Software Streaming via Block Streaming

Pramote Kuacharoen, Vincent J. Mooney and Vijay K. Madisetti
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

{pramote, mooney, vkm}@ece.gatech.edu

Abstract

Software streaming allows the execution of stream-
enabled software on a device even while the transmis-
sion/streaming may still be in progress. Thus, the soft-
ware can be executed while it is being streamed instead of
causing the user to wait for the completion of download,
decompression, installation and reconfiguration. Our
streaming method can reduce application load time seen
by the user since the application can start running as
soon as the first executable unit is loaded into the mem-
ory. Furthermore, unneeded parts of the application
might not be downloaded to the device. As a result, re-
source utilization such as memory and bandwidth usage
may also be more efficient. Using our streaming method,
an embedded device can support a wide range of real-
time applications. The applications can be run on de-
mand. In this paper, a streaming method we call block
streaming is proposed. Block streaming is determined at
the assembly code level. We implemented a tool to parti-
tion real-time software into parts which can be transmit-
ted (streamed) to the embedded de-vice. Our streaming
method was implemented and simulated on a hard-
ware/software co-simulation platform in which we used
the PowerPC architecture. We show a robotics applica-
tion that without our streaming method is unable to meet
its real-time deadline. However, with our software
streaming method, the application is able to meet its
deadline. The application load time for this application
also improves by a factor of more than 10X when com-
pared to downloading the entire application before run-
ning it.

1. Introduction

Today’s embedded devices typically support various
applications with different characteristics. With limited
storage resources, it may not be possible to keep all fea-
tures of the applications loaded on an embedded device.
In fact, some software components may not be needed at
all. As a result, the memory on the embedded device may
not be efficiently utilized. Furthermore, the application
software will also likely change over time to support new
functionality, and perhaps quite rapidly in the case of
game software [1]. Today, the user has to download the
software and install it. This means that the entire soft-

1530-1591/03 $17.00 & 2003 IEEE

ware must be downloaded before it can be run.
Downloading the entire program delays its execution. In
other words, application load time (the amount of time
from when the application is selected to download to
when the application can be executed) is longer than nec-
essary. To minimize the application load time, the soft-
ware should be executable while downloading. Software
Streaming enables the overlapping of transmission
(download) and execution of embedded software.

Embedded software to be streamed must be modified
before it can be streamed over a transmission media. The
software must be partitioned into parts for streaming. We
call the process of modifying code for streaming software
streaming code generation. We perform this modification
after normal compilation. After modification, the applica-
tion is ready to be executed after the first executable soft-
ware unit is loaded into the memory of the device. In
contrast to downloading the whole program, software
streaming can improve application load time. While the
application is running, additional parts of the stream-
enabled software can be downloaded in the background or
on-demand. If the needed part is not in the memory, the
needed part must be transmitted in order to continue exe-
cuting the application. The application load time can be
adjusted by varying the size of the first block while con-
sidering the time for downloading the next block. This
can potentially avoid the application suspension due to
block misses. The predictability of the software execu-
tion once it starts can be improved by software profiling
which determines the transmission order of the blocks.

In this paper, we present a new method for software
streaming. The transmission of the software can be com-
pletely transparent to the user. The software is executed
as if it is local to the device. Our streaming method can
also significantly reduce the application load time since
the CPU can start executing the application without
downloading the entire program.

This paper consists of five sections. The first section
introduces the motivation of the paper. The second sec-
tion describes related work in the area of software stream-
ing. In the third section, our method for streaming real-
time embedded software is presented. We provide
performance analysis of the streaming environment in the
fourth section. Finally, in the fifth section, we present an
example application and results.

2. Related work

In a networking environment, a client device can re-
quest certain software from the server. A typical process
involves downloading, decompressing, installing and con-
figuring the software before the CPU can start executing
the program. For a large program, download time can be
very long. Typically, application load time refers to time
between when the application is selected to run and the
time when the first instruction of the software is executed.
Transmission time of the software predominantly contrib-
utes to the application load time. Hence, a long download
time is equivalent to a long application load time. A long
application load time experienced by the user is an unde-
sirable effect of loading the application from the network.

In Java applet implementation, the typical process of
downloading the entire program is eliminated. A Java
applet can be run without obtaining all of the classes used
by the applet. Java class files can be downloaded on-
demand from the server. If a Java class is not available to
the Java Virtual Machine (JVM) when an executing app-
let attempts to invoke the class functionality, the JVM
may dynamically retrieve the class file from the
server [2], [3]. In theory, this method may work well for
small classes. The application load time should be re-
duced, and the user should be able to interact with the
application rather quickly. In practice, however, Web
browsers make quite a few connections to retrieve class
files. HTTP/1.0, which is used by most Web servers [4],
allows one request (e.g., for a class file) per connection.
Therefore, if many class files are needed, many requests
must be made, resulting in large communication over-
head. The number of requests (thus, connections) made
can be reduced by bundling and compressing class files
into one file [5], which in turn unfortunately can increase
the application load time. While the transition to persis-
tent connections in HTTP/1.1 may improve the perform-
ance for the applet having many class files by allowing
requests and responses to be pipelined [6], the server does
not send the subsequent java class files without a request
from the client. The JVM does not request class files not
yet referenced by a class. Therefore, when a class is
missing, the Java applet must be suspended. For a com-
plex application, the class size may be large, which re-
quires a long download time. As a result, the application
load time is also long, a problem avoided by the block
streaming method which we will describe in the next sec-
tion.

Raz, Volk and Melamed [7] describe a method to solve
long load-time delays by dividing the application software
into a set of modules. For example, a Java applet is com-
posed of Java classes. Once the initial module is loaded,
the application can be executed while additional modules
are streamed in the background. The transmission time is
reduced by substituting various code procedures with
shortened streaming stub procedures, which will be re-

placed once the module is downloaded. Since software
delivery size varies from one module to another, predict-
ing suspension time may be difficult. However, in block
streaming, this issue can be avoided by streaming fixed-
size blocks.

Eylon et al. [8] describe a virtual file system installed
in the client that is configured to appear to the operating
system as a local storage device containing all of the ap-
plication files to be streamed required by the application.
The application files are broken up into pieces called
streamlets. If the needed streamlet is not available at the
client, a streamlet request is sent to the server and the
virtual file system maintains a busy status until the neces-
sary streamlets have been provided. In this system, over-
heads from a virtual file system may be too high for some
embedded device to support. Unlike the method in [8],
our block streaming method does not need virtual file
system support.

Software streaming can also be done at the source code
level. The source code is transmitted to the embedded
device and compiled at load time[9]. Although the
source code is typically small compared to its compiled
binary image and can be transferred faster, the compila-
tion time may be very long and the compiler’s memory
usage for temporary files may be large. Since the source
code is distributed, full load-time compilation also ex-
poses the intellectual property contained in the source
code being compiled [10]. Moreover, a compiler must
reside in the client device at all times, which occupies a
significant amount of storage space. This method may
not be appropriate for a small memory footprint and
slower or lower-power processor embedded devices.

3. Block streaming

In this section, we present software streaming via
block streaming. The presented streaming method is
lightweight in that it tries to minimize bandwidth over-
heads, which is a key issue for streaming embedded soft-
ware. In our approach, the embedded application must be
modified before it can be streamed to the embedded de-
vice. As shown in, the block-streaming process on the
server involves (i) compiling the application source code
into an executable binary image by a standard compiler
such as gcc, (ii) generating a new binary for the stream-
enabled application and (iii) transmitting the stream-
enable application to the client device.

Source Code Stream-enabled Code

100011

' o Pl w

Compiler Softstream Softstream
100011101001001 | Generator Server

#include <ma
#in de aiib.n

#include <stdio.h> 001000110001011 101011

int main() 110100111010010 110100

{ 111101100010010 111010

Binary Image

inti

001011
110100
111010

Figure 1. Server-side block-streaming process.

The process to receive a block of streamed software on
the client device is illustrated in Figure 2: (i) load the
block into memory and (ii) link the block into the existing
code. This “linking” process may involve some code
modification which will be described later.

Stream-enabled Code Binary Image

100011
0] 101001 (ii)
Softstream 001001 Softstream

Loader Linker 100011101001001
001011 001000110001011
110100 110100111010010
111010 111101100010010
101011
110100
111010

Figure 2. Client-side block-streaming process.

We define a code block to be a contiguous address
space of data or executable code or both. A block does
not necessarily have a well-defined interface; for exam-
ple, a block may not have a function call associated with
the beginning and ending addresses of the block, but in-
stead block boundaries may place assembly code for a
particular function into multiple, separate blocks. The
compiled application is considered as a binary image oc-
cupying memory. This binary image is divided into
blocks before the stream-enabled code is generated. The
size of each block of the same application may be differ-
ent. The block size may be determined from streaming
parameters such as network speed.

After the application is divided into blocks, exiting and
entering a block can occur in three ways. First, a branch
or jump instruction can cause the CPU to execute code in
another block. Second, when the last instruction of the
block is executed, the next instruction can be the first in-
struction of the following block. Third, when a return
instruction is executed, the next instruction would be the
instruction after calling the current block subroutine,
which could be in another block. We call a branch in-
struction that may cause the CPU to execute an instruc-
tion in a different block an off-block branch. All off-
block branches to blocks not yet loaded must be modified
for streaming to work properly. (Clearly, the reader may
infer that our approach involves a form of binary rewrit-
ing.)

The method for transferring blocks to the client device
is explained in detail in Section 3 of [11]. Once the first
block of an application is downloaded, the Softstream
Loader shown in Figure 2 loads block to the allocated
memory and stores the address of the block in the block
look-up table. After the Softstream Loader finishes, the
block-streamed application begins execution. Execution
continues fine until an off-block branch is taken. Figure 3
shows the sequence when a modified off-block branch is
first taken. The Softstream Loader is invoked to load the
needed block. If the needed block is not fully in memory,

the needed block is, if not already done previously, re-
quested to be streamed. The block lookup table is used to
check if the block is in the memory. After the needed
block is in memory, the instruction which invokes the
Softstream Loader routine is modified to jump to the
proper location. The program execution is then resumed.

Off-block branch

Is the block in
the memory?

Load the block

Modify the branch |«

!

Continue program
execution

Figure 3. Softstream Loader flow chart.

3.1. Embedded software streaming code genera-
tion

In our approach, the stream-enabled embedded soft-
ware is generated from the executable binary image of the
software. The executable binary image of the software is
created from normal compilation. Stream-enabled code
generation can be done statically or dynamically. Static
code generation is performed before the software is re-
quested by the user. Generating the stream-enabled code
statically does not contribute to load-time overhead, once
created, since the stream-enabled software is always ready
to be transmitted. On the other hand, dynamic stream-
enabled code generation is done while the software is
being streamed. This may add some overhead. However,
in dynamic stream-enabled code generation, the streaming
can be more adaptive to environmental conditions such as
network congestion as the code generator modifies off-
block branch instructions and creates corresponding in-
formation for Softstream Loader.

Example 1: Consider the if-else C statement in Figure 4. The
C statement is compiled into corresponding PowerPC assembly

instructions. The application can be divided so that the statement
is split into different blocks. Figure 4 shows a possible split.

Block 1 0,01
. L cmpwi O,
if (=1 bc 4,1, .L3
i=0;)
else 1i 0,0
i=1; stw 0, 8(31)
’ b .L4
Block 2
LL3:
1i 0,1
stw 0,8 (31)
L4

Figure 4. C code and corresponding PowerPC assem-
bly.

In this simple example, the first block (Block 1) contains two
branch instructions, each of which could potentially jump to the
second block. If the second block (Block 2) is not in memory, this
application will not work properly. Therefore, these branch in-
structions must be modified. All branch instructions that may
cause the CPU to execute instructions from different blocks are
modified to invoke the appropriate loader function if the block is
not in memory. After the missing block is loaded, the intended
location of the original branch is taken. Figure 5 shows Block 1
and Block 2 from Figure 4 after running the software streaming
code generation program on the application code. Branch in-
structions bc 4,1, .L3 and b . L4, as seen in Figure 4, are
modifiedto bc 4,1, |oad2_1andb | oad2_2, respectively, as
seen in Figure 5.

Suppose the last instruction of a block is not a branch or a re-
turn instruction. If left this way, the CPU will automatically exe-
cute the first instruction of the following block. To prevent the
CPU from executing code of a non-existing block, an instruction is
appended by default to load the next block. For example, as
shown in Figure 5, the instruction bl | oad3_0 will be appended
to Block 2 from Figure 4 to load the subsequent block. The in-
struction bl | oad3_0 can be replaced later by the first instruc-
tion of the block after Block 2 in order to preserve code continu-
ity. O

cmpwi 0,01
bc 4,1, load2 1| ylload2 1:
11 0,0

stw 0, 8(31)

b load2 2 ____ | ylload2 2:

.L3:
11 0,1 ™ load3 0:
stw 0,8(31)

.L4:

bl load3_0

Figure 5. Block 1 and Block 2 after the stream-enabled
code generation.

3.2. Runtime code modification

After an off-block branch is taken and the block to
which the branch leads is loaded into memory, the off-
block branch instruction will be modified to jump to a
correct address location, instead of invoking the same
loader function. Although runtime code modification
introduces some overhead, the application will run more
efficiently if the modified branch instruction is executed
frequently. This is because, after modification, there is no
check as to whether or not the block is in memory, but
instead the modified branch instruction branches to the
exact appropriate code location.

Example 2: Suppose that the software from Figure 4 is modi-
fied using the software streaming code generated as illustrated in
Figure 5 and is running on an embedded device. When an off-
block branch is executed and taken, the missing block must be
made available to the application. Figure 6 shows the result after
the branch to load Block 2 is replaced with a branch to location
.L3 in Block 2 (look at the second instruction in the top left box
Figure 6). The runtime code modification only changes the in-
struction which issues the request. Other branches remain un-
touched even if the corresponding block is already in memory. If
such a branch instruction is executed to load a block already in
memory, the branch instruction will be modified at that time. O

cmpwi 0,01
I bc 4,1,.L3

1i 0,0

stw 0, 8(31)

b load2 2 | l0ad2_2:

load2_1:

LL3:
11 0,1 load3 0:

stw 0,8(31)
L4

bl load3 0]

Figure 6. Runtime code modification.

4. Performance analysis

In order to take advantage of software streaming, the
streaming environment must be thoroughly analyzed. The
streaming environment analysis will likely include CPU
speed, connection speed, block size and the program exe-
cution path. Without knowledge about the environment
for software streaming, the performance of the system can
be sub-optimal. For instance, if the block size is too small
and the CPU can finish executing the first block faster
than the transmission time of the second block, the appli-
cation must be suspended until the next block is loaded.
This would not perform well in an interactive application.
Increasing the block size of the first block will delay the
initial program execution, but the application may run
more smoothly.

4.1. Performance metrics

Overheads:

The obvious overhead is the code added during the
stream-enabled code generation step for block streaming.
For the current implementation, each off-block branch
adds 12 bytes of extra code to the original code. The
stream-enabling code (added code) for off-block branches
consists of (i) the ID of the needed block, (ii) the original
instruction of the branch, and (iii) the offset of the instruc-
tion. Since each field (i-iii) occupies four bytes, the total
is 12 extra bytes added. The original code and the stream-
enabling code are put together into a streamed unit. A
streamed unit must be loaded before the CPU can safely
execute the code. Therefore, the added stream-enabling
code incurs both transmission and memory overheads.
Increasing the block size may reduce these overheads.
However, a larger block size increases the application
load time since the larger block takes longer to be trans-
mitted.

Runtime overheads are associated with code checking,
code loading and code modification. Code loading occurs
when the code is not in the memory. Code checking and
code modification occur when an off-block branch is first
taken. Therefore, these overheads from the runtime code
modifications eventually diminish.

Application load time:

Application load time is the time between when the

program is selected to run and when the CPU executes the

first instruction of the selected program. The application
load time is directly proportional to the size of data and is
inversely proportional to the speed of the transmission
media. The program can start running earlier if the appli-
cation load time is lower. The application load time can
be estimated as explained in detail in [11].

Application suspension time:

Application suspension occurs when the next instruc-
tion that would be executed in normal program execution
is in a block yet to be loaded or only partially loaded into
memory. The application must be suspended while the
required block is being streamed. The worst case suspen-
sion time occurs when the block is not in memory; in this
case the suspension time is the time to load the entire
block which is the transmission time of the streamed
block. The best case occurs when the block is already in
memory. Therefore, the suspension time is between zero
and the time to load the whole block. Application sus-
pension time is proportional to the streamed block size.
The application developer can vary the block size to ob-
tain an acceptable application suspension time if a block
miss occurs.

For applications involving many interactions, low sus-
pension delay is very crucial. While the application is
suspended, it cannot interact with the environment or the
user. Response time can be used as a guideline for appli-
cation suspension time since the application should not be
suspended longer than response time. A response time
which is less than 0.1 seconds after the action is consid-
ered to be almost instantaneous for user interactive appli-
cations [12]. Therefore, if the application suspension time
is less than 0.1 seconds, the performance of the stream-
enabled application should be acceptable for most user
interactive applications when block misses occur.

4.2. Background streaming

In some scenarios, it may be a better solution if the ap-
plication can run without interruption due to missing
code. By allowing the components or blocks to be trans-
mitted in the background (background streaming) while
the application is running, the needed code may be in
memory prior to being needed. As a result, execution
delay due to code misses is reduced. The background
streaming process is only responsible for downloading the
blocks and does not modify any code.

4.3. On-demand streaming

In some cases where bandwidth and memory are
scarce resources, background streaming may not be suit-
able. Certain code blocks may not be needed by the ap-
plication in a certain mode. For example, the application
might use only one filter in a certain mode of operation.
Memory usage is minimized when a code block is
downloaded on-demand, i.e., only when the application
needs to use the code block. While downloading the re-
quested code, the application will be suspended. In a

multitasking environment, the block request system call
will put the current task in the 1/0O wait queue and the
RTOS may switch to run other ready tasks. On-demand
streaming allows the user to trade off between resources
and response times

4.4. Software profiling

It is extremely unlikely that the application executes its
code in a linear address ordering. Therefore, the blocks
should preferably be streamed in the most common order
of code execution. This can minimize delays due to miss-
ing code. Software profiling can help determine the order
of code to be streamed in the background and on-demand.
When the software execution path is different from the
predicted path, the order of background streaming must
be changed to reflect the new path. A software execution
path can be viewed as a control/data flow graph (CDFG)
as illustrated in Figure 7. When the program execution
flows along a certain path, the streaming will be con-
ducted accordingly. For instance, if the execution path is
through software block B3, B5 and B6 can be streamed in
the background. B4 will not be streamed at all. A path
prediction algorithm is necessary for background stream-
ing to minimize software misses. The block size for the
paths which are unlikely to be taken can be determined
according to the appropriate suspension delay. Currently,
we manually predict the software execution path.

/ B3 —» B5
B1 —» B2 B6

N

Figure 7. CDFG of a software execution path.

5. Simulation Results

An adaptive system application below was simulated
using hardware/software co-simulation tools described
in [11]. We use the block-streaming method to transmit
the software from the server to the client device.

In robot exploration, it is impossible to write and load
software for all possible environments that the drone will
encounter. The programmer may want to be able to load
some code for the robot to navigate through one type of
terrain and conduct an experiment. As the robot explores,
it may roam to another type of terrain. The behavior of
the robot could be changed by newly downloaded code
for the new environment. Furthermore, the remote robot
monitor may want to conduct a different type of experi-
ment which may not be programmed into the original
code. The exploration would be more flexible if the soft-
ware can be sent from the base station. When the robot
encounters a new environment, it can download code to
modify the robot’s real-time behavior. The new code can

be dynamically incorporated without reinitializing all
functionality of the robot.

In this application, we used the block streaming
method to transmit the software to the robot. A binary
application code of size 10MB was generated. The
stream-enabled application was generated using our Soft-
stream code generation tool. There were three off-block
branch instructions on average in each block. The soft-
ware was streamed over a 128Kbps transmission media.
Table I shows average overheads of added code per block
and load time for different block sizes. The average
added code per block is 36 bytes (due an average in each
block of three off-blocks branches each of which adds 12
bytes). This overhead is insignificant for block sizes lar-
ger than 1KB. The load times were calculated using only
transmission of the block and the streamed code. We did
not include other overhead such as propagation delay and
processing.

Table I. Simulation results for block streaming.

Block size Number of Added Load time
(bytes) blocks code/block (s)
10M 1 0.00% 655.36
5M 2 0.00% 327.68
2M 5 0.00% 131.07
1M 10 0.00% 65.54
0.5M 20 0.01% 32.77
100K 103 0.04% 6.40
10K 1024 0.35% 0.64
1K 10240 3.52% 0.06
512 20480 7.03% 0.03

Without using the block streaming method, the appli-
cation load time of this application would be over 10
minutes (approximately 655 seconds). If the robot has to
adapt to the new environment within 120 seconds,
downloading the entire application would miss the dead-
line by more than eight minutes. However, if the applica-
tion were broken up into 1MB or smaller blocks, the
deadline could be met. Even the strict deadline is not
crucial, the block streaming method reduces the applica-
tion load time by more than ten times for the block sizes
of 1MB or less. The load time for block size of 1MB is
approximately 65 seconds whereas the existing method
application load time is more than 655 seconds.

If the software profiling predicts the software execu-
tion path correctly, the application will run without inter-
ruption due to missing blocks; the subsequent-needed
blocks can be streaming in the background while the CPU
is executing the first block. However, if the needed block
is available at the client, the application must be sus-
pended until the needed block is downloaded. If the size
of the missing block is 1KB, the suspension time is only
0.06 seconds. As mentioned previously, this suspension
delay of less than 0.1 seconds is considered to be almost
instantaneous for user interactive applications. While our

sample application is not a full industrial-strength exam-
ple, it does verify the block streaming functionality and
provides experimental data.

6. Conclusion

Embedded software streaming allows an embedded
device to start executing an application while the applica-
tion is being transmitted. We presented a method for
transmitting embedded software from the server to be
executed on a client device. Our streaming method can
lower load-time delay, bandwidth utilization and memory
usages. We verified our streaming method using a hard-
ware/software co-simulation platform for the PowerPC
architecture, specifically for MPC 750 processors.

7. Acknowledgements

This research is funded by the State of Georgia under the
Yamacraw initiative [16]. We acknowledge donations received
from Denali, Hewlett-Packard Company, Intel Corporation,
LEDA, Mentor Graphics Corp., SUN Microsystems and Synop-
sys, Inc.

8. Reference

[1] R. Avner, “Playing GoD: Revolution for the PC with Games-on-
Demand,” Extent Technologies,
http://www.gamesbiz.net/keynotes-details.asp?Article=248.

[2] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, 2™ ed., Massachusetts: Addison-Wesley Publishing
Company, 1999, pp. 158-161.

[3] J. Meyerand T. Downing, Java Virtual Machine, California:
O’Reilly & Associates, Inc., 1997, pp. 44-45.

[4] E. Nahum, T. Barzilai and D. D. Kandlur, “Performance Issues in
WWW Servers,” IEEE/ACM Transactions on Networking, vol. 10,
no. 1, pp. 2-11.

[5] P.S.Wang, Java with Object-Oriented Programming and World
Wide Web Applications, California: PWS Publishing, 1999, pp.
193-194.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transport Protocol — HTTP/1.1”,
RFC 2616, The Internet Engineering Task Force, June 1999.

[7]1 U.Raz, Y. Volk and S. Melamed, Streaming Modules, U.S. Patent
6,311,221,0ctober 30, 2001.

[8] D.Eylon, A. Ramon, Y. Volk, U. Raz and S. Melamed, Method
and System for Executing Network Streamed Application, U.S.
Patent Application 20010034736, October 25, 2001.

[9] G. Eisenhauer, F. Bustament and K. Schwan, “A Middleware
Toolkit for Client-Initiate Service Specialization,” Operating
Systems Review, vol. 35, no. 2, 2001, pp. 7-20.

[10] M. Franz, “Dynamic Linking of Software Components,”
Computer, vol. 30, pp. 74-81, March 1997.

[11] P. Kuacharoen, V. Mooney and V. K. Madisetti, “Software
Streaming via Block Streaming,” Georgia Institute of Technology,
Atlanta, Georgia, Tech. Rep. GIT-CC-02-63, 2002.

[12] W. Stallings, Operating Systems, 2" ed., New Jersey: Prentice
Hall, 1995, pp. 378-379.

[13] Synopsys Inc., http://www.synopsys.com

[14] Seamless CVE™, http://www.mentor.com/seamless

[15] Mentor Graphics XRAY® Debugger,
http://www.mentor.com/embedded/xray

[16] Yamacraw, http://www.yamacraw.org

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

