
Automatic Evaluation of the Accuracy of Fixed-point Algorithms

Daniel Menard †
† LASTI - University of Rennes I

6, rue de kerampont
22300 Lannion, FRANCE

menard@enssat.fr

Olivier Sentieys †‡
‡ IRISA/INRIA

Campus de Beaulieu
35042 Rennes cedex, FRANCE

sentieys@irisa.fr

Abstract

The minimization of cost, power consumption and time-
to-market of DSP applications requires the development
of methodologies for the automatic implementation of
floating-point algorithms in fixed-point architectures. In
this paper, a new methodology for evaluating the quality
of an implementation through the automatic determination
of the Signal to Quantization Noise Ratio (SQNR) is under
consideration. The theoretical concepts and the different
phases of the methodology are explained. Then, the ability
of our approach for computing the SQNR efficiently and its
beneficial contribution in the process of data word-length
minimization are shown through some examples.

1 Introduction

The cost and power consumption constraints of embed-
ded systems require to use the fixed-point arithmetic for the
efficient implementation of digital signal processing (DSP)
algorithms. The manual transformation of floating-point
data into fixed-point data is a time-consuming and error
prone task. Moreover, high level development tools which
allow the automation of some tasks are required for reduc-
ing the time-to-market of applications. The reduction of the
development time is hindered by the manual conversion to
the fixed-point level. Indeed, some experiments [4] have
shown that this manual conversion can represent up to 30%
of the global implementation time. Thus, methodologies
for the automatic transformation of floating-point data into
fixed-point data have been proposed [8, 17].

The efficient implementation of algorithms in hardware
architectures (ASIC, FPGA) requires to minimize the size
and the power consumption of the chip. Thus, the goal
of this implementation is to minimize the word-length of
the data as long as the desired precision constraints are re-
spected. The most common used criteria for evaluating the
precision of the implementation is the Signal to Quantiza-

tion Noise Ratio (SQNR) [8, 6, 9]. The first stage of this
implementation is the estimation of the dynamic range of
the data in order to determine the word-length of their inte-
ger part. Then, the word-lengths of the data are optimized
according to the desired SQNR constraint. The achievement
of this second stage is based on the availability of a tool al-
lowing the evaluation of the quality of the implementation
through the determination of the SQNR at the output of the
system. Most of the available methodologies are based on
simulation [3, 7, 8, 14].

In this paper, a new method for the SQNR evaluation of a
software or hardware implementation, based on an analyti-
cal approach is presented. This method uses a realistic noise
model and allows to compute automatically the expression
of the SQNR in non-recursive structures and in linear re-
cursive structures. The use of this method in the process
of data word-length minimization reduces significantly its
minimization time compared to the simulation based meth-
ods.

After an overview of the available methods for SQNR
evaluation, the interests of our approach in relation to the
previous methodologies are underlined. In section 3, the
theoretical concepts of the method are explained. Then, the
techniques used for implementing this method are detailed
in section 4. Finally, the ability of our approach for com-
puting the SQNR efficiently and its beneficial contribution
in the process of data word-length minimization are shown
through some examples in section 5.

2 Problem presentation and related work

Two types of method can be considered for evaluating
the SQNR at the output of a system. Firstly, the simulation
based methods are presented. The evaluation of the SQNR
can be obtained with a bit true simulation of the fixed-point
algorithm. A number of this type of simulator is available
with high level tools such as SPW (Cadence), CoCentric
(Synopsys) [14], DSP Station (Frontier Design) or Matlab-
Simulink (Mathworks) [11]. As well, C++ classes for em-

ulating the fixed-point mechanisms have been developed as
in SystemC [14]. These techniques suffer from a major
drawback which is the time required for the simulation [3].
It becomes a severe limitation when these methods are used
in the process of data word-length optimization where mul-
tiple simulations are needed. The simulations are made on
floating-point machines and the extra-code used for emulat-
ing the fixed-point mechanisms of the operations increases
the execution time between one and two orders of mag-
nitude compared to a traditional simulation with floating-
point data types [7]. For obtaining an accurate estimation
of the noise statistic parameters, a great number of sam-
ples must be taken for the simulation. This great number
of samples combined with the increase of execution time
due to the emulation of the fixed-point mechanisms, leads
to long simulation time. Different techniques [3, 7, 8] have
been investigated for reducing this simulation time.

Moreover, the process of data word-length optimization
requires to explore the design-space of the different data
word-lengths. When the simulation based methods are
used, this optimization is made with an iterative process
where the word-lengths of the data are progressively mini-
mized while the SQNR is greater than a threshold [8, 13, 6].
Thus, the fixed-point algorithm is simulated again as soon
as a data word-length is modified and the optimization time
for a complex system becomes very huge. For reducing
the number of simulations, the exploration of the design
space is based on heuristic search algorithms which limit
this design space [13].

An alternative to the simulation based method can be an
analytical approach which determines the expression of the
noise power at the output of the system according to the
statistical parameters of the different noise sources. For this
approach, two advantages can be underlined. Firstly, this
method gives an analytic expression of the SQNR and thus
provides more information about the noise behaviour in the
system than a simulation based method which only gives
the numerical value of the SQNR. This approach allows to
analyse more precisely the influence of a particular opera-
tion and to investigate more efficiently the different possible
structures of a DSP system. Secondly, the requisite execu-
tion time for evaluating the noise power is definitely lower,
especially for the process of data word-length optimization
in hardware design. Indeed, the determination of the SQNR
expression SQNR

�
bk � is done only once. Then, the word-

lengths of the data bk are obtained by minimizing the size
S
�
bk � of the chip as long as the SQNR is greater than the

desired SQNR

min
bk � Z �

�
S
�
bk ��� such as SQNR

�
bk ��� SQNRmin (1)

Analytical expressions of the SQNR have been for-

mulated for some particular DSP applications as in [10].
In [15], the author has proposed a SQNR evaluation
methodology based on an analytical approach. For each
type of operator the output noise is modelised by the sum
of the input noises propagated through the operator and the
noise generated by the operator if a cast operation occurs.
Different restrictive assumptions have been made for defin-
ing the expressions of the output variance of the operators.
Then, the variance of the system output is obtained by
traversing the signal flow graph (SFG) of the application
from the inputs to the output. This method requires that the
SFG is a directed acyclic graph (DAG) and consequently it
can only be applied on non-recursive structures. Thus, this
method suffers of two major drawbacks. The noise model
is not realistic and the method is limited to non-recursive
structures.

In this paper a new method based on the analytical ap-
proach is proposed. It uses a realistic noise model which
takes into account the different quantization laws (rounding
and truncation). Moreover, this method allows to compute
the SQNR in non-recursive structures and in linear recur-
sive structures. For linear systems our approach is based
on the automatic computation of the transfer function of the
system from its SFG representation.

3 Theoretical concepts

3.1 Noise models

The use of fixed-point arithmetic introduces an unavoid-
able quantization error when a signal is quantified. A com-
mon used model for the continuous-amplitude signal quan-
tization, has been proposed by Widrow in [16] and refined
in [12]. The quantization of a signal x is modeled by the
sum of this signal and a random variable b. This additive
noise b is an uniformly distributed white noise that is uncor-
related with the signal x and the other quantization noises.
This model has been extended for modeling the compu-
tation noise in a system resulting from the elimination of
some bits during a format conversion (cast operation). More
especially, the roundoff error resulting from the multiplica-
tion of a constant by a discrete amplitude signal has been
studied by Barnes in [1]. The author has demonstrated that
the model presented above can be used if the dynamic range
of the signal is sufficiently greater than the quantum step
size and if the bandwidth of the input is enough large. In
[2] the number of bits eliminated during a cast operation has
been taken into account for expressing the first and second-
order moments of the quantization noise.

3.2 Linear systems

A linear time-invariant system made up of Ne inputs
x j
�
n � and one output1 y

�
n � is considered. Let H j

�
z � be the

partial transfer function between the output Y
�
z � and each

input X j
�
z � , and h j

�
n � be the impulse response associated

with H j
�
z � . The expression of the output y

�
n � is equal to

y
�
n ��� Ne � 1

∑
j � 0

h j
�
n � � x j

�
n � (2)

The fixed-point version of this system is detailed there-
after. Let

�
x j
�
n � be the jth quantified system input and

�
H j

�
z �

be the transfer function between the output Y
�
z � and the

input X j
�
z � with quantified coefficients. The use of fixed-

point arithmetic gives rise to an output computation error
by which is defined as the difference between y

�
n � and

�
y
�
n � .

This output computation error is due to three kinds of source
of error. The noise be j results from the propagation in the
system of the input quantization noise b

�
e j associated with

the input
�
x j
�
n � . When a cast operation occurs, a quantiza-

tion noise b
�
gi is generated. The output noise resulting from

the propagation of b
�
gi is called bgi. Let Hgi

�
z � be the trans-

fer function between Bgi
�
z � and B

�
gi

�
z � . These two types of

noise source are modelised by an uniformly distributed ad-
ditive white noise as defined in the previous section. The
last type of error source bh j is due to the quantization of the
constants. The output error bh j results from the propagation
of the input signal x j

�
n � in the subsystem whose transfer

function is ∆H j
�
z � . This transfer function corresponds to

the difference between
�
H j

�
z � and H j

�
z � . In order to sim-

plify the presentation of the results of this study, each input
x j is assumed to be a white noise. Nevertheless, the same
approach can be followed for any type of input signals. A
representation of the noise model of the system is given in
figure 1. The final expression of the output noise by is equal
to

by � Ne � 1

∑
j � 0

∆h j
� x j

�
h j
� b
�
e j
� Ng � 1

∑
i � 0

hgi
� b
�
gi (3)

The approaches used for determining the expression of
the statistical parameters of be j, bgi and bh j are identical.
Indeed, these noises represent the output of a linear subsys-
tem excited by a white noise (b

�
e j, b

�
gi, x j � as defined above.

In order to simplify, let b j be the output of this linear sub-
system, b

�
j the input and H j

�
z � its transfer function. Thus,

the output b j is equal to b
�
j

�
n � � h j

�
n � . The noise power cor-

responding to the second-order moment of the output noise
b j is equal to

E
�
b2

j ��� �
µb 	 j H j

�
e j0 ��� 2 � σ2

b 	 j
 1
2π

� π

� π �H j
�
e jΩ � � 2dΩ (4)

1for multiple-output system our method is repeated for each output

+

+

)(nbej′

)(nx j

)(nbej

)(nbhj

)(0 nbe′

)(0 nx

)(0 nbe

)(0 nbh

)(1 nbg′)(1 nbg

)(nbgi′)(nbgi

1gh

gih

jh

jh

jh∆

0h

0h

0h∆

)(nby

)(ny

Figure 1. Noise model of the system

The output noise of the system by is the sum of N noises
b j corresponding to be j bh j and bgi. These noises represent
the output of different linear subsystems whose inputs are
respectively b

�
e j x j and b

�
gi. The power of the output quanti-

zation noise is equal to

E
�
b2

y ��� N � 1

∑
j � 0

E
�
b2

j � � N � 1

∑
m � 0

N � 1

∑
l � 0
l �� m

ϕbmbl

�
0 � (5)

All the quantization noise sources are uncorrelated with
the other noise sources and with the inputs of the system.
Thus, the cross-correlation ϕbmbl

�
0 � is equal to the product

of the means of bm and bl except if these two noises bm and
bl correspond to any noise bh j due to the quantization of
the coefficients. In this case, the cross-correlations between
the inputs of the system have to be defined. The expres-
sions 4 and 5 show that the output noise power depends
on the first and second-order moments of the quantization
noise sources and the system inputs, the cross-correlation
between these inputs and the frequency response of the
transfer function of the different subsystems.

3.3 Non-linear systems

For non-linear systems, the concept of transfer function
is no longer valid. Thus for computing the output noise, the
statistical parameters of the different noise sources are prop-
agated trough the signal flow graph (SFG) of the system.
This method requires the definition of the noise propagation
models for each kind of arithmetic operator. These models
define the first and second-order moments of the output of
an operator according to the statistical parameters of its in-
puts. As explained in section 2, this method can only be
used in non-recursive structures.

4 SQNR computation methodology

The goal of this method is to compute the SQNR at
the output of an application by using an analytical method
based on the theoretical approach presented above. In this
paper, the presentation of the method is restricted to the
computation of the SQNR in the case of linear systems.
This method uses as input, an application representation
where all the fixed-point formats and parameters are spec-
ified. This representation is based on a SFG. In order to
be independent of the specification language of the applica-
tion, the tool is split into two parts, a front-end and a back-
end. The front-end transforms the original application rep-
resentation in a unique intermediate representation called
Gs corresponding to the SFG of the application. At present,
a front-end for interfacing the tool with our high level syn-
thesis (HLS) tool has been developed. It computes the SFG
of the application from the internal representation of the
HLS tool corresponding to a data-flow graph obtained af-
ter the compilation phase. The development of a new front-
end will allow to interface this method with the intermediate
representation of a code generation tool for DSP.

The back-end determines the SQNR according to the an-
alytical approach. It consists of several successive transfor-
mations (T1 to T3) of the SFG, described in the following
sections. First of all, the SFG Gs is transformed in a graph
Gsn representing the application at the quantization noise
level. After, the transfer functions between all the inputs
and the output are evaluated. Finally, the expression of the
noise power is computed from the frequency response of the
different transfer functions and the statistical parameters of
the inputs.

4.1 Intermediate representation

The intermediate representation Gs is a signal flow
graph. The nodes Ns of the oriented graph Gs � �

Ns Es �
represent either an operator or a data and the edges Es give
the relation between the data and the operators. The graph
Gs specifies the behaviour of the algorithm at the fixed-point
level. Different information corresponding to the fixed-
point data format, the type of signal and its value for the
constants are associated with each data. For each operation
a theoretical format representing the format of the output
operator without loss of information, is defined. It will be
used in the following stage for detecting every format con-
version.

4.2 T1 : Application noise model determination

The goal of the transformation T1 is to represent the ap-
plication at the quantization noise level through the graph

Gsn. The aim of the first stage of T1 is to detect and to in-
clude in the graph the three types of noise source defined in
the section 3.2. The quantization noise parameters associ-
ated with each input of the system are defined by the user.
The generated noise sources are detected by comparing the
theoretical format and the real format of the data. The sta-
tistical parameters of these noises are computed from the
noise model presented in [2] according to the number of
bit eliminated, the format of the data and the quantization
law used. The second stage of the transformation leads to
the representation of the data and the operators at the noise
level. Each non processed data node of Gs is split into a sig-
nal node and a noise node. Then, each operator is replaced
by its noise propagation model. The models used for the
multiplication and the addition are given in figure 2. The
result of the transformation T1 when a format conversion
occurs, is presented in figure 3.

×

zS

×

uS

uN

vS

vN

zN

+

×

Multiplication

+
zS

+

uS

uN

vS

vN

zN

Noise
node

Signal
node

+

u

v

z

×
u

v

z

Addition

T1

T1

Signal
node

Noise
node

Figure 2. Operator noise models

Op

u

v

zQ
zS

uS

uN

vS

vN

zN

Op
+

bgi
Format conversion

T1

Figure 3. Format conversion

4.3 T2 : Transfer function computation

The goal of the transformation T2 is to determine the
linear functions defining the system in order to compute
the corresponding transfer functions with the Z transform.
These linear functions are built by traversing the graph from
the inputs to the output. But, this technique is unusable if
cycles are present in the graph as in our case when recur-
sive structures are considered. Consequently, the use of this
technique requires first of all, to transform this graph in sev-
eral directed acyclic graphs (DAG). The different stages of

the transformation T2 are presented below and an example
is given in figure 4.

Transformation T21 : Gsn � Gk
 The goal of T21 is to
transform the graph Gsn into several DAG Gk if Gsn con-
tains circuits. Thus, the aim of the first stage of this trans-
formation is to detect quickly the occurrence of a circuit in
the graph and to decide if the transformation T21 has to be
applied. For minimizing the execution time of this stage,
the circuit search procedure is done on the graph Gs and
is stopped as early as a circuit is detected. For handling
acyclic graphs with a large number of nodes, a circuit search
algorithm based on a depth-first traversal of the graph is
used. This algorithm allows to process each node only once.

In the second stage of T21, all the circuits of the graph T21

are enumerated with the algorithm proposed by Johnson [5].
The dismantling of the graph in DAG requires to define the
points where the circuits have to be cut. After, enumerating
a circuit C � �

a

 p1

 pi � , all the paths Li between the
node a and the node representing the output are determined.
The graph is dismantled at each node pi corresponding at
the last common data node between the circuit C and the ith

path Li. The algorithm proposed by Johnson [5] has been
modified to enumerate all the paths Li between two nodes.

Transformation T22 : Gk � Geq
 The graph Geq ��
Neq Eeq � is a weighted and directed graph which specifies

the system with a set of linear functions. The nodes of this
graph represent the output, the inputs of the system and the
intermediate variables associated with the data nodes pi. A
weighted and directed edge

�
u z fzu � from the node u to z

indicates that the variable z is defined from the variable u
with the linear function fzu specified through the weight of
the edge.

The goal of the transformation T22 is to build this graph
Geq from the different DAG Gk. The linear function fz asso-
ciated with a DAG Gz is obtained by a depth-first traversal
of this DAG. A post-order recursive algorithm is used for
traversing the DAG. At a node which is not member of the
DAG sources, the algorithm examines the predecessors and
then compute the linear function from the results of each
predecessor and the operator. When a source is examined,
the algorithm returns the name of the node i.e. the name of
the data.

Transformation T23 : Geq � GHi
 The graph GHi ��
NGHi EGHi � is a weighted and directed graph which spec-

ifies the algorithm with a set of intermediate transfer func-
tions. The nodes of the graph GHi are member of the set of
nodes Neq. The weighted and directed edges specify the
intermediate transfer functions between the head and the
trail of these edges. The goal of the transformation T23 is

T21

p0x
p1' y

p0''

p1''

p0'

p1

p0
y

x
a

p1

y

fp0x

x

fp0p1

fp1p0

fyp0

fyp1

p0

p1

fp0x

x y

fp0p0

fp1p0

fyp0

fyp1

p0

p1

Variable
substitutions

Gp0

Gy

Gp1

T22

Hyp0
Hp0x

x y
Hp1p0

Hyp1

p0

p1

T23

x y
Hyx

Hyx = Hyp0.. Hp0x + Hyp1 . Hp1p0 .Hp0x

T24

Gsn

Geq

GHi

GH

Figure 4. Transformation T2 example

to compute these intermediate transfer functions from the
linear functions.

The transfer function of a subsystem can be directly
computed from the Z transform of the linear function defin-
ing the output y if this linear function contains explicitly
all the terms related to the delayed versions of y. Thus,
if any input of this subsystem is a linear function of the
output y, variable substitutions must be made before the
transfer function determination. Thus, after the detection
of the circuits in the graph Geq, a set of variable substitu-
tions between the linear functions are made in order to elim-
inate these circuits (except loops) for respecting the rule
presented above. Then the intermediate transfer functions
are obtained by the Z transform of the linear functions. The
variable substitution process allows to be independent of the
way that the graph Gsn is dismantled and thus leads to the
determination of the exact transfer functions.

Transformation T24 : GHi � AH
 The graph AH ��
NAH EAH � is a weighted tree which specifies the algorithm

with a set of global transfer functions between the output
and each input of the system. This tree represents the mod-
elisation of the system given at the figure 1. In the graph
GHi , the path between each system input and the output is
determined and the global transfer function is defined as the
product of the intermediate transfer functions member of
this path.

4.4 T3 : SQNR computation

The output noise power is computed from the expres-
sions 4 and 5. Thus, the frequency responses of the different
subsystems are computed from the transfer functions ob-
tained after the transformation T2. The output signal power
required for the SQNR evaluation is specified by the user
or is computed from the transfer function of the system and
the parameters of the system inputs according to the same
method.

5 Results

5.1 SQNR computation results

The ability of our method for computing the SQNR has
been successfully verified on several classical DSP appli-
cations such as FIR and IIR filters and the FFT algorithm.
The estimations of the output noise power obtained with
a bit true simulation and with our method are very closed.
The relative error between these two estimations is included
between 0
 29% and 8
 2% for different implementations of
a second-order IIR filter and smaller than 1
 5% for a 16 taps
FIR filter. Two different reasons can explain the difference
between these two estimations. First, the accuracy of the
estimation based on simulation depends on the number of
samples used. Secondly, for our method, two elements can
influence the accuracy of the estimation. A slight error
can be present due to the assumptions made on the linear
noise model. Given that the transfer functions obtained
are exact, the accuracy of the output noise power depends
of the accuracy of the quantization noise model used for
cast operations. Despite of the relatively high accuracy
of the model proposed in [2], further improvements can
be obtained by combining it with the model proposed in [1].

The execution time of the different parts of the tool has
been measured. Most of the time is consumed by the trans-
formation T2 and especially by the circuit and path enumer-
ation procedure (transformation T211). The execution times
of the transformations T2 and T211 for different applications
are reported in table 1. The global SQNR computation
times for a fourth order cascaded IIR filter (IIR 4) and 256
taps FIR filter (FIR 256) are smaller than 1 second. These
results show the efficiency of our approach on SFG with
multiple cycles and on acyclic SFG with a great number of
nodes. These results are smaller than those obtained with a
simulation based method. Indeed, the global SQNR com-
putation time for a second-order IIR filter simulated with
the MATLAB’s Fixed-Point Toolbox [11] is around 34s for
100000 input samples. In [8], the best simulation time ob-
tained for a fourth-order IIR filter is 16
 3s.

Applications Execution time (s)
T211 T2

IIR 2 0.07 0.08
IIR 4 0.43 0.45
IIR 4 (cascaded) 0.64 0.65
FIR 16 � 0.01
FIR 256 � 0.86

Table 1. Execution time

5.2 Application to data word-length optimization

This method can be integrated in a process of data word-
length optimization. It can replace efficiently a SQNR eval-
uation method based on simulation as in [9]. The first stage
of this process is the computation of the dynamic range of
the data. From these results the word-length of the integer
part of the data is defined in order to avoid the occurrence
of an overflow. Moreover, the different format conversion
operations are included in the application in order to respect
the fixed-point arithmetic rules. Then, our methodology is
used for evaluating the expression of the output noise power.
Finally, the expression of the chip area is minimized as long
as the output noise power is smaller than a threshold as de-
fined below

min
bk � Z � � S � bk � � such as Pby

�
bk � �

Py10 �
SQNRmin

10 (6)

A simplified model for the chip area evaluation has been
used. Let bin be the input word-length of an operator (adder
or multiplier), the area of these operators is equal to

adder : Sadd � Kadd
 bin

multiplier : Smult � Kmult

�
bin � 2 (7)

A constrained non-linear minimization method has been
used for solving the minimization problem given in equa-
tion 6 with bk � R � . From this solution a branch-and-
bound algorithm with a limited search space is used for ob-
taining the solution with bk � Z � . The limitation of the
search space allows to obtain a relatively small global min-
imization time.

A set of experiments has been performed with a second-
order IIR filter whose SFG is presented in figure 5. The
design space has been explored by progressively increasing
the number Nv of distinct variables bk in equation 6 and for
each experiment the word-length has been optimized as ex-
plained before. The results are given in table 2 for a SQNR
constraint of 80 dB. For the first experiment, all the sig-
nals have the same word-length. The second experiment
provides the optimal temporal implementation where only
one multiplier and one adder are used for the different op-
erations. The last experiment corresponds to the optimal
spatial implementation.

ADD 0

x y+

×
c1

×
a1

×
c2

×
a2

+×
c0

ADD 2

z-1

z-1z-1

z-1

+ +
ADD 1 ADD 3 bybx

b1 b3

Figure 5. IIR filter signal flow graph

Nv Word-length SQNR
bx by b1 b2 b3 b4 � dB �

1 18 18 18 18 18 18 84.1
2 17 17 21 21 21 21 85.1
3 17 17 20 20 21 21 85.0
3 14 17 21 21 21 21 80.5
6 14 17 20 20 21 21 80.4

Table 2. Optimum word-length

6 Conclusion

A new methodology for computing the output SQNR of
an application based on an analytical approach has been
presented. The ability of our approach for computing the
SQNR efficiently and its integration in the process of data
word-length minimization have been shown through some
examples.

This approach provides a significant improvement com-
pared to the simulation based methods for most of the DSP
applications. This method can not cope with the recursive
non-linear systems. With our method the time required for
minimizing the data word-length is definitively lower. It
allows a complete design space exploration and the deter-
mination of the optimal solution.

This method will be shortly integrated in an auto-
matic data word-length optimization methodology associ-
ated with our high level synthesis tool. Given that the ex-
ecution time of an operator depends of its word-length, the
phases of operator selection, scheduling, resource binding
and word-length optimization have to be coupled.

The techniques presented in this paper for automatically
determining the transfer functions in a signal flow graph can
be used for the estimation of the dynamic range of the data
in a linear system. Indeed, the evaluation of the dynamic
range of a variable based on the l1, l2 or Chebyshev norms
uses the concept of transfer function.

References

[1] C. Barnes, B. N. Tran, and S. Leung. On the Statistics of
Fixed-Point Roundoff Error. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 33(3), 1985.

[2] G. Constantinides, P. Cheung, and W. Luk. Truncation Noise
in Fixed-Point SFGs. IEE Electronics Letters, 35(23):2012–
2014, November 1999.

[3] L. D. Coster, M. Ade, R. Lauwereins, and J. Peperstraete.
Code Generation for Compiled Bit-True Simulation of DSP
Applications. In Proceedings of ISSS’98, Taiwan, Dec. 1998.

[4] T. Grötker, E. Multhaup, and O.Mauss. Evaluation of HW/SW
Tradeoffs Using Behavioral Synthesis. In ICSPAT’96, Boston,
October 1996.

[5] D. B. Johnson. Finding All the Elementary Circuits of a
Directed Graph. SIAM Journal on Computing, 4(1):77–84,
March 1975.

[6] H. Keding, F. Hurtgen, M. Willems, and M. Coors. Transfor-
mation of Floating-Point into Fixed-Point Algorithms by In-
terpolation Applying a Statistical Approach. In ICSPAT’98,
1998.

[7] H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A
Fixed-Point Design And Simulation Environment. In Design,
Automation and Test in Europe 1998 (DATE-98), 1998.

[8] S. Kim, K. Kum, and S. Wonyong. Fixed-Point Optimization
Utility for C and C++ Based Digital Signal Processing Pro-
grams. IEEE Transactions on Circuits and Systems II, 45(11),
November 1998.

[9] K. Kum and W. Sung. Word-Length Optimization For High
Level Synthesis of Digital Signal Processing Systems. In
SiPS’98, pages 142–151, Boston, October 1998.

[10] B. Liu. Effect of Finite Word Length on the Accuracy of Dig-
ital Filters - A Review. IEEE Transaction on Circuit Theory,
18(6), November 1971.

[11] Mathworks. Fixed-Point Blockset User’s Guide (ver. 2.0),
1999.

[12] A. Sripad and D. L. Snyder. A Necessary and Sufficient Con-
dition for Quantization Error to be Uniform and White. IEEE
Trans. ASSP., 25(5):442–448, Oct. 1977.

[13] W. Sung and K. Kum. Simulation-Based Word-Length Op-
timization Method for Fixed-Point Digital Signal Processing
Systems. IEEE Transactions on Signal Processing, 43(12),
Dec. 1995.

[14] Synopsys. Converting ANSI-C into Fixed-Point using Co-
Centric Fixe-Point Designer. Synopsys Inc., April 2000.

[15] J. Toureilles, C. Nouet, and E. Martin. A Study on Discrete
wavelet transform implementation for a high level synthesis
tool. In EUSIPCO’98, Rhodes, Greece, Septembre 1998.

[16] B. Widrow. Statistical Analysis of Amplitude Quantized
Sampled-Data Systems. Trans. AIEE, Part. II:Applications
and Industry, 79:555–568, 1960.

[17] M. Willems, V. Bursgens, and H. Meyr. FRIDGE: Floating-
Point Programming of Fixed-Point Digital Signal Processors.
In ICSPAT’97, 1997.

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

