire Load Models

high. After this input
changes to low a falling
edge at the output of the
flipflop is triggered with
the next clock event. In
addition to the dynamic
voltage sources there are a number of static sources that
set the inputs of the gates to defined values so that the
path you want to simulate is sensitized and the transition
can propagate through all cells.
At the very end of the Spice deck you can find a “.tran”

statement. This tells the Spice simulator to run a transient
analysis with the given minimal time resolution and
duration.
This Spice deck is sufficient to simulate the timing path.

However, to analyze the results and to compare them to
the PrimeTime timing there are some measurements
needed. Probably the best way to add these measurements
is to insert them into the Spice deck based on the timing
path the deck was generated from. This can be done in
PrimeTime using a TCL script.

4. The first step – validate your models and
library

When running a Spice simulation with a library for the
first time it is helpful to take a step-by-step approach. At
first you should always verify that the Spice model library
and the extracted netlists you have for your standard cells
give you the same timing behavior as the timing library
that is read by PrimeTime. Although this sounds trivial
there are severe differences that can occur here. One
example is the correct scale of the transistor sizes. It is
possible to define the unit for the dimensions of your
transistors in the Spice setup. So if the width of a
transistor in the netlist is given with “w=1.0” this could
result in a transistor with a width of 1µm or 1m,
depending on your scale setting.
Using the TCL scripting interface of PrimeTime

comparing the timing in the library against the Spice
simulation can be easily automated. The script
verify_cell_timing that you can find in the appendix can
be used to create a small Verilog netlist instantiating a
single cell to be tested. It reads in this Verilog netlist and
applies one set of boundary conditions. For this test setup
all possible timing paths are selected and Spice decks are
generated. These Spice decks are than simulated, the
simulation results are parsed and compared to the timing
calculated in PrimeTime.
Using this script a single cell can be verified using the

command

verify_cell_timing { BUFX2 }

The script generates an output like in Table 4.

Simulating just a single cell in Spice takes only a few
seconds. So using this script it is possible to compare all
timing arcs of all cells in a library to the Spice simulation.
This can be started running the commands listed in Table
5.

Such a comparison of a whole library can easily be run
over night. In such a comparison it is normal to have a
difference of a few per cent on each timing arc. Since the
Spice simulation is run only for one set of boundary
conditions, depending on how well these match the
conditions for which the cells were characterized, the
difference will vary.
It can happen that for complex gates such as a

multiplexer the timing model in the library is incomplete
or is not modeled correctly. Using this approach of
verifying all timing arcs to Spice such modeling errors
stick out by showing differences of more than 10%.

5. Generating a reference timing report

When verifying the timing of a path through a single cell
there are only two timing points on the path - the start
point and the end point. Anything inside the cell is not
visible to PrimeTime. This approach of just analyzing the
delay from start to end point can of course also be used on
more complex timing paths through more levels of logic.
If the Spice simulation results in the same delay from start
point to end point this information is sufficient. But if
there should be a difference you will need more details
for analyzing the source of the problem.
The advantage of generating and triggering the Spice

simulation from the PrimeTime shell is that you know
which timing points can be found on the timing path. Also
the names of the timing points in the Spice deck and the
timing path object are identical. So it is easy to add
additional measure statements to the Spice deck to access
any timing number you need.

Table 4: An example for the output of verify_cell_timing

Investigating BUFX2...
A(f)->Y(f): PrimeTime: 0.4393 Spice: 0.4411 Difference: 0.41%
A(r)->Y(r): PrimeTime: 0.3685 Spice: 0.3602 Difference: 2.31%

Table 5: Verifying all cells of a library

read_db -library <library>
set allcells {};
foreach_in_collection cell \
 [sort_collection \
 [get_lib_cells "<libname>/*"]] {
 set allcells [\
 concat $allcells \
 [get_attribute $cell base_name] \
];
}
verify_cell_timing $allcells

I found it most useful to generate a report that resembles
the output of the report_timing command in PimeTime.
This timing report shows the incremental delay for each
cell and each interconnect between the cells on the timing
path. In addition to that the total delay from the start point
to each point on the path is reported. Table 6 shows an
example for the measure section to acquire the
information for such a detailed report.
When generating the measure statements you need to be

careful which voltage threshold to select. Depending on
the setting in your library the thresholds for delays could
be 50% of the supply voltage, or for example 20% for a
rising edge and 80% for a falling edge. If the thresholds
for the measurements are set differently than in your
library you will find that the total path delay will be close
to what you expect, but the delta delays for the cells and
nets will sometimes be significantly smaller or larger.
Another challenge when
generating the measure
thresholds can be if
your design contains
several voltage
domains. For example if
you have pad cells at
the start or end point of
your timing path you
need to find the correct
voltage level for each
point on the path to
trigger your
measurement correctly.
The parser for the

Spice result file now
needs to be enhanced to
read the simulation
results back into
PrimeTime. The TCL
capabilities of
PrimeTime can also be
used to format the data

from the simulation and compare it to the timing that was
calculated by PrimeTime. Table 7 shows an example for
such a report. It contains the delta and total delay for each
stage of the timing path. From such a report you can
easily locate the source of differences in the timing.
Of course there are endless possibilities for additional

analysis, for example the transition times at all timing
points of the path could be measured in the simulation
and be compared to the calculated transition times.
Such a report can only show if there are differences in

the delays and if there are, which cells or interconnects
contribute to the difference. A possible reason for a
mismatch could be that the signal slope at some timing
point exceeds the range for which the library cell was
characterized. This can happen on nets with high loads,
but also on nets with small load that have a strong driver.
In these cases the slope is smaller than the smallest or

PATH #1
from: ips_addr[7] (fall)
to: ips_rdata[0] (rise)
 PrimeTime timing Spice timing
pin edge delta total delta total

ips_addr[7] fall 0.000000 0.000000 | 0.000000 0.000000
U73/B fall 0.000044 0.000044 | 0.000043 0.000043
U73/Y fall 0.462108 0.462152 | 0.443418 0.443462
U72/D fall 0.000007 0.462159 | 0.000027 0.443489
U72/Y fall 0.398624 0.860783 | 0.406903 0.850391
U70/A fall 0.000006 0.860789 | 0.000038 0.850429
U70/Y rise 0.127181 0.987970 | 0.110866 0.961295
U67/C rise 0.000015 0.987985 | 0.000082 0.961378
U67/Y fall 0.137421 1.125406 | 0.130432 1.091809
U76/A fall 0.000018 1.125424 | 0.000084 1.091893
U76/Y rise 0.140869 1.266293 | 0.129620 1.221513
U78/A rise 0.000024 1.266317 | 0.000044 1.221557
U78/Y rise 0.331501 1.597818 | 0.318523 1.540080
U92/B rise 0.002680 1.600498 | 0.002659 1.542739
U92/Y rise 0.158986 1.759484 | 0.168551 1.711290
ips_rdata[0] rise 0.000003 1.759487 | 0.000009 1.711299

PrimeTime is 2.82% off the Spice results. PrimeTime is pessimistic.

Table 7: A timing report comparing PrimeTime timing to the Spice simulation
results

* measure total delay
.measure tran d_1_2 trig "v#ips_addr[7]" val=0.81 fall=1 targ "v#U73/B" val=0.81 fall=1
.measure tran d_1_3 trig "v#ips_addr[7]" val=0.81 fall=1 targ "v#U73/Y" val=0.81 fall=1
.measure tran d_1_4 trig "v#ips_addr[7]" val=0.81 fall=1 targ "v#U72/D" val=0.81 fall=1
(...)
.measure tran d_1_15 trig "v#ips_addr[7]" val=0.81 fall=1 targ "v#U92/Y" val=0.81 rise=1
.measure tran d_1_16 trig "v#ips_addr[7]" val=0.81 fall=1 targ "v#ips_rdata[0]"
+ val=0.81 rise=1

* measure delta delay
.measure tran d_2_3 trig "v#U73/B" val=0.81 fall=1 targ "v#U73/Y" val=0.81 fall=1
.measure tran d_3_4 trig "v#U73/Y" val=0.81 fall=1 targ "v#U72/D" val=0.81 fall=1
.measure tran d_4_5 trig "v#U72/D" val=0.81 fall=1 targ "v#U72/Y" val=0.81 fall=1
(...)
.measure tran d_15_16 trig "v#U92/Y" val=0.81 rise=1 targ "v#ips_rdata[0]"
+ val=0.81 rise=1

Table 6: Measure statements that can be added to the Spice deck for a detailed analysis

larger than the largest entry in the timing table. The delay
calculation tool will in such a case extrapolate the value
what can be quite inaccurate.
Another example for an error that was found using the

comparison to Spice was when a pad library was used that
operated at 3.0 volt while the core cells operated at 1.5
volts. Since the pad library contained scalers to adjust for
different pad voltages, the pad timing was accidentally
calculated not for the 3.0 volt operating condition but for
1.5 volt. All I/O paths were calculated with about 2ns
pessimistic timing.

6. To the digital designer

Many digital design engineers shy the difficult setup of a
Spice simulation and the high runtime on the designs that
they usually work on. Therefore, very few consider doing
reference simulations with Spice. However, using the
interface to Spice that PrimeTime provides allows you to
create the whole setup for simulating only that fraction of
the circuit you are interested in with very little effort. The
TCL script that is provided in the Appendix is not

intended to be a complete solution for all types of Spice
simulators and analysis details you may need. But I hope
it will serve as a starting point for setting up and
automating your verification process.
To conclude, I can only encourage you to spend the

effort and validate your STA results with a Spice
simulation. Once you have set up the simulation, it is easy
to impress your colleges and your boss with some plots
from the analog world to prove that your Static Timing
Analysis matches the golden references and that you have
really met timing.

References
[1] “PrimeTime User Guide: Fundamentals”, Synopsys,
Version T-2002.09
[2] “PrimeTime User Guide: Advanced Timing Analysis”,
Synopsys, Version T-2002.09
[3] “PrimeTime SI User Guide”, Synopsys, Version T-2002.09
[4] “HSPICE User’s Manual”, Meta-Software, Volume 1-3,
California, 1992
[5] Brent B. Welch, “Practical Programming in TCL and TK”,
3rd Edition, Prentice Hall, 1999

7. Appendix

7.1 An example for a Spice deck generated by PrimeTime

.lib /libraries/tsmc18/spice/mapped.rev2c BASE

.lib /libraries/tsmc18/spice/mapped.rev2c BSIM

.lib /libraries/tsmc18/spice/mapped.rev2c WCS_PARA

.lib /libraries/tsmc18/spice/mapped.rev2c WCS_FET

.lib /libraries/tsmc18/spice/mapped.rev2c WCS_IO

.lib /libraries/tsmc18/spice/mapped.rev2c DIODE

.lib /libraries/tsmc18/spice/mapped.rev2c RESISTOR

.lib /libraries/tsmc18/spice/mapped.rev2c DEFINES

.lib /libraries/tsmc18/spice/mapped.rev2c MOSFET

.lib /libraries/tsmc18/spice/mapped.rev2c WCS_NAIO

.lib /libraries/tsmc18/spice/mapped.rev2c WCS_NA
* MIN. timing path section: (rising) timer_1/counter_buf_reg_3_/ck -> (falling)
ips_rdata[3].
.global vdd vss
vvdd vdd 0 1.35
vvss vss 0 0
.temp 150
*.prot
.include "/home/tobias/spice_netlist"
*.unprot

* Timing path section: (rising) timer_1/counter_buf_reg_3_/ck -> (falling) ips_rdata[3].

(...)

* Timing path cell 2: falling U16/d1 -> falling U16/x
* The side pin ’U16/d0’ is sensitized to ’low’.
* The side pin ’U16/sl0’ is sensitized to ’high’.
**
* SPICE pin order used.
* .pin(sub_node): .X(U16/x) .D0(U16/d0) .D1(U16/d1) .SL0(U16/sl0)
xU16 U16/x U16/d0 U16/d1 U16/sl0 mux2_2
**

* Timing path net 2 : falling ips_rdata[3]
* resistor(s) for net ’ips_rdata[3]’.
* driver pin ’U16/x’.
r00100 ips_rdata[3]:1 ips_rdata[3] 0.76725
r00101 ips_rdata[3] ips_rdata[3]:3 2.5916
r00102 ips_rdata[3]:3 ips_rdata[3]:4 0.01
r00103 ips_rdata[3]:3 ips_rdata[3]:6 1.7
r00104 ips_rdata[3]:3 ips_rdata[3]:13 0.01
r00105 ips_rdata[3]:3 ips_rdata[3]:12 0.01
r00106 ips_rdata[3]:17 U16/x 0.01
r00107 ips_rdata[3]:17 ips_rdata[3]:5 0.01
r00108 ips_rdata[3]:17 ips_rdata[3]:15 0.01
r00109 ips_rdata[3]:17 ips_rdata[3]:18 1.4322
r00110 ips_rdata[3]:18 ips_rdata[3]:10 0.01
r00111 ips_rdata[3]:18 ips_rdata[3]:7 1.7
r00112 ips_rdata[3]:6 ips_rdata[3]:14 0.01
r00113 ips_rdata[3]:6 ips_rdata[3]:7 0.01
r00114 ips_rdata[3]:6 ips_rdata[3]:11 0.01
r00115 ips_rdata[3]:7 ips_rdata[3]:9 0.01
r00116 ips_rdata[3]:7 ips_rdata[3]:8 0.01
* ground capacitors(s) for net ’ips_rdata[3]’.
c00102 ips_rdata[3]:1 0 0.001f
c00103 ips_rdata[3] 0 0.065391f
c00104 ips_rdata[3]:3 0 0.0247121f
c00105 ips_rdata[3]:4 0 0.421554f
c00106 ips_rdata[3]:5 0 0.162986f
c00107 ips_rdata[3]:6 0 0.087714f
c00108 ips_rdata[3]:7 0 0.0328137f
c00109 ips_rdata[3]:8 0 0.001f
c00110 ips_rdata[3]:9 0 0.0122159f
c00111 ips_rdata[3]:10 0 0.001f
c00112 ips_rdata[3]:11 0 0.0249453f

c00113 ips_rdata[3]:12 0 0.00125659f
c00114 ips_rdata[3]:13 0 0.001f
c00115 ips_rdata[3]:14 0 0.001f
c00116 ips_rdata[3]:15 0 0.001f
c00117 U16/x 0 0.001f
c00118 ips_rdata[3]:17 0 0.001f
c00119 ips_rdata[3]:18 0 0.001f

(...)

**
* INFO: PrimeTime created the following PWL or voltage source.
* Please verify.
**
* Timing path sequential data pin voltage section: (rising) timer_1/counter_buf_reg_3_/ck -
> (falling) ips_rdata[3].
********** Arrival Window Info. for pin ’timer_1/counter_buf_reg_3_/d’ **********
* {clk} pos_edge {min_r_f 3.47638 3.54304} {max_r_f 5.73091 6.00015}
* clock {rise fall}: {0 5}
* For rising pwl
*vtimer_1/counter_buf_reg_3_/d timer_1/counter_buf_reg_3_/d 0 pwl(0.0ns 0
*+ 13.4263ns 0
*+ 13.5376ns 1.35)
* For falling pwl
vtimer_1/counter_buf_reg_3_/d timer_1/counter_buf_reg_3_/d 0 pwl(0.0ns 1.35
+ 13.4881ns 1.35
+ 13.6102ns 0)
* End of timing path sequential data pin voltage section

* Timing path clock tree input voltage section: (rising) timer_1/counter_buf_reg_3_/ck ->
(falling) ips_rdata[3].
**
vclk clk 0 pulse (0 1.35 11.2333ns 1.66667ns 1.66667ns 3.33333ns 10ns)
**

(...)

**
* The side pin ’U16/d0’ of cell ’U16’ (mux2_2)
* is set to ’low’ by sensitization.
vU16/d0 U16/d0 0 0

**
* The side pin ’U16/sl0’ of cell ’U16’ (mux2_2)
* is set to ’high’ by sensitization.
vU16/sl0 U16/sl0 0 1.35

(...)

* transient analysis
.tran 0.1ns 50ns

.end

7.2 TCL script to automatically compare the timing of library cells to Spice simulation

some global variables
set spice_header "/home/tobias/spice_header";
set spice_netlist "/home/tobias/spice_netlist";
set default_input_slope 1.0;
set default_output_load 0.05;
set supply_voltage 1.62;

##
Compare the timing of the listed cells to Spice simulation
##
proc verify_cell_timing { cells } {
 global link_path default_input_slope default_output_load;

 ### read in all libraries in $link_path
 if { [get_libs * -quiet] == "" } {

 foreach lib $link_path {
 if { [string match "*.db" $lib] } {
 read_db -library $lib;
 }
 }
 }

 foreach cell $cells {
 ### create verilog netlist
 set libcell [create_testcase_for_cell $cell "tmp_netlist.v"];
 if { $libcell == -1 } { continue; }
 puts "Investigating $cell...";

 ### read design
 remove_design -all >> /dev/null;
 read_verilog tmp_netlist.v >> /dev/null;
 link >> /dev/null;

 ### create a virtual reference clock and apply conatraints
 create_clock -period 10.0 -name ref_clock;
 set_input_transition $default_input_slope [all_inputs];
 set_load $default_output_load [all_outputs];
 set_input_delay -clock ref_clock 5.0 [all_inputs];

 ### create real clock on clock inputs
 foreach_in_collection pin [get_lib_pins -of_object $libcell] {
 if { [get_attribute $pin is_clock_pin] == "true" } {
 set clock [get_attribute $pin base_name];
 create_clock -period 10.0 $clock;
 set_propagated_clock $clock;
 }
 }

 foreach_in_collection path [get_timing_path -delay_type max -nworst 1000 \
 -to [all_outputs]] {
 verify_path_timing $path;
 }; # foreach_in_collection path
 }; # foreach cell
}

##
Create a testcase verilog file instanciating a single test cell
##
proc create_testcase_for_cell { cell filename } {
 ### search for library cell
 foreach_in_collection lib [get_libs *] {
 set libname [get_attribute $lib full_name];
 set libcell [get_lib_cells "$libname/$cell" -quiet];
 if { $libcell != "" } { break; }
 }
 if { ![info exists libcell] || $libcell == "" } {
 puts "Error: could not find cell ’$cell’ in any library!";
 return -1;
 }

 ### create string lists
 foreach_in_collection pin [get_lib_pins -of_object $libcell] {
 set pinname [get_attribute $pin base_name];
 set pindir [get_attribute $pin pin_direction];
 append portlist ", $pinname";
 append pinlist ", .$pinname\($pinname\)";
 append iolist "\n $pindir\put $pinname;";
 }

 ### write testcase file
 set FILE [open $filename "w"];
 puts $FILE [format "module verification_top (%s);" \
 [string trimleft $portlist ", "]];
 puts $FILE [string trimleft $iolist ", "];
 puts $FILE "";
 puts $FILE [format " $cell DUT (%s);" [string trimleft $pinlist ", "]];
 puts $FILE "endmodule";

 close $FILE;

 return $libcell;
}

##
Run Spice simulation on a timing path, parse and compare the results
##
proc verify_path_timing { path } {
 global spice_header spice_netlist supply_voltage;

 ### create the Spice deck
 write_spice_deck -output spice.pt \
 -header $spice_header \
 -sub_circuit_file $spice_netlist \
 $path;

 ### add a measure statement to the spice deck for the path delay
 sh sed -e "s/^.print/* .print/" -e "s/^.unprot/* .unprot/" \
 -e "s/^.prot/* .prot/" -e "s/^.end/* .end/" spice.pt > spice.ckt

 set points [get_attribute $path points];
 set size [sizeof_collection $points];
 set startpoint [index_collection $points 0];
 set endpoint [index_collection $points [expr $size - 1]];
 set startname [get_attribute [get_attribute $startpoint object] full_name];
 set endname [get_attribute [get_attribute $endpoint object] full_name];

 regsub -all "/" $startname "?" startname
 regsub -all "/" $endname "?" endname

 echo [format ".measure tran delay trig v(%s) val=%f %s=1" \
 $startname \
 [expr $supply_voltage * 0.5] \

 [get_attribute $startpoint rise_fall]] >> spice.ckt
 echo [format "+ targ v(%s) val=%f %s=1" \
 $endname \
 [expr $supply_voltage * 0.5] \
 [get_attribute $endpoint rise_fall]] >> spice.ckt
 echo ".end " >> spice.ckt

 #!!
 # The following command is specific for the Spice simulator used.
 # This needs to be customized for different simulators.
 #!!
 exec <your spice simulator> -b spice.ckt >& spice.result;

 ### parse the simulation output
 set spice_delay [parse_result_file "spice.result"];

 ### print result
 print_result $startpoint $endpoint $spice_delay;
}

##
Parse the simulation results
This may need to be changed for a different Spice simulator
##
proc parse_result_file { file } {
 set FILE [open $file "r"]
 set last_line ""
 set spice_delay -1.0;
 while { [gets $FILE line] >= 0 } {
 if { [string match {-*} $last_line] } {
 [scan $line "%s %s %s %s %s" field1 field2 field3 field4 field5]
 if { ![string match "delay" $field1] && \
 ![string match "failed" $field1] } {
 set spice_delay [expr $field1 * 1.0e+9];
 }
 }
 set last_line $line
 }

 close $FILE

 ### For flipflops, substract 1 clk period for the event is triggered with
 ### the 2nd clk event.
 if { $spice_delay > 10.0 } { return [expr $spice_delay - 10]; }
 return $spice_delay;
}

##
Format and print the result
##
proc print_result { startpoint endpoint spice_delay } {
 set lib_delay [expr [get_attribute $endpoint arrival] \
 - [get_attribute $startpoint arrival]];

 if { $spice_delay > $lib_delay } {
 set diff [expr ($spice_delay - $lib_delay) * 100.0 / $spice_delay];
 } else {
 set diff [expr ($lib_delay - $spice_delay) * 100.0 / $lib_delay];
 }

 puts [format "%s(%s)->%s(%s): PrimeTime: %.4f Spice: %.4f Difference: %.2f%%" \
 [get_attribute [get_attribute $startpoint object] full_name] \
 [get_attribute $startpoint rise_fall] \
 [get_attribute [get_attribute $endpoint object] full_name] \
 [get_attribute $endpoint rise_fall] \
 $lib_delay $spice_delay $diff];
}
EOF

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

