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Abstract

After recalling the basic algorithms published by NIST
for implementing the hash functions SHA-256 (384, 512),
a basic circuit characterized by a cascade of full adder ar-
rays is given. Implementation options are discussed and two
methods for improving speed are exposed: the delay bal-
ancing and the pipelining. An application of the former is
first given, obtaining a circuit that reduces the length of the
critical path by a full adder array. A pipelined version is
then given, obtaining a reduction of two full adder arrays
in the critical path. The two methods are afterwards com-
bined and the results obtained through hardware synthesis
are exposed, where a comparison between the new circuits
is also given.

1. Introduction

A Hash function compresses a string of bits of arbitrary
length to a string of fixed length. It produces therefore a
fingerprint of a message, or a picture, or other block of
data, that can be used in assuring message content integrity
or data origin authentication. A hash function must satisfy
some basic requirements to be considered secure: first, it
must be hard to invert, e.g. given a hash value it must be
computationally infeasible to find a message that produces
exactly this hash value; second, given a message, it must be
computationally infeasible to find another message which
produces the same hash value. Sometimes it is also required
that it must be computationally infeasible to find two ran-
dom messages which produce the same hash value. Given
these properties, the hash calculation becomes an essential
service to be provided in electronic mail, e-commerce, fi-
nancial transactions, and software distribution.

A number of algorithms have been proposed and used so
far. We refer here to the SHA (Secure Hash Algorithm) de-
veloped by the National Institute of Standards and Technol-
ogy (NIST) who published in 2002 new versions of the al-
gorithm called SHA-256, SHA-384, SHA-512 [6]. These
algorithms differ in the structure from the previous standard
SHA-1 and the dimension of the message digest is equal re-
spectively to 256, 384 and 512 bits.

The purpose of this paper is to present some hardware
implementations of the above algorithms, with the scope of
obtaining a high speed of computation. We have devised
means to reach the scope that, to our knowledge, are new
and efficient. We do not yet reach the level of a physical
layout of the circuit, having proved the functionality and
the efficiency at the level of simulation and hardware syn-
thesis, using modern design tools. The motivation of this
work is the need to match the speed of computation (e.g.
within servers) to the transmission speed achieved in fiber
optic links already installed today (40 Gbits/sec).

2. The basic algorithm and the corresponding
schemes

The description of the SHA-256, SHA-384 and SHA-
512 algorithms can be found in [6]. The corresponding
scheme can easily be drawn (see Fig. 1 and Appendix). We
will concentrate here on the algorithm’s inner part; we sup-
pose that message partitioning and padding is done in soft-
ware at the system level, and we suppose that the interme-
diate hashes are accumulated in a bank of registers that is
not shown in the Figures for clarity. Moreover, all the opti-
mizations that we apply to the SHA-256 algorithm are eas-
ily extendable to SHA-384 and SHA-512, since it is suffi-
cient to simply extend the dimension of the word from 32
to 64 bits.
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Figure 1. Block diagram of the SHA256 algo-
rithm

The most problematic characteristic of the algorithm’s
core is the need to add (modulo 232) several numbers to ob-
tain two main functions which we callα and ε. In order
to reduce the complexity and to reach a higher operation
speed, it is possible to replace a number of adders modulo
232 with a sequence of carry-free adders, composed with
full adder arrays,FAA’s; this solution has been applied to
the SHA-1 algorithm in [5], and to the SHA-512 algorithm
in [4]. However, these two solutions, together with [7] and
[8], are targeted to reconfigurable devices and consequently
optimize the implementation according to the peculiarities
of the target FPGA platform. Here we want to give guide-
lines to build a fast hardware implementation of the SHA-2
family in custom silicon.

We assume the scheme of Fig. 2 as a starting point for our
discussion. As we will see, all the proposed optimizations
will be applied to thiscanonical formof the circuit; this pro-
vides a good common ground to compare implementation
techniques and refinements. The scheme is equivalent to
the preceding one, using only one carry-propagating-adder
per function (actually a carry-look-ahead adder, orCLA). A
third CLA must be used in the connected Expander, whose
task is to provide an input to the Compressor. As we can see
the Expander has been connected to the Compressor by tak-
ing the inputWe j directly from the shift register. This solu-
tion exploits the fact that the calculation in the Compressor
can be delayed by one clock cycle, decreasing the length of
the critical path.

We will refer to Fig. 2 as the basic scheme.
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Figure 2. The proposed basic scheme, using
Carry-Save-Adders

2.1. The basic scheme’s critical path

It can be easily found by inspection that the critical path
of the Compressor in the basic scheme is given by:

f aa1⇒ f aa2⇒ f aa3⇒ f aa4⇒ f aa5⇒ cla1

Its delay is therefore equal to: delay(CLA) + 5*delay(FAA).
The critical path of the Expander is:

σ0⇒ f aa7⇒ f aa8⇒ cla3⇒mux

which is considerably shorter. Theσ0 delay is comparable
to the delay of a FAA. The main purpose of this paper is
to present methods that could be used to implement a Com-
pressor with a comparable delay.

2.2. Other basic schemes

The basic scheme defined in Fig. 2 has a simple and reg-
ular structure. Other schemes for the computation ofα andε
can be defined, using various forms ofparallel counters[2]
[3]. It is worth noting, however, that the use of full adder ar-
rays profits from the fact that most of the commonly used
custom silicon libraries offer well-optimized full adder de-
signs; moreover, the techniques illustrated in Section 3 can-
not be applied if we use these complex components.

The example in Fig. 3 is a tree-like network of FAA’s
characterized by a delay equal to: delay(CLA) + 4*de-
lay(FAA) for both functions. The number of FAA’s is eight,
while they are six in Fig. 2, with a larger delay due to one
more FAA in the critical path.
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Figure 3. A network of faa’s for computing
functions α and ε

Other circuits can be implemented that make use of:
(1) trees of CLA adders; (2) trees of FAA’s and two CLA
adders; (3) simple parallel counters with 7, 6, and 5 in-
puts; (4) complex (2-columns) parallel counters. For lack of
space, those circuits will not be shown here: we give some
results in Table 1 derived from the simulation and hardware
synthesis on the STMicroelectronics HCMOS8 technology
library, featuring 0.18µm process and 1.8V core voltage.
Note that the area and timing values refer only to the chain
of adders (excluding Ch, Maj,Σ0 andΣ1), and that the regis-
ters setup and hold timings are not included. We can see that
the best area×delay product is reached when only FAA’s are
used together with CLA’s. For more details, see [1].

3. Further improvements of the critical path

Two methods will be applied in the following:

1. Pipelining: a well known and used method. It offers,
nevertheless, some difficulties when applied to our
case: it will be shown how to overcome them with a
quasi-pipelining.

2. Delay balancing: consists in displacing some func-
tional units from the critical path to a shorter path, so
that the delay of the critical path is decreased and the
delay of the chosen secondary path is correspondingly
increased. The ideal case would be to make the two de-
lays identical: this, in practice is not possible, but in
any case the two delays will be made more equal. The
functionality of the whole system should obviously not
be affected.

Components used Delay Area Area×delay

(7,3)-(3,2)-cla 0.99 ns 146870 145401

(5,3)-(3,2)-cla 0.95 ns 92770 88131

(3,2)-cla #1 1.04 ns 64646 67232

(3,2)-cla #2 1.18 ns 51748 61063

(4,4; 4)-(3,2)-cla 1.41 ns 69512 98012

cla #1 1.39 ns 71323 99139

cla #2 1.71 ns 63454 69799

Table 1. Other implementations of the adder
chain

3.1. Delay balancing: first application

Let us consider the circuit in Fig. 4. It is derived from
Fig. 2 circuit by applying delay balancing method to regis-
ter A. The addercla1 is moved and A is replaced with A’,
A”, whose inputs are fed with the two outputs offaa5, pre-
viously feedingcla1. The latter is connected to the A’, A”
outputs: its output is identical to the output of A in the orig-
inal circuit.

The previous critical path starting withfaa1 includes
now faa2, faa3, faa4 and faa5, but does not containcla1.
Its delay is therefore 5*delay(FAA). Note that the delay in a
CLA is considerably greater (about 3 times) than in a FAA.
The paths starting withcla1continue in

Ma j⇒ f aa4⇒ f aa5

or in
Σ0⇒ f aa5

The longest critical path ends withcla2, preceded byfaa6,
faa3, faa2andfaa1or Ch (comparable in delay withfaa1),
with total delay approximately given by delay(CLA)+ 4*de-
lay(FAA). This means a critical path shorter (one less full
adder array) than the one of the standard circuit of Fig. 2. In
the Figure, the Expander has been removed for clarity.

The functionality is the same as the original scheme. The
initial hash value for A is loaded in A’ (A” is cleared). The
final hash value is taken from the output ofcla1. It can be
easily verified that all the other paths have a shorter length.
It can also be shown that the application of the balancing
method to the register E would not improve the delays of
the paths involved.

The balancing method could also be applied to tree-like
schemes, e.g. the Fig. 3 scheme. However, in this specific
case there would be no benefit; in fact,cla1 would be relo-
cated beforeMaj andΣ0: the paths starting withfaa1, Ch
and Σ1 would diminish their delay, but the paths starting
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Figure 4. Scheme using the delay balancing
principle in the paths to A

with cla1(now on top ofMaj andΣ0) would keep their orig-
inal value. Similar result would be obtained by movingcla2
beforeCh andΣ1.

3.2. Pipelining: first application

A pipelined version of the circuit is shown in Fig. 5. It
differs from the standard circuit of Fig. 2 as shown in the
following. Two multiplexers have been introduced:mux2
(mux1) selects H or G (D or C) depending on the value of
the selector, where the initial value gives H (D) as output.
In the bottom sectionj the variablesWe j, K j and the out-
put of mux2are first reduced to two infaa1and then added
with cla1, the result feeding register M. Another (double)
register L is inserted betweenfaa2andfaa4.

The role of the registers M and L is to define three pipe-
sections:j, j-1, j-2. These sections are separated by one
clock cycle and one additional clock cycle separates them
from the Expander; this of course implies the existence of
circuits to control latching, whose structure will determine
the operations performed during the first three clock cycles,
as described in the following.

• j = 0. A–H are loaded with the initial Hash values:
A(0), B(0),. . . , H(0);mux1outputs D(0) which is not
yet used;mux2outputs H(0) which is being used. The
registers M and L are cleared.We0, K0 are the first in-
put values.
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Figure 5. Scheme using pipelining

• j = 1. A–H remain unchanged;mux1 outputs D(0)
which is being used andmux2 outputs G(0) which
is being used. M gets its first value, while L is still
cleared.We1, K1 are the second input values.

• j = 2. A–D remain unchanged while E–H get their first
new values;mux1outputs C(0) which is being used and
mux2outputs G(1) which is being used. M gets its sec-
ond value, while L gets its first value.We2, K2 are the
third input values.

The state ofmux1andmux2remains unchanged. Withj =
3, A–D will get their first new values and E–H their second
new values. After the last couple,We63, K63, has been input,
two more clock cycles are needed. The first for generating
the final values of E–H, the second for the final values of
A–D. During this last clock cycle E–H must not be clocked.

The critical path for the present circuit is:

Ma j⇒ f aa4⇒ f aa5⇒ cla3

or equivalently: delay(CLA)+ 3*delay(FAA).

3.3. A scheme using both delay balancing and
pipelining

The new scheme is shown in Fig. 6. We have combined
the concepts of pipelining and delay balancing, and we can
note that the path leading to A’, A” (α) and to E (ε) are split
after the common input stage fed byWe j, K j and H (or G).
Two double registers L1 and L2 are placed in order to obtain
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pipelining

two pipeline sections: note that (A’,A”)–D and E–H belong
to the same pipe section and they are always synchronized.
This synchronization is achieved in only two clock cycles
(as opposed to three in the previous scheme). This is shown
in the following sequence of events in the first three clock
cycles:

• j = 0. A’–H are loaded with the initial Hash values:
A(0), B(0),. . . , H(0), while A” is cleared;mux1outputs
D(0) andmux2outputs H(0), which are both used. The
registers L1 and L2 are cleared.We0, K0 are the first in-
put values.

• j = 1. (A’,A”)–H remain unchanged;mux1 outputs
C(0) andmux2outputs G(0), which are both used. L1

and L2 get their first new values.We1, K1 are the sec-
ond input values.

• j = 2. (A’,A”)–H get their first new values;mux1out-
puts C(1) which is being used andmux2outputs G(1)
which is being used. L1 and L2 get their second new
values.We2, K2 are the third input values.

The operation will continue untilj = 63. A last clock cy-
cle will be needed to obtain the final hash in (A’,A”)–H. The
value for the first 32-bit word will be obtained from the out-
put ofcla2, fed by A’, A”.

The longest paths can be seen to be:

Ch⇒ f aa4⇒ f aa6⇒ cla1

and

Ch⇒ f aa3⇒ f aa5⇒ f aa7⇒ f aa8

Since a CLA is at least three times slower than a FAA, the
first path is the critical one, giving a total latency of de-
lay(CLA) + 3*delay(FAA). We must also note that, since
Ch contains two-inputs XORs while Maj contains three-
inputs XORs, the critical path is slightly shorter than that
of Fig. 5.

To better clarify the reason why in the preceding three
schemes we had to use two multiplexers, we point out that
a straightforward application of pipelining is not possible
in this specific case. In fact, because of the circular nature
of the circuit, the flow of data related to theα andε func-
tions has a direction opposite to the direction of the mem-
ory section composed by the shift registers A–D and E–H.
By placing the pipe sections border between D and E we
should place there anegativedelay element, while in the
corresponding points in the purely combinational network
we will place normal positive delay elements. A negative
delay should give thefuturevalue of D. This would in gen-
eral be impossible, but in our case the future value of D is
simply the actual value of C. The same situation exists for
the future value of H in the connection between the pipe sec-
tion j and the following sectionj-1.

4. Synthesis results

The circuits described in the preceding sections have
been coded in VHDL using Mentor HDL Designer Pro,
fully simulated and synthesized using Synopsys Design
Compiler on a Sun Solaris platform. The target technol-
ogy library is the aforementioned STMicroelectronics HC-
MOS8 library, featuring 0.18µm process and 1.8V core volt-
age. The area and timing results are given in Table 2. Area
figures are expressed in square micron units and include the
Expander circuit; the latency column expresses the number
of clock cycles that are needed to complete the hashing of
one 512 bit message block (including the accumulation of
the intermediate hash).

It is clear from the table that the proposed implementa-
tions trade area for speed; the last proposed circuit is capa-
ble of running at 819MHz. We can instantiate four such cir-
cuits in an ASIC hardware accelerator (achievable from the
area point of view): in this way we could take better advan-
tage of the input bandwidth, because each circuit fetches
data from the bus only during the first 16 clock cycles (16

64,
equal to one fourth of the time). In this way we could reach
an ideal peak throughput of about 26 Gbits/s.



Circuit Clock latency Area ns/hash

Fig. 2 66×1.47 ns 140644 97.02

Fig. 4 66×1.30 ns 143814 85.8

Fig. 5 68×1.24 ns 159027 84.32

Fig. 6 67×1.22 ns 164856 81.74

Table 2. Comparison of the various imple-
mentations

5. Conclusions

In this paper we presented a high speed ASIC implemen-
tation of the SHA-256 hash algorithm. Two methods for
speeding up the calculation have been introduced and com-
bined, namely delay balancing and pipelining. In particu-
lar, the critical path inside the Compressor block has been
reduced from delay(CLA) + 5*delay(FAA) in Fig. 2 to de-
lay(CLA) + 3*delay(FAA) in Fig. 6, thus equal to critical
path of the Expander. This leads to a possible clock fre-
quency of 819MHz in a 0.18µm technology process.
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A. Appendix: the SHA-256 algorithm

Symbols and operators:

� = modulo 232 or 264 addition
⊕ = bitwise XOR
∧ = bitwise AND
¬x = bitwise complement ofx
�n (x) = right rotation ofx by n bits
→n (x) = right shift ofx by n bits
Ch(x,y,z) = (x∧y)⊕ (¬x∧z)
Ma j(x,y,z) = (x∧y)⊕ (x∧z)⊕ (y∧z)
Σ0(x) =�2 (x)⊕ �13 (x)⊕ �22 (x)
Σ1(x) =�6 (x)⊕ �11 (x)⊕ �25 (x)
σ0(x) =�7 (x)⊕ �18 (x)⊕→3 (x)
σ1(x) =�17 (x)⊕�19 (x)⊕→10 (x)

The message to be hashedM is first padded and then di-
vided inN 512-bit blocksM(1)

,M(2)
, . . . ,M(N). Each block

i is made up by 16 32-bit wordsM(i)
0 ,M(i)

1 , . . . ,M(i)
15. The

hash computation is accomplished by carrying out the fol-
lowing steps, fori=1 toN:

• The registers A–H are initialized with the(i−1)th in-
termediate hash value:
A←H(i−1)

1 ,B←H(i−1)
2 , . . . ,H ←H(i−1)

8 .

• For j=0 to 63 the compression function is applied:
T1← H � Σ1(E)�Ch(E,F,G)�K j �Wj

T2← Σ0(A)�Ma j(A,B,C)
H←G
G← F
F ← E
E← D�T1

D←C
C← B
B← A
A← T1 �T2

• The ith intermediate hash value is calculated:
H(i)

1 ← A�H(i−1)
1 ,

H(i)
2 ← B�H(i−1)

2 ,

. . . ,

H(i)
8 ←H �H(i−1)

8 .

At the end of the process,H(N) = (H(N)
1 ,H(N)

2 , . . . ,H(N)
8 ) is

the hash of the messageM. The valuesWj are obtained from
the message schedule (the Expander):

• Wj = M(i)
j for j = 0,1, . . . ,15

• Wj = σ1(Wj−2)�Wj−7� σ0(Wj−15)�Wj−16 for
j = 16, . . . ,63

The values of the initial hashH(0) and of the constantsK j

can be found in [6], along with the instructions on how to
pad the message.
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